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Stationary scaling in small-scale turbulent dynamo problem
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We consider forced small-scale magnetic field advected by an isotropic turbulent flow. The random driving
force is assumed to be distributed in a finite region with a scale smaller than the viscous scale of the flow.
The two-point correlator is shown to have a stationary limit for any reasonable velocity statistics. Its spatial
dependence is found to be a power law. The scaling exponent is found to be close to 3.
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I. INTRODUCTION

The origin of magnetic fields in interstellar media, as well
as the origin of stellar and planetary magnetism, has been
under consideration for a long time [1,2], but it still remains
unknown. The common point of view is that the mechanism
to generate the magnetic field is dynamo: the motions of
conducting fluid stretch magnetic lines and thus amplify the
field. Turbulence is a natural source for these motions [3].
Small scales corresponding to the viscous range of turbulence
is one of the possibilities for intensive dynamo [1] because
the smallest scales provide large velocity gradients [4] which
result in fast growth of the magnetic field. In the viscous range
of scales, one can simplify the problem using the Batchelor
approximation for velocity flow [5].

The absence of a stationary solution is one of the problems
of the dynamo approach. The usual (“standard”) assumption
introduced by [6,7] assumes spatial homogeneity of the initial
magnetic field. In [6,8] it was shown that for homogenous
initial fluctuations with correlation length less than the viscous
scale, the magnetic field increases exponentially. So the way
to get a stationary state was to stop the exponential growth
by means of nonlinearity. This could happen when magnetic
field energy density would become of the order of the kinetic
energy density of the turbulent flow, to provide the feedback
of magnetic field on the velocity dynamics. This approach
assumed a very intensive magnetic field. The other way to
avoid the exponential increase of the flux is to consider
fluctuations with a correlation length much bigger than the
viscous scale. The existence of stationary scaling at scales
inside the inertial range1 was shown in [9] and [10,11].

On the other hand, in [12] the evolution of a single iso-
lated magnetic blob was considered in the Batchelor limit
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1In this case there exist regimes where the free field decays, for

these regimes the stationary solution can be obtained by adding some
pumping force.

under some more simplifying assumptions on velocity field.
It was found that after some time the exponential growth of
magnetic field changed into exponential decay (the so-called
antidynamo theorem).

The apparent contradiction between these two results was
eliminated in [13,14], where it was shown that the infinite
growth of the magnetic field in the homogeneous case can
be understood as overlapping of a large amount of inde-
pendent expanding blobs. In particular, for any finite initial
magnetic field distribution and for any velocity statistics, the
exponential increase changes into exponential decay as soon
as contributions of the furthest blobs are exhausted. So the
natural way to avoid the exponential growth is to consider
finite initial magnetic field distribution.

This eventual free decay gives a new view on the problem
of the existence of stationary solution, and a suggestion that it
can be achieved for moderate fields, without a feedback. It is
known that homogeneous scalar field decays exponentially as
a function of time; this allowed [15] to construct a stationary
solution for the field by adding some stochastic driving force.
Just in the same way, the decay of a quasihomogeneous vector
field allows one to propose that stationarity can be provided
by some additional pumping source: the exponential decay of
the magnetic field amplitude caused by the interaction with
the flow (advection and diffusion) is then compensated by
pumping. In this case, the statistically stationary regime in the
viscous range can exist for much smaller magnetic fields, and
properties of the stationary solution are determined by linear
magnetohydrodynamic equation.

In this paper we investigate the stationary solution for
magnetic field advected by random (generally, not Gaussian)
velocity field and pumped by a Gaussian force. The diffusive
scale rd is assumed to be much smaller than the pumping
correlation scale l , the region of pumping is assumed to be
restricted by some scale L � l , which in turn is smaller than
the Kolmogorov viscous scale of the velocity field. This last
assumption allows to use the Batchelor approximation for
velocity. We calculate the two-point second order correlator
of magnetic flux density for scales r � rd .

We use the method developed for freely decaying scalar
and vector fields in our previous papers [13,16]. The addi-
tional difficulty in this problem is that, unlike the case of
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forced passive scalar, extremely rare events make the most
important contribution to the correlators (and even make them
diverge in some cases).

It appears that the Gaussianity of the velocity field would
be an important restriction because of its time-reversibility.
For time-reversible flows, e.g., the mean square of magnetic
flux density diverges linearly as a function of time, while for
any time-irreversible statistics it has a finite limit [17]. This
fact is related closely to the absence of exponential decay in
the corresponding systems free of pumping [13].

The two-point correlation function converges for any ve-
locity statistics, and the two-point correlator demonstrates
scaling behavior.

The paper is organized as follows. In the next section
we discuss the problem statement. In Sec. III we introduce
convenient variables associated with the evolution matrix.
We also recall the results of our previous papers concerning
the relation between velocity statistics and statistics of these
convenient variables. In Sec. IV one particular but important
case of Gaussian velocity statistics is considered. In Sec. V
we generalize the results for the case of arbitrary statistics.
The results are summarized and discussed in Sec. VI.

II. PROBLEM STATEMENT

A. Magnetic field and pumping force

Let the magnetic field be excited by a random force φ(r, t )
and advected by a stochastic incompressible flow, velocity
field v(r, t ) satisfying

∇ · v = 0.

Then the magnetic flux density B(r, t ) obeys the equation

∂B
∂t

+ (v∇ )B − (B∇ )v = κ�B + φ. (1)

Here κ is the diffusivity.
We consider the long-time evolution of magnetic field, the

aim is to find statistically stationary solutions. So it is natural
to consider the second order correlator

βi j (r0, r, t ) = 〈Bi(r0, t )Bj (r0 + r, t )〉φ,v. (2)

The average is taken over both the velocity field and the
pumping force.

The pumping force is assumed to be statistically quas-
homogeneous, with correlation scale l and the scale of in-
homogeneity L � l . From (1) it follows that φ must be
solenoidal; the details of its statistics are not much important;
for the purposes of this paper, only the second order correlator
is needed.2 The pair correlator of the Fourier transform φ̃(k, t )
can be written as 3

〈φ̃i(k, t )φ̃ j (k′, t ′)〉 = 1

3π2
εBL3l5e− 1

4 (k+k′ )2L2

e− 1
4 (k−k′ )2l2

× [k j k′
i − (k k′)δi j]δ(t − t ′) . (3)

2For small diffusivity, the main contribution to the whole magnetic
field statistics is produced by the Gaussian part of the driving force.

3The specific choice of the exponential profile will be justified
below by the fact that the parameters l, L do not contribute to the
resulting exponents.

In the physical space this corresponds to

〈φi(r, t )φ j (r′, t ′)〉

= 8π

3
εBe− (r+r′ )2

4L2 e− (r−r′ )2

4l2 δ(t − t ′)

×
[
δi j + (r − r′)i (r − r′) j − (r − r′)2δi j

4l2
+ O

(
l

L

)]
.

Here εB = 1
8π

∫ 〈φ(0, t ) · φ(0, t ′)〉dt ′ is the pumping power.
The scale L has the meaning of the boundary of the pumping
region. In particular, 〈φφ′〉 is small for |r − r′| > l , and even
〈φ2〉 is negligible at distances much larger than L. In the limit
L → ∞, the correlator depends only on r − r′; this is the
homogeneous case.

We note that the velocity field and the dynamo mechanism
remain the main source of energy; the role of the driving
force is to provide stochastic stationary small magnetic field
fluctuations.

