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Tough-brittle transition in the planar fracture of unidirectional fiber composites
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The transverse fracture of model unidirectional composite specimen, comprising up to 220 fibers with random
strengths, is studied using Monte Carlo simulations. The load sharing from broken to intact fibers is assumed
to obey power-law scaling ∼ r−γ with distance r from the fiber break. Fiber breaks are assumed to interact in
order to remain traction free. The pattern of fiber breaks that propagate catastrophically is interpreted through
cluster analysis. The empirical strength distributions obtained from the simulations are interpreted using two
probabilistic models of brittle fracture available in the literature. These point to a transition from the brittle to
the tough fracture mode as γ ↓ 2. The transitional γ is approximately equal to that reported in the literature for
noninteracting fiber breaks.
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I. INTRODUCTION

Unidirectional fiber composites loaded in uniaxial tension
along the fiber direction are model heterogeneous materials.
In general, the fracture of these materials entails the formation
of fiber breaks, matrix cracks, and interfacial debonds in three
dimensions [1,2]. However, in polymer matrix unidirectional
composites with a well-bonded fiber-matrix interface, it is
reasonable to treat the fracture process as being localized
in a plane transverse to the fiber direction by (i) regarding
the composite as a chain of independent longitudinal seg-
ments [3,4], the failure of one of which amounts to composite
failure, and (ii) by conservatively assuming that fiber breaks
in each segment occur in a common transverse plane [5,6].
The assumption of fracture processes being confined to a
transverse plane has often been used in the literature [6–10]
to study the modes of development of fracture and to obtain
the strength distributions of heterogeneous materials. This
assumption is adopted in the present study also.

It is clear from the foregoing studies that the fracture
mode depends on the variability of fiber strengths. The fiber
length relevant to the present two-dimensional setting is one
segment long. Taking this length to be unity, and assuming the
normalized fiber strengths to be Weibull [11] distributed, the
distribution function for the random fiber strength, �, is given
by:

F (σ ) = Pr{� < σ } = 1 − exp(−σρ ), (1)

where ρ > 0 is termed the Weibull modulus.
Besides the fiber strength variability, fracture development

and strength distribution of two-dimensional unidirectional
composite bundles also depends sensitively on the load re-
distribution among the surviving fibers due to fiber fail-
ure [7,8,10,12], i.e., the load-sharing rule. Equal load sharing
(ELS) and local load sharing (LLS) are limiting load-sharing
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rules. In ELS, the load dropped by a broken fiber is distributed
equally among all the surviving fibers. In ELS composites
subjected to monotonically increasing tensile load, the lo-
cations of fiber breaks are uncorrelated, and the fracture
mode is tough. ELS composite strength obeys a Gaussian
distribution [13]. In LLS, the load dropped by the broken
fibers is distributed entirely among their nearest intact neigh-
bors. Under LLS, fiber break positions are highly correlated,
and the composite suffers brittle fracture, regardless of the
scatter in the random tensile strengths of the fibers. That is,
fracture proceeds by the catastrophic growth of a localized
cluster of breaks. Composite strength obeys weakest-link
scaling, and a probabilistic model for the weakest-link event
is known [9,14,15].

It is clear from the above that the fracture mode transitions
from tough to brittle when the load sharing changes from ELS
to LLS. The precise location of the transition, for various in-
terpolation schemes between ELS and LLS, has been studied
in the literature. Hidalgo et al. [7] considered a square patch
with periodic boundary conditions. In a patch with only one
broken fiber, they assumed that the stress concentration, K (r),
in a surviving fiber distant r from the broken fiber obeys the
power law

K (r) = 1 + c r−γ , (2)

where γ � 0. Parameter c is obtained by demanding that the
stress overloads (i.e., stress concentrations less unity) add up
to unity, i.e.,

∑
r>0

(K (r) − 1) = 1, i.e., c =
[∑

r>0

r−γ

]−1

. (3)

It is clear that c = c(γ , N ) depends on the load-sharing ex-
ponent and the system size. The overload profile in Eq. (2)
coincides with ELS for γ = 0 and with LLS for γ → ∞.
Hidalgo et al. [7] and Roy et al. [10] found that brittle
fracture is obtained for γ � 2.17, while tough characteristics
are obtained for smaller γ .
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In an infinite patch, the summation of Eq. (3) can be
approximated as:

c =
[ ∞∑

r=1

1

rγ
(2πr)

]−1

∼
[ ∞∑

r=1

1

rγ−1

]−1

. (4)

The latter sum converges for γ > 2, so that c is independent
of N for sufficiently large N . For γ � 2, however, the sum in
the right side of Eq. (4) diverges. This means that in a finite
simulation cell with N fibers, c ↓ 0 with increasing N . The
overload profile due to a single break thus depends not only
on the power-law exponent, γ , but also on the simulation cell
size, N , even for large N if γ � 2.

Another interpolation scheme between the ELS and LLS
limits is due to Pradhan et al. [8]. In their mixed-mode
load-sharing scheme, a fraction g ∈ [0, 1] of the load dropped
by the broken fiber is distributed equally among its nearest
neighbors. The remainder, 1 − g, is distributed equally among
all the surviving fibers. Clearly, the limits g = 0 and g = 1 cor-
respond to the ELS and LLS limits. Pradhan et al. [8] showed
that the tough-brittle transition for their model occurred at
g ≈ 0.79.

Roy et al. [10] have also proposed an interpolation scheme
between ELS and LLS in two dimensions. In their scheme,
the load of the broken fiber is distributed to surviving fibers in
a rectangular region including the fiber to a specified distance
R. This scheme, too, approximately interpolates between ELS
and LLS as R decreases from ∞ to 1. Roy et al. [10] found
that the phase space spanned by fiber strength variability,
and R was subdivided into six regions, which they termed
brittle nucleating, brittle percolating, quasibrittle nucleating,
quasibrittle percolating, high disorder limit, and temporally
uncorrelated. Each phase describes a separate mode of frac-
ture development.

Hidalgo et al. [7] and Roy et al. [10] assumed that the
stress overload induced by a set of broken fibers at an intact
fiber is simply the sum of the stress overloads due to the in-
dividual breaks. This assumption produces nonzero tractions
at the fiber breaks, when more than one fiber is broken in
the simulation cell. In physical composites, however, breaks
interact to ensure zero traction at the fiber breaks. The opening
displacement of each break is altered by the presence of
the other breaks, which is accounted for in the Hedgepeth
model [16,17]. Accounting for the interaction between breaks
is also essential to capture the inverse square root decay of the
stress fields with distance from the crack tip, composed of a
large number of fiber breaks, in agreement with linear elastic