B. Velocity field

The velocity field generally obeys the Navier-Stokes equa-
tion, the feedback of magnetic field is negligible. Here we
consider velocity field to be a given stationary isotropic ran-
dom process. We are interested in the scales much smaller
than the Kolmogorov viscous scale rη of the velocity field,
in particular, we assume L 	 rη. This means that the velocity
field is smooth and in (quasi)Lagrangian frame [18] we get

v = Ar , (4)

the velocity gradient tensor A(t ) is a random process with
short correlation time τc 	 t . The incompressibility condition
results in TrA = 0. Statistical properties of A will be con-
sidered later; here we only recall that the Lyapunov indices
are the main characteristics of the strain tensor. These indices
describe the time evolution of an infinitely small linear liquid
element [19]: lim

t→∞
1
t ln|δr| = λ (different λi for three different

orientations of δr). In this paper we use the ordering λ1 <

λ2 < λ3.
The diffusive scale rd ∼ √

κ/λ3 is assumed to be small
relative to l . We are interested in the scales much larger than
rd , to get nontrivial correlations, and much smaller than l , to
make the details of the large-scale pumping unimportant. So,
eventually the list of scales reads as

rd 	 r 	 l 	 L 	 rη.

The average over all realizations of velocity field is equiv-
alent to the average over all A(t ),

〈〉v = 〈〉A.

For simplicity, in what follows we consider the trace of βi j ;
also, to shorten and simplify the equations, we consider the
vicinity of the center, i.e., r0 = 0:

β = Trβ = 〈B(0, t )B(r, t )〉φ,A. (5)
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III. DYNAMIC SOLUTION AND AVERAGE
OVER THE PUMPING

A. Evolution matrix

With account of (4), (1) can be rewritten as(
∂

∂t
+ Ak jr j∇k

)
Bi = Ai jB j + κ�Bi + φi. (6)

Making the Fourier transform and solving the linear equation,
we get

B̃p(k, t ) =
∫ t

0
dτWpj (t, τ )φ̃ j[kW(t, τ ), t − τ ]

× e−κ k(
∫ τ

0 W(t,τ ′ )WT (t,τ ′ )dτ ′ ) kT
, (7)

where W(t, τ ) is the evolution matrix; it obeys the equation

∂W/∂τ = W(t, τ )A(t − τ ), W(t, 0) = 1. (8)

Since A is a random process, W is also random and its
statistics is determined by the statistics of A. The equations
of this type have been studied by many authors beginning
with [20] (the discrete version). It is convenient to make the
Iwasawa decomposition for this matrix

W = zdR, d = diag{di}, di = eρi , (9)

where z is an upper triangular matrix with unities at diagonals,
R is a rotation matrix, d is a diagonal matrix. The incompress-
ibility condition implies that

ρ1 + ρ2 + ρ3 = 0. (10)

According to (8) and (9), the stochastic processes ρi, z,
and R are functionals of the process A(t ). The long-time
asymptotic behavior of these three components is known
to be quite different [21]: as t → ∞, z(t ) stabilizes with
unitary probability at some random value that depends on the
realization of the process; R(t ) remains changing randomly,
and ρi(t )/t converge (with unitary probability) to finite limits
that are called the Lyapunov indices λi:

λi = lim
t→∞

ρi

t
, λ1 � λ2 � λ3. (11)

These indices are not random, they depend on statistics of
A(t ) but not on its realization.

In [22,23] statistical properties of ρi and z for large but
finite time are expressed in terms of the statistical properties
of A. The details of the relation will be given in Sec. V C
and Appendixes A and C. Here we note that the isotropy of A
imposes rigorous constraints on the statistics of ρi. For what
concerns z, to logarithmic accuracy its nontrivial components
can be expressed as functions of ρi at the same time and for
the same realization

z12 ∝ max(1, eρ1−ρ2 ), z13 ∝ max(1, eρ1−ρ3 , eρ2−ρ3 ),

z23 ∝ max(1, eρ2−ρ3 ) (12)

(see Appendix A for a detailed derivation).
One more important note is that, although ρi(t ) and zi j have

definite limits as t → ∞, they may differ from these limits
essentially for any finite t ; in particular, (12) is the asymptotic
relation both for very small and very large exponentials. We

will see in what follows that highly intermittent realizations
make an important contribution to the averages.

B. Averaging over the driving force

We now susbstitute the Fourier transform of (7) for each B
in (5) and take the average over φ by means of (3). Luckily,
due to the multiplication of arguments of φ in (3), W(t )
appears in 〈B(0)B(r)〉φ only as a combination

� = WWT = zd2zT ,

so the quickly rotating matrix R does not affect the correla-
tions. Thus, the average over the process A(t ) is equivalent to
the average over the processes ρi(t ) (with appropriate weight).
So we get

β(r) =
〈∫

dτ[r, τ, ρ(τ )]

〉
A

, (13)

where

 = εBL3l5

3π2

∫
e−ik′r(k�2k′T − k�k′T Tr�

)
× e− 1

4 (k−k′ )�(k−k′ )T l2− 1
4 (k+k′ )�(k+k′ )T L2

× e−κk
∫ τ

0 �dτ ′kT −κk′ ∫ τ

0 �dτ ′k′T
dkdk′.

We first consider the “viscous” terms in the exponent.
They appear in combinations 1

4 l2� + κ

∫ τ

0 �dτ ′, 1
4 L2� +

κ

∫ τ

0 �dτ ′. We will see below that the important contribu-
tion comes from exponentially large terms, so we are only
interested in logarithmic accuracy. Because of the exponential
behavior of the matrix d, each component of � either grows or
decreases exponentially. If it grows, for time large enough one
can neglect the second terms in the sums (since rd 	 l 	 L,∫

�dτ ∼ λ−1
3 �). If it decreases, after some time the first

term of each sum becomes smaller than the second, so one
cannot neglect the viscous term. However, in this case one can
substitute a constant for

∫ τ

0 �dτ ′. So, in any case the integral
in the exponent can be replaced by a constant:

1

4
l2� + κ

∫ τ

0
�dτ ′  1

4
l2� + κ

λ3
C, (14)

where C is a constant matrix with elements ∼1.
Second, we change the integration variables to p = kz,

p′ = k′z. This is done to get rid of z in the exponent. Eventu-
ally, we take the Gaussian integrals over p and p′.

Then, neglecting the term ∼(l/L)2, we get

 = εB
π

3

{
[Tr(z d2 zT )Tr(d2 g) − Tr(z d2 g d2 zT )]

− 1

2l2
[Tr(z d2 zT )Tr(d2 �) − Tr(z d2 � d2 zT )]

}

× exp
[− 1

4l2 rT (z−1)T gz−1r
]

√
detGl

√
detGL

, (15)

where g = G−1
l , �mn = (gz−1r)m(gz−1r)n and the exact ex-

pressions for Gl , GL are given in Appendix B; with the

063102-3



KOPYEV, IL’YN, SIROTA, AND ZYBIN PHYSICAL REVIEW E 101, 063102 (2020)

account of (14) they can be approximated by

Gl  d2 +
( rd

l

)2
z−1C ( z−1)

T
,

GL  d2 +
( rd

L

)2
z−1C ( z−1)

T
. (16)

In what follows we choose the coordinate system in such
a way that r = (x, 0, 0). Because of isotropy of the problem,
there is no loss of generality.

C. Ensemble average for local functions

We see that  can be approximated by a local functional of
z and ρ (i.e., the functional that depends only on momentarily
values of ρ(τ ) and not on their integrals or derivatives). So
the functional average in (13) can be reduced to an ordinary
multiple integral; actually,

β =
〈∫

dτ[r, τ, ρ(t )]

〉
ρ

=
∫

dτ 〈[r, τ, ρ(τ )]〉ρ =
∫

dτ

∫
dρP(τ, ρ)(r, ρ),

where P is the probability density. Now τ and ρi become
independent variables.

Furthermore, because of the incompressibility condition
(10) there are only two independent variables, so

β =
∫

(r, ρ1, ρ3) f (ρ1, ρ3, τ )dρ1dρ3dτ, (17)

where f (ρ1, ρ3, τ ) is the time-dependent probability density
of the two variables. We note that, according to (15), (9), and
(12)  depends only on ρ1, ρ3, but not on time. So (17) can
be rewritten as

β =
∫

(r, ρ1, ρ3)�(ρ1, ρ3)dρ1dρ3, (18)

where

� =
∫ ∞

0
f (ρ1, ρ3, τ )dτ. (19)

IV. GAUSSIAN VELOCITY FIELD

In this section we consider the particular case of Gaussian
statistics for the velocity gradient tensor. It appears to be
not a typical case, but it is the easiest to calculate, and it
helps to find the approach to the general situation. In addition,
the conventional consideration is often restricted by only this
case.

The statistics of ρi is then also Gaussian, with averages
〈ρ1,3〉 = ±λt ; in terms of variables ρ1, ρ3 the probability
density is

fG(ρ1, ρ3, t ) ∝ e− (ρ1+λt )2+(ρ1+λt )(ρ3−λt )+(ρ3−λt )2

λt , (20)

so the distribution is determined by only one constant.
We will see below that important contribution to (17)

comes from large ρ =
√

ρ2
1 + ρ2

3 . The integral over τ in (19)
is easy to calculate for these ρ:

�G =
∫

dτ fG(ρ1, ρ3, τ )

ρ�1∝ exp
[
ρ3 − ρ1 − 2

√
ρ2

1 + ρ1ρ3 + ρ2
3

]
. (21)

A. Limit of zero diffusivity: Pair correlator diverges

The case κ = 0 is the most simple. The integrand in (13) is
then exactly, not only approximately, local. The matrices Gl ,
GL, and g are diagonal, det Gl = det GL = 1, �i j = δ1iδ1 j ,
and

 ∝ Tr(zd2zT )

(
1 − x2

4l2
d−2

1

)
exp

[
− x2

4l2
d−2

1

]
.

The term in the brackets is ∼1 wherever the exponential is not
negligible; with the account of (12) one can see that the trace
is (to logarithmic accuracy) equal to the maximum of the three
d2

i , so

 ∝ exp

[
2 max(ρ1, ρ3,−ρ1 − ρ3) − x2

4l2
e−2ρ1

]
. (22)

Now we have to multiply this by �G and take the integral
over the plane ρ1, ρ3. The second term in the exponent makes
 practically equal to zero in the semiplane

ρ1 < − ln(l/x) ⇒   0. (23)

In the other semiplane it is almost constant. So this term can
be replaced by the Heaviside function θ .

To investigate the convergence of the integral, it is also
convenient to consider polar coordinates (ρ, φ) on the ρ1, ρ3

plane. Then the product � takes the form

�G ∝ θ [ρ1 + ln(l/x)]eρα(φ). (24)

From (22) it follows that α is positive for φ ∈
( π

2 − ε, 3π
2 − ε′), with ε, ε′ being some constants smaller

than π/4 (see Fig. 1). The most part of this range is cutoff at
large ρ by the restriction (23), but in the direction φ  π/2
one has

ρα = 3ρ3 − ρ1 − 2
√

ρ2
1 + ρ1ρ3 + ρ2

3 > 0 , (25)

and the integral over ρ diverges exponentially.
We note that the divergence appears in the sector of the

ρ1, ρ3 plane that corresponds to ρ3 > ρ1 > ρ2. The infinite-
time limits of these variables for any realization are ordered
differently, λ1t < λ2t < λ3t . Thus, although the maximum of
the probability distribution lies in the direction φ = 3π/4, the
divergence of the integral is produced by very rare realizations
with very large ρ3 and nearly zero ρ1 at some finite time.
This is the manifestation of the intermittency of the system.
Because of the multiplier ∝Tr zd2zT ∝ e2ρ3 , the intermittency
in the magnetic field is much more essential than in the scalar
field.

We also note that, as follows from (15) and (16), in the
case of ideal conductor there is no difference between the
homogeneous and quasihomogeneous (L < ∞) cases.

B. Nonzero diffusivity: Convergence of pair correlator

The nonzero diffusivity brings nondiagonal components to
the matrices Gl , GL and changes the diagonal elements. Con-
sider, for example, the “dangerous” direction φ  π/2 (that
is, ρ3 � ρ1 � ρ2). According to (12), the (1,2) component
of the matrix z is much bigger than unity, so all the compo-
nents of Gl except for G33 change significantly. However, the
changes do not contribute to the main order to the most part
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FIG. 1. Polar coordinates in the (ρ1; ρ3) plane κ = 0. The red
zone highlights the region α(φ) > 0. In the lighter shaded region ρ

is bounded for any given φ by the cutoff (23) (gray region), and in
the darker shaded zone ρ is unbounded, which implies an exponential
divergence of β.

of (15) (see Appendix B for details), so the resulting  differs
from (22) only by the multiplier det Gl det GL where

detGl  max

[
1,

( rd

l

)2
e2ρ1+2ρ3

]
,

detGL  max

[
1,

( rd

L

)2
e2ρ1+2ρ3

]
. (26)

Thus, we have  ∝ eρ3−ρ1 for l/rd < eρ1+ρ3 < L/rd and
 ∝ e−2ρ1 for eρ1+ρ3 > L/rd . As in the previous subsection,
we get (24) with the same Heaviside function, and with

ρα = 2ρ3 − 2ρ1 − 2
√

ρ2
1 + ρ1ρ3 + ρ2

3 (27)

for l/rd < eρ1+ρ3 < L/rd and

ρα = ρ3 − 3ρ1 − 2
√

ρ2
1 + ρ1ρ3 + ρ2

3 , (28)

for eρ1+ρ3 > L/rd .
Now, for the homogeneous limit L = ∞ we have

α(π/2) = 0 and α(φ < π/2) < 0, so the integral over ρ

still diverges at φ = π/2 but the divergence is linear, not
exponential. If L is finite, for ρ → ∞ we have α < 0 for
φ � π/2, and the integral in (18) converges.

The dependence α(φ) in all directions (not only φ  π/2)
is presented in Fig. 2. We see that α is negative for all the
rest of the semiplane −π/2 < φ < π/2. So, the integral in
(18) converges in the case of nonzero diffusivity in finite
spatial distribution of the pumping source; it diverges linearly
(in respect to ρ) in homogeneous spatial distribution, and it
diverges exponentially in the case of zero diffusivity.

FIG. 2. α(φ) dependence [see (24)] for Gaussian distribution.
The gray pieces of curves mark the cutoff at large ρ in the case r �= 0
(see Fig. 5 additionally). The color regions α > 0 are responsible
for the exponential growth of the integrand in (18) for r �= 0, and
produce exponential divergency of the two-point correlator if ρ →
∞; those gray pieces where α > 0 cause exponential dependence of
the integrand if r = 0, and divergency of the corresponding one-point
correlator [17]. The points α = 0 give linear divergence of time
integral in (17).

Note that one-point second order correlator behaves even
worse: the limit x = 0 destroys the Heaviside function in
(24), and even the finite spatial distribution of magnetic field
cannot prevent the linear divergence of the integral in the
left semiplane, in the direction φ = 3π/4 where α = 0 (thick
point in Fig. 2). We note that this direction corresponds to the
maximum of the Gaussian probability density (20), ρ3/ρ1 =
λ3/λ1 = −1.

C. Nonzero diffusivity: Scaling

We now consider the general case of nonzero diffusivity
and finite pumping scale L, the aim is to find the pair correlator
dependence of x.

The whole ρ1, ρ3 plane can be divided in three regions
(Fig. 3): (I) the ideal conductor region where rd is negligible,
(II) the region where diffusivity is important but L can be
set infinite (the “homogeneous” region), and (III) the region
where the influence of inhomogeneity is determinative. As
we have seen in the previous subsection, the influence of
finite diffusion and inhomogeneity on the pair correlator is
concentrated in the multiplier (det GlGL )−1/2 in (15). So
according to (26), we find that the boundary of the first region
is

ρ1 + ρ3 = − ln l/rd ,

and the boundary of the second region is determined by the
condition

ρ1 + ρ3 = − ln L/rd .
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FIG. 3. The “dangerous” regions of ρ1, ρ3 plane in the general
case of nonzero diffusivity and finite pumping scale (see Fig. 5 with
the whole plane). The values of  calculated to logarithmic accuracy
are written in the corresponding regions (see Appendix B) and do not
depend on �(ρ1, ρ3). The gray region is the region of the Heaviside
filtering (  0).

We have to integrate � over these three regions, with ac-
count of the Heaviside function in (24). Since all the functions
are exponential, in each of the regions the most contribution
comes from the part with maximal possible ρα.

In the first two regions, as we have seen in (25) and (27),
there are parts with positive (zero) α, which correspond to
exponential (linear) increase of the integrand as a function of
ρ. Since in both of them dα/dφ > 0, the maximum of the
integrand is achieved at the upper left corner of each region
(see Fig. 3):

ρ∗
1 = − ln l/x , ρ∗

3 = ln l/rd − ρ∗
1 , ρ∗∗

3 = ln L/rd − ρ∗
1 .

(29)

In the third region, α < 0 and the integrand decreases expo-
nentially as a function of ρ. Thus, the maximum is situated on
the lower boundary.

To calculate the integral over each region to logarithmic
accuracy, one has only to consider the vicinities of these
extremal points. Taking into account that ρ∗

1 	 ρ∗
3 and ex-

panding the square root in (25), (27), and (28) into a series
up to the first order of ρ1/ρ3, we get∫

I
eρ3−2ρ1 dρ1dρ3 ∝ eρ∗

3 −2ρ∗
1 ;

∫
II

l

rd
e−3ρ1 dρ1dρ3 ∝ l

rd
(ρ∗∗

3 − ρ∗
3 )e−3ρ∗

1 ;

∫
III

l

rd

L

rd
e−ρ3−4ρ1 dρ1dρ3 ∝ l

rd

L

rd
e−ρ∗∗

3 −4ρ∗
1 . (30)

The multipliers l
rd

, L
rd

come from the determinants (26).
Substituting (29), we see that all the regions give contributions
of the same order, and eventually

βG ∝ l

rd
ln

L

l

(
l

x

)3

. (31)

This is the scaling law for pair correlator of magnetic field in
the case of Gaussian velocity gradient distribution.

V. ARBITRARY VELOCITY GRADIENT STATISTICS

We now proceed to calculation of β in the general case
of non-Gaussian statistics of velocity gradient. We see that
 depends only on the point in the ρ1, ρ3 plane and on
the relation between the scales. It does not depend on the
distribution function of ρ, and it remains same as in the
previous section.

The function � changes, but for the arbitrary distribution
its maximum is still situated in some direction lying in the sec-
ond quadrant of the plane [17]. With the account of the Heav-
iside function multiplier in , we still await the determinative
contribution to (18) in the upper half-plane, near the bound-
ary; so Fig. 3 and (29) are still valid. In this section we analyze
the vicinity of the boundary. One can check (see Appendix C)
that the rest of the plane does not actually contribute.

A. Calculation of � near the boundary

The formalism of cumulant functions [22,24] is the most
convenient tool to operate with the stochastic variables ρ . In
particular, the probability density can be written as

P(τ, ρ) =
∫

dke−ikρ+τw(ik), (32)

where τw(η) is the cumulant function of the random variable
ρ at the moment τ (see [23] and Appendix C for more details).
Integrating over ρ2 we get the reduced probability density:

f (ρ1, ρ3, τ ) =
∫

dσ1dσ3e−σ1ρ1−σ3ρ3+τW (σ1,σ3 ).

Here

W (σ1, σ3) = w(σ1, 0, σ3). (33)

For real σ j , W is a real concave function with negative
minimum, and W (0, 0) = 0. Other properties of the function
will be considered later.

To calculate �, we have to take the two integrals over σ1

and σ3 and also take the integral over τ . We have seen in the
previous section that the most contribution to the integral is
made by the region

ρ3 ∼ ln l/rd � −ρ1 ∼ ln l/x � 1.

This allows to take the three integrals by means of the saddle
point approximation. So,

� = e−σ max
1 ρ1−σ max

3 ρ3+τmaxW (σ max
1 ,σ max

3 ), (34)

where the maximum point is determined by the conditions

τ
∂W

∂σ j
− ρ j = 0 , W (σ1, σ3) = 0. (35)

Here and below we omit the indices max for brevity.

063102-6



STATIONARY SCALING IN SMALL-SCALE TURBULENT … PHYSICAL REVIEW E 101, 063102 (2020)

One more advantage comes from the small parameter ρ1 	
ρ3 in the region of interest. Denote

ρ1 = −εR , ρ3 = R(1 + ε).

Then ε 	 1, R � 1; we present the variables as a series in ε,

σ j = σ
(0)
j + εσ

(1)
j , τ = τ (0) + ετ (1).

Expanding the conditions (35) to the zeroth order, we get

∂W

∂σ1

∣∣∣∣
(0)

= 0 , τ (0) ∂W

∂σ3

∣∣∣∣
(0)

= R , W
(
σ

(0)
1 , σ

(0)
3

) = 0.

To the first order, from the last equation in (35) we then obtain

σ
(1)
3 = 0.

We do not need to calculate σ
(1)
1 since it contributes to (34)

only to the second order. Eventually, we find

� = e−σ
(0)
1 ρ1−σ

(0)
3 ρ3 ,

where

σ
(0)
1 , σ

(0)
3 : W = 0 ,

∂W

∂σ1
= 0 ,

∂W

∂σ3
> 0. (36)

In Appendix C we show that there exists the unique solution
to this set of conditions for any velocity gradient statistics;
moreover, the solution is constrained by

1/2 < σ
(0)
1 < 4 , 1 � σ

(0)
3 < 2. (37)

In the case of Gaussian velocity gradient distribution, σ
(0)
1 =

2, σ
(0)
3 = 1, and the resulting � coincides with that obtained

in the previous section.

B. Pair correlation function

Now we multiply this � by  found in the previous section
for each of the three regions and take the integral for each
of the regions just as in (30). Due to (37) the signs of the
exponents confirm that the vicinity of the point (ρ∗

1 , ρ∗
3 ), and

generally the boundary ρ1 = ρ∗
1 , ρ3 > 0 (see Fig. 3) makes

the determinative contribution to the integral. So we obtain∫
I
∝ e−σ

(0)
1 ρ∗

1 +(2−σ
(0)
3 )ρ∗

3 ,

∫
II

∝
{

l
rd

1
σ

(0)
3 −1

e−(σ (0)
1 +1)ρ∗

1 −(σ (0)
3 −1)ρ3 |ρ∗∗

3
ρ∗

3
, σ

(0)
3 > 1,

l
rd

ln L
l e−(σ (0)

1 +1)ρ∗
1 , σ

(0)
3 = 1

(38)

∫
III

∝ l

rd

L

rd
e−(σ (0)

1 +2)ρ∗
1 −σ

(0)
3 ρ∗∗

3 .

We note that, as in the case of Gaussian distribution, the
scaling exponent produced by all regions of integration is the
same. The pre-exponents differ; two different pre-exponents
in the second region appear because for σ

(0)
3 > 1 the most

contribution comes from the vicinity of the point (ρ∗
1 , ρ∗

3 ). If
σ

(0)
3 = 1, as it happens in the Gaussian case, ρ∗

3 and ρ∗∗
3 (and

the whole segment between them) contribute equivalently, and
the pre-exponent contains ln L/l . We also note that the pair
correlator always converges for finite distributions and even
for homogeneous distributions in the case σ

(0)
3 > 1.

Eventually, we get the power-law dependence of the sec-
ond order correlation function

β ∝ min

{
1

σ
(0)
3 − 1

, ln
L

l

}(
l

rd

)2−σ
(0)
3

(
l

x

)σ
(0)
1 +2−σ

(0)
3

. (39)

C. Properties of the cumulant function

Statistics of the random variable ρ(t ) is determined by the
velocity gradient tensor statistics. The relation between the
cumulant functions of the processes ρ(t ) and A(t ) was found
in [22]

w(η) = wA(η + η0) − wA(η0), η0 = (−1, 0, 1), (40)

where wA(η) is the “diagonal part” of the cumulant function
of A(t ) (see Appendix C for more detailed comments). The
Lyapunov spectrum can be expressed in terms of cumulant
functions as

λ j = ∂w

∂η j

∣∣∣∣
0

= ∂wA

∂η j

∣∣∣∣
η0

, (41)

and the dispersions correspond to the second derivatives

Di j ≡
〈
ρi − λit

t

ρ j − λ jt

t

〉
= ∂2wA

∂ηi∂η j

∣∣∣∣
η0

.

Proceeding to W defined in (33) we get from (40):

W (σ1, σ3) = wA(σ1 − 1, 0, σ3 + 1) − wA(−1, 0, 1). (42)

We assume that the process A(t ) is statistically isotropic
and that the flow is incompressible. These two claims result in
essential restrictions on wA. From isotropy it follows that wA

is a function of three symmetric combinations of η j , namely,4

wA(η) = ˜̃wA

(∑
η j,

∑
η2

j ,
∑

η3
j

)
. (43)

The incompressibility leads to the condition∑
j

∂wA

∂η j
= 0

for any η. Combining these two conditions we find that wA

can be reduced to a function of only two variables:

wA(η) = w̃(a, b), (44)

a =
∑

η2
j − 1

3

(∑
η j

)2
,

b =
∑

η j ·
∑

η2
j − 2

9

(∑
η j

)3
−

∑
η3

j .

The set η0 = (−1, 0, 1) corresponds to a = 2, b = 0. Thus, all
statistical moments of the process ρ can be expressed in terms
of derivatives of w̃(a, b) taken at the point (2,0). For example,
substituting (44) into (41) we get

λ2 = 2w̃′
b(2, 0), λ3 = 2w̃′

a(2, 0) − w̃′
b(2, 0).

4To avoid misunderstanding, we note that η is not a vector but a set
of three variables.
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Second order moments imply second derivatives, e.g.,

D22 =
(

4w̃′′
bb + 4

3
w̃′

a

)∣∣∣∣
(2,0)

, etc.

D. Time-reversible flows

From (42) and (44) it follows that for any pair of σ1, σ3

corresponding to the same set a = 2, b = 0 we would get
W = 0. In particular, the pair σ1 = 2, σ3 = 1 satisfies this
condition; one can easily check that

W (2, 1) = 0

for any isotropic statistics of A. From (42) and (44) we also
have

∂W

∂σ1

∣∣∣∣
(2,1)

= 2
∂w̃A

∂b

∣∣∣∣
(a,b)=(2,0)

= λ2.

So for λ2 = 0 the second condition in (36) is satisfied. What
about the third condition, it holds automatically since

∂W

∂σ3

∣∣∣∣
(2,1)

= 2
∂w̃A

∂a

∣∣∣∣
(2,0)

− ∂w̃A

∂b

∣∣∣∣
(2,0)

= λ3 > 0.

As it was shown in [25], the second Lyapunov exponent is
equal to zero if and only if the flow is time-reversible. Thus,
for any time-reversible isotropic flow the point σ1 = 2, σ3 = 1
is the solution to (36). From (39) we obtain for all these flows
the same scaling law coinciding with that of the Gaussian case

β ∝ l

rd
ln

L

l

(
l

x

)3

. (45)

In the general case λ2 �= 0 there is no explicit form for the
solution to (36). So we consider nonzero but small λ2, the
more this corresponds to the real hydrodynamic situation [26].

E. Small deviation from time-reversibility

So let λ2/λ3 be a small parameter, and expand σ
(0)
1 , σ

(0)
3 up

to the first order near the point (2,1):

σ
(0)
1 = 2 + ξ1λ2/λ3, σ

(0)
3 = 1 + ξ3λ2/λ3.

Substituting this into the first condition in (36) and taking into
account W (2, 1) = 0, to the first order in λ2/λ3 we get

0 = ∂W

∂σ1

∣∣∣∣
(2,1)

ξ1 + ∂W

∂σ3

∣∣∣∣
(2,1)

ξ3 + O(λ2/λ3)

= λ2ξ1 + λ3ξ3 + O
(
λ2

2/λ
2
3

)
.

Thus

ξ3 = O(λ2/λ3).

Expanding the second condition in (36), we obtain

0 = ∂W

∂σ1

∣∣∣∣
(2,1)

+ ∂2W

∂σ 2
1

∣∣∣∣
(2,1)

ξ1λ2/λ3 + O
(
λ2

2

/
λ2

3

)
= λ2 + D22ξ1λ2/λ3 + O

(
λ2

2

/
λ2

3

)
.

So

ξ1 = − λ3

D22
.

Expanding the first condition in (36) to the second order we
get finally

σ
(0)
1 = 2 − λ2

D22
, σ

(0)
3 = 1 + λ2

2

2λ3D22
.

Eventually, substituting this into (38), we find

β ∝ λ3D22

λ2
2

(
1 − e− λ2

2

2λ3D22
ln L

l
)( l

rd

)1− λ2
2

2λ3D22
(

l

x

)3− λ2
D22

. (46)

There is an interesting particular case of probability distri-
bution close to the Gaussian:

w = λ

2
(a − 2) + λ2δw(a, b).

The first term corresponds to the Gaussian probability density
(20) with λ3 = λ, and the second is small addition ∼λ2/λ.
Then to the first order in λ2/λ3, λ3  λ, D22  2

3λ3. The
scaling exponent in the case is equal to(

∂ ln β

∂ ln(l/x)

)
almostGauss

= 3 − 3

2

λ2

λ3
. (47)

VI. DISCUSSION

We consider the linear stage of the evolution of magnetic
field advected by an isotropic turbulent flow; no feedback of
the magnetic field on the flow dynamics is assumed. We re-
strict our consideration with the viscous range of scales where
the velocity field is smooth and, therefore, locally described
by the velocity gradient tensor. The exponential increase of
magnetic field correlations is possible at these scales, while in
the inertial range it is restricted by a power law [6,9].

In this paper we calculate the long-time asymptote of
the second order correlation function of magnetic field. We
find the stationary solution which obeys the scaling law: for
Gaussian velocity gradient distribution (and, generally, flows
with symmetric Lyapunov spectrum) the scaling exponent is
−3 (45), for slightly non-Gaussian case the exponent differs
slightly ((46) and (47)); in the case of general non-Gaussian
velocity gradient the scaling exponent is expressed in terms of
the cumulant function (39).

The existence of stationary solution may be unexpected
since in previous investigations it seemed natural to consider
space homogeneity and/or Gaussian statistics for the velocity
gradient [8,9]. This was done, for example, in the investigation
of scalar field [15] where these assumptions are not crucial
and do not prevent from getting the stationary solution. On the
contrary, in the case of magnetic field the order of the limits is
essential: for example, taking the nondiffusive limit rd → 0
first leads to exponential divergency of the pair correlator,

TABLE I. Existence of stationary solution, linear, or exponen-
tial divergency of two-point and single-point correlation functions
(〈B(0)B(r)〉 and 〈B2(0)〉) for nonzero diffusivity (rd �= 0).

L < ∞ L = ∞
〈B(0)B(r)〉 〈B2(0)〉 〈B(0)B(r)〉 〈B2(0)〉

λ2 �= 0 stationary stationary stationary exponential
λ2 = 0 stationary linear linear exponential
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TABLE II. Divergency of single-point and two-point scalar (θ ) and vector(B) correlation functions.

Stationary Linear divergence Exponential divergence

〈θ2(0)〉 rd �= 0, {L, λ2} − ∀ rd = 0, {L, λ2} − ∀ –
〈θ (0)θ (r)〉 {rd , L, λ2} − ∀ – –

〈B2(0)〉 rd �= 0, L < ∞, λ2 �= 0 rd �= 0, L < ∞, λ2 = 0
L = ∞, {rd , λ2} − ∀
rd = 0, {L, λ2} − ∀

〈B(0)B(r)〉 rd �= 0, L < ∞, λ2 = 0
rd �= 0, λ2 �= 0, L − ∀ rd �= 0, L = ∞, λ2 = 0 rd = 0, {L, λ2} − ∀

while in the scalar field it remains stationary. In the case of
finite diffusivity, the existence of the stationary solution is
provided by inhomogeneity of pumping or by asymmetry of
the Lyapunov spectrum of velocity gradient statistics: the pair
correlator converges if either λ2 �= 0 or L < ∞ (see Table I).

It is interesting to compare the results for the pair correlator
to those for the one-point second order correlator found in
[17]. First, although the approach of this paper allows to deter-
mine if the one-point correlator exists or not, still (45) and (46)
do not converge as x → 0. This is caused by the assumption
x � rd used in their derivation. We do not consider the case
x < rd but it is evident that 〈B2(0)〉 − 〈B(0)B(x)〉 ∝ x2 for
x 	 rd in all cases in which 〈B2(0)〉 exists.

Second, for convergence of the correlator for all x includ-
ing x = 0, one needs both the finite size of the pumping zone
and asymmetric Lyapunov spectrum (the Gaussian case does
not suit). Then the complete β(x) graph has a parabolic “hat”
at small distances and power-law “tail.” In other cases we
get stationary scaling for the “tail” and no stationarity in the
middle, so that at any large but finite time the correlator is
“stabilized” outside some boundary x > x0(t ), and remains
increasing inside the region. A similar picture was obtained
for vorticity distribution in high-Reynolds turbulent flow [27].

We stress that the difference between the Gaussian case
and general velocity gradient statistics appears to be crucial.
The general asymmetry of the Lyapunov spectrum not only
guarantees the convergence of the pair correlator for x � rd

even in homogeneous pumping regime; it is also necessary to
provide the convergence of the one-point second order corre-
lator. Thus the analysis of non-Gaussianity is very important.
Also, the account of the finite pumping region (L < ∞) is de-
terminative: it is necessary to get the stationary solution with
both one-point and two-point correlators being stationary.

One more observation comes from comparison of the
results for the magnetic field correlations with the correspond-
ing correlations of scalar field advected by a turbulent flow
[15], see Table II. One can see that the divergency range
is much wider for magnetic field than for scalar field. This
is a manifestation of much more intermittent behavior of
magnetic field correlations: even for converging cases, the
main contribution comes from the realizations of v(t ) [or,
more precisely, ρi(t )] that stay for a long time very far from
their average value. Such a difference between the vector and
scalar fields is not unexpected: the vector field is known to
be more intermittent also in the inertial range of turbulence
[10,28,29].

The last comment concerns the applicability range of the
obtained result. In the nonstationary problem statement like
that of [8,13] the inhomogeneities of magnetic field are shown

to increase and stretch exponentially until the linear approxi-
mation for velocity is not valid any more; after that their scale
belongs to the inertial range, and the exponential increase
stops. The exponentially increasing solution does only exist
for a finite time. To the contrary, in this statement one can
see that, although in some realizations (those that correspond
to ρ → ∞) the inhomogeneities of magnetic field increase
and stretch exponentially to reach the inertial range, still
their contribution to the stationary correlators is insignificant.
This solution is not restricted in time and does not need an
additional account of the larger scales’ influence.
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APPENDIX A: STATISTICAL PROPERTIES OF z

Substituting (9) into (8) we get

A = RT XR, X = ξ + ζ + θ, (A1)

FIG. 4. Regions of different regimes for asymptotes of z
components.
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where

ξ = d−1∂t d = diag(ξ1, ξ2, ξ3), ζ = d−1z−1(∂t z)d,

θ = (∂t R)RT . (A2)

We see that the matrix ξ is diagonal, ζ is upper triangular ma-
trix with zeros in the main diagonal, and θ is antisymmetric.
Since A is isotropic and a stationary random process, X =
RART is isotropic and stationary also. The decomposition
(A1) is unique, so all its components of ξ, ζ , θ are also sta-
tionary random functions. From the first equation we then get

ρi =
∫

ξidt . (A3)

The second equation in (A2) gives

∂t z12 = ζ12 eρ1−ρ2 ,

∂t z13 − z12 ∂t z23 = ζ13 eρ1−ρ3 ,

∂t z23 = ζ23 eρ2−ρ3 .

The third equation governs the dynamics of R.
Consider the first equation in the system. Due to the

stationarity of ζ12 there are two different regimes for z12:
saturation if ρ1 − ρ2 � 0 and exponential increase if ρ1 −
ρ2 > 0. (The boundary case of linear growth if ρ1 = ρ2

has zero measure, and can be considered as saturation to
logarithmic accuracy.) In the first case z12 does not depend
on the current value of ρi due to stabilization, and can be
considered as random value in t → ∞ limit. Alternatively,
in the second case the time dependence of the integrand
is exponential, and, to logarithmic accuracy, z12 does not
depend on the previous evolution: only the last time interval
counts. So

z12 ∝ max(1, eρ1−ρ2 ).

Treating the two other equations analogously one can calcu-
late the components z13, z23 and obtain (12). This divides the
plane ρ1, ρ3 into five parts (see Fig. 4) with different regimes
for all the components.

APPENDIX B: CALCULATION OF 


Taking the integrals over k and k′, we obtain (15) where

Gl = z−1

(
� + 2 κ

l2

∫ τ

0
�′dτ ′

)
( z−1)

T

= d2 + 2 κ

l2
z−1

∫ τ

0
z′d′2 z′T dτ ′ ( z−1)

T

and GL differs from Gl by replacing l with L. This relation is
nonlocal; but with the account of (14) it can be to logarithmic
accuracy approximated by (16).

Exact expressions for detGl , g, � are very cumbersome.
However, since all the summands are exponentials of ρ1, ρ3,
for asymptotic expressions it is enough to take only one
fastest-growing summand in each case. For instance,

detGl  max

[
1,

( rd

l

)2
e2ρ1+2ρ3 ,

( rd

l

)4
e2ρ3 ,

( rd

l

)2
e−2ρ1 ,

( rd

l

)2
e−4ρ1−4ρ3 ,

( rd

l

)2
e−2ρ3 ,

( rd

l

)4
e−2ρ1

]
. (B1)

We note that the symmetry of G is very important since it
results in the cancellation of some terms [in particular, the
terms ∼( rd

l )4e4ρ1+4ρ3 cancel in detGl ].
The choice of the largest term in (B1) depends on the

region of the (ρ1, ρ3) plane. In particular, in the region of
the most interest φ ∼ π/2 one has ρ3 > ρ1 > ρ2, the two first
terms are larger than the rest, and we get (26).

The matrix g = G−1
l can be found analogously; it also has

different asymptotes in different zones of the (ρ1, ρ3) plane.
For the direction φ  π/2 the asymptote reads as

g11 = e−2ρ1 ; g22 = e2ρ1+2ρ3 ; g33 = e−2ρ3

g12 =
[

(rd/l )2e2ρ1+3ρ3 ρ1 + ρ3 < ln(l/rd )
eρ3 ρ1 + ρ3 > ln(l/rd )

,

g13 =
⎡
⎣ (rd/l )2eρ3 ρ1 + ρ3 < ln(l/rd )

e−2ρ1−3ρ3 ρ1 + ρ3 > ln(l/rd )
(rd/l )2e−2ρ1−2ρ3 ρ3 > 2ln(l/rd )

,

g23 =
⎡
⎣ (rd/l )2e2ρ1 ρ1 + ρ3 < ln(l/rd )

e−2ρ3 ρ1 + ρ3 > ln(l/rd )
(rd/l )2e−ρ3 ρ3 > 2ln(l/rd )

.

The accurate calculation shows that the nondiagonal terms do
not contribute to the main order in . Moreover, for x � rd

one can ensure that, to the main order,

  |r=0 θ (ln g11 + 2ρ∗
1 ). (B2)

In Fig. 5 |r=0 calculated to logarithmic accuracy and the
region θ (ln g11 + 2ρ∗

1 ) = 0 are presented.

APPENDIX C: CUMULANT FUNCTION

By definition, the cumulant function of random variable ζ

is w(η) such that for any given η,

ew(η) = 〈eηζ 〉.
For stationary random processes ξ (t ) with correlation time
much shorter than τ , according to large deviations theory,
there exists [30] the cumulant function such that for any given
(nonrandom) number η

eτw(η) = 〈
eη

∫ τ

0 ξ (t )dt
〉
. (C1)

(More complete consideration of cumulant functionals and
functions for random processes see in [22].) From this
definition it immediately follows, in particular, w(0) = 0,
dw/dη(0) = 〈ξ 〉.

The random quantity ρ(τ ) can be presented as ρ(τ ) =∫ τ

0 ξ(t )dt where ξ is the stationary random process
(Appendix A). The cumulant function of ρ(τ ) is

wρ,τ (η) = ln
〈
eηρ(τ )

〉 = τw(η), η = {η1, η2, η3},
where w is the cumulant function of ξ . It follows, in par-
ticular, that the Lyapunov spectrum is λi ≡ lim

t→∞〈ρ/τ 〉 =
∂w/∂ηi. Taking into account that P(ρ̄, η) = 〈δ(ρ − ρ̄ )〉 =∫

dk〈eik(ρ−ρ̄ )〉, we get (32).
The velocity gradient tensor A(t ) and the matrix X(t)

defined in (A1) are stationary random matrix processes, so, in
accordance with (C1), their cumulant functions are defined by

eτwA(η) = 〈
eTr(η

∫ τ

0 Adt )〉, eτwX (η) = 〈
eTr(η

∫ τ

0 Xdt )〉,
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FIG. 5. The regions of ρ1, ρ3 plane in the general case of nonzero diffusivity and finite pumping scale. The values of ε−1
B |r=0 are placed

in the corresponding regions. In the region (I) |r=0 ∝ exp [2 max(ρ1, ρ3, −ρ1 − ρ3)]. The shaded region is the region corresponds to the
filtering θ (ln g11 + 2ρ∗

1 ) = 0 in (B2). This figure incorporates Figs. 1, 2, and 3.

where η is a matrix. The relation between A and X is rather
complicated and determined by (A1). The relation between
their cumulant functions was derived in [22],

wX (η) = wA(η + η0) − wA(η0), η0 = diag{−1, 0, 1}.

To extract ξ from X, one should take its diagonal part; thus,
to find the cumulant function of ξ , one has to take a diagonal

matrix η:

w(η1, η2, η3) = wX (η)|ηi �= j=0.

This brings us to (40) where η is a set of three
variables, and to (42) where W is a function of two
variables σ1, σ3.

From the isotropy of the process A it follows that its
cumulant function wA(η) possesses permutation symmetry:
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FIG. 6. Illustration for the level line W = 0, six universal points,
and the point σ0 (36). The shaded region contains all the points that
can belong to the line W = 0. The dashed line corresponds to the
Gaussian case. The universal point of minimum is also depicted.

according to (43), all ηi contribute equivalently. In particular,
since 〈Ai〉 = ∂wA

∂ηi
|
η=0

= 0, and the dispersion tensor 〈AiAj〉 is

positively defined, the point η = 0 is the minimum of wA.

Moreover, from the Cauchy inequality wA is known to be
concave, ∂2wA/∂ηi∂η j > 0∀η. Since (40) is nothing but a
shift of the function wA by η0 and its overall decrease by
wA(η0), and (33) is just a section of wA by the plane η2 = 0,
the function W (σ1, σ3) is also concave and has a minimum at
the point (1,−1) (which corresponds to η = −η0). The level
line W = 0 is shown schematically in Fig. 6. In the particular
case of Gaussian distribution they are ellipses, in general case
they are convex curves.

One more general property of these level lines comes
from isotropy and incompressibility. According to (44)
and (42), all pairs (σ1, σ3) that correspond to the same
(a, b) produce the same W . In particular, six points
(0, 0), (2, 1), (3, 0), (2,−2), (0 − 3), (−2,−1) in the σ

plane correspond to (a, b) = (2, 0), and for all of them
W = 0 generally. The rest of the line W = 0 must (because
of convexity) lie inside the triangles in Fig. 6.

The point σ (0) introduced in (36) is the upper point of
the level line W = 0 in Fig. 6. It does evidently exist, and it
satisfies the restrictions (37). Actually, the lower boundary of
σ

(0)
3 is restricted by the point (2,1). In the case of Gaussian

distribution, this point is the required σ (0) point; in other
distributions σ (0) is situated in one of two upper triangles
shown in Fig. 6.

To find (or at least to restrict) the exponent σ1ρ1 + σ3ρ3 for
any given (ρ1, ρ3), one can also use the graphic representation
of (35) in Fig. 6 (considering the tangent to the line W = 0 in
a given direction). This restrictions together with Fig. 5 allow
to compare contributions of every (ρ1, ρ3) in (18). This allows
one to check that in the case x � rd the “dangerous” direction
considered in Sec. V gives the largest contribution.

[1] H. K. Moffatt, Magnetic Field Generation in Electrically
Conducting Fluids (Cambridge University Press, Cambridge,
England, 1978).

[2] E. N. Parker, Cosmic Magnetic Fields, Their Origin and Activity
(Clarendon, Oxford, 1979).

[3] R. Kraichnan and S. Nagarajan, Phys. Fluids 10, 859 (1967).
[4] R. Kulsrud and S. Anderson, Astrophys. J. 396, 606 (1992).
[5] G. Batchelor, J. Fluid. Mech. 5, 113 (1959).
[6] A. P. Kazantsev, Sov. Phys JETP 26, 1031 (1968).
[7] R. H. Kraichnan, Phys. Fluids. 11, 945 (1968).
[8] M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola,

Phys. Rev. Lett. 83, 4065 (1999).
[9] M. Vergassola, Phys. Rev. E 53, R3021 (1996).

[10] E. Jurcisinova and M. Jurcisin, J. Phys. A: Math. Theor. 45,
485501 (2012).

[11] L. T. Adzhemyan, A. N. Vasilev, and M. Gnatich, Theore. Math.
Phys. 58, 1 (1984).

[12] Y. B. Zel’dovich, A. A. Ruzmaikin, S. A. Molchanov, and D. D.
Sokoloff, J. Fluid Mech. 144, 1 (1984).

[13] A. S. Il’yn, V. A. Sirota, and K. P. Zybin, Europhys. Lett. 121,
34002 (2018).

[14] A. S. Il’yn, V. A. Sirota, and K. P. Zybin, Phys. Scr. 94, 064001
(2019).

[15] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys.
Rev. E 51, 5609 (1995).

[16] A. S. Il’yn, V. A. Sirota, and K. P. Zybin, Phys. Rev. E 96,
013117 (2017).

[17] A. S. Il’yn, A. V. Kopyev, V. A. Sirota, and K. P. Zybin
(unpublished).

[18] V. I. Belinicher and V. S. L’vov, Sov. Phys. JETP 66, 303 (1987)
[Zh. Eksp. Teor. Fiz. 93, 533 (1987)].

[19] V. I. Oseledets, Trans. Moscow Math. Soc. 19, 197 (1968)
[Moscov. Mat. Obsch. 19, 179 (1968)].

[20] H. Furstenberg, Trans. Amer. Math. Soc. 108, 377 (1963).
[21] A. V. Letchikov, Russian Math. Surveys 51, 49 (1996).
[22] A. S. Il’yn, V. A. Sirota, and K. P. Zybin, J. Stat. Phys. 163, 765

(2016).
[23] A. S. Il’yn, V. A. Sirota, and K. P. Zybin, J. Stat. Phys. 166, 24

(2017).
[24] V. I. Klyatskin, Dynamics of Stochastic Systems (Elsevier,

New York, 2005).
[25] A. S. Il’yn and K. P. Zybin, Phys. Lett. A 379, 650 (2015).
[26] S.Girimaji and S.Pope J., Fluid Mech. 220, 427 (1990).
[27] K. P. Zybin and V. A. Sirota, Sov. Phys. Usp. 58, 556 (2015).
[28] G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod.

Phys. 73, 913 (2001).
[29] K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. 75, 3834

(1995); I. Rogachevskii and N. Kleeorin, Phys. Rev. E 56, 417
(1997).

[30] S. R. S. Varadhan, Ann. Probab. 36, 397 (2008).

063102-12

https://doi.org/10.1063/1.1762201
https://doi.org/10.1063/1.1762201
https://doi.org/10.1063/1.1762201
https://doi.org/10.1063/1.1762201
https://doi.org/10.1086/171743
https://doi.org/10.1086/171743
https://doi.org/10.1086/171743
https://doi.org/10.1086/171743
https://doi.org/10.1017/S002211205900009X
https://doi.org/10.1017/S002211205900009X
https://doi.org/10.1017/S002211205900009X
https://doi.org/10.1017/S002211205900009X
https://doi.org/10.1063/1.1692063
https://doi.org/10.1063/1.1692063
https://doi.org/10.1063/1.1692063
https://doi.org/10.1063/1.1692063
https://doi.org/10.1103/PhysRevLett.83.4065
https://doi.org/10.1103/PhysRevLett.83.4065
https://doi.org/10.1103/PhysRevLett.83.4065
https://doi.org/10.1103/PhysRevLett.83.4065
https://doi.org/10.1103/PhysRevE.53.R3021
https://doi.org/10.1103/PhysRevE.53.R3021
https://doi.org/10.1103/PhysRevE.53.R3021
https://doi.org/10.1103/PhysRevE.53.R3021
https://doi.org/10.1088/1751-8113/45/48/485501
https://doi.org/10.1088/1751-8113/45/48/485501
https://doi.org/10.1088/1751-8113/45/48/485501
https://doi.org/10.1088/1751-8113/45/48/485501
https://doi.org/10.1007/BF01031029
https://doi.org/10.1007/BF01031029
https://doi.org/10.1007/BF01031029
https://doi.org/10.1007/BF01031029
https://doi.org/10.1017/S0022112084001488
https://doi.org/10.1017/S0022112084001488
https://doi.org/10.1017/S0022112084001488
https://doi.org/10.1017/S0022112084001488
https://doi.org/10.1209/0295-5075/121/34002
https://doi.org/10.1209/0295-5075/121/34002
https://doi.org/10.1209/0295-5075/121/34002
https://doi.org/10.1209/0295-5075/121/34002
https://doi.org/10.1088/1402-4896/ab0998
https://doi.org/10.1088/1402-4896/ab0998
https://doi.org/10.1088/1402-4896/ab0998
https://doi.org/10.1088/1402-4896/ab0998
https://doi.org/10.1103/PhysRevE.51.5609
https://doi.org/10.1103/PhysRevE.51.5609
https://doi.org/10.1103/PhysRevE.51.5609
https://doi.org/10.1103/PhysRevE.51.5609
https://doi.org/10.1103/PhysRevE.96.013117
https://doi.org/10.1103/PhysRevE.96.013117
https://doi.org/10.1103/PhysRevE.96.013117
https://doi.org/10.1103/PhysRevE.96.013117
https://doi.org/10.1090/S0002-9947-1963-0163345-0
https://doi.org/10.1090/S0002-9947-1963-0163345-0
https://doi.org/10.1090/S0002-9947-1963-0163345-0
https://doi.org/10.1090/S0002-9947-1963-0163345-0
https://doi.org/10.1070/RM1996v051n01ABEH002735
https://doi.org/10.1070/RM1996v051n01ABEH002735
https://doi.org/10.1070/RM1996v051n01ABEH002735
https://doi.org/10.1070/RM1996v051n01ABEH002735
https://doi.org/10.1007/s10955-016-1502-3
https://doi.org/10.1007/s10955-016-1502-3
https://doi.org/10.1007/s10955-016-1502-3
https://doi.org/10.1007/s10955-016-1502-3
https://doi.org/10.1007/s10955-016-1675-9
https://doi.org/10.1007/s10955-016-1675-9
https://doi.org/10.1007/s10955-016-1675-9
https://doi.org/10.1007/s10955-016-1675-9
https://doi.org/10.1016/j.physleta.2014.12.034
https://doi.org/10.1016/j.physleta.2014.12.034
https://doi.org/10.1016/j.physleta.2014.12.034
https://doi.org/10.1016/j.physleta.2014.12.034
https://doi.org/10.1017/S0022112090003330
https://doi.org/10.1017/S0022112090003330
https://doi.org/10.1017/S0022112090003330
https://doi.org/10.1017/S0022112090003330
https://doi.org/10.3367/UFNe.0185.201506b.0593
https://doi.org/10.3367/UFNe.0185.201506b.0593
https://doi.org/10.3367/UFNe.0185.201506b.0593
https://doi.org/10.3367/UFNe.0185.201506b.0593
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/PhysRevLett.75.3834
https://doi.org/10.1103/PhysRevLett.75.3834
https://doi.org/10.1103/PhysRevLett.75.3834
https://doi.org/10.1103/PhysRevLett.75.3834
https://doi.org/10.1103/PhysRevE.56.417
https://doi.org/10.1103/PhysRevE.56.417
https://doi.org/10.1103/PhysRevE.56.417
https://doi.org/10.1103/PhysRevE.56.417
https://doi.org/10.1214/07-AOP348
https://doi.org/10.1214/07-AOP348
https://doi.org/10.1214/07-AOP348
https://doi.org/10.1214/07-AOP348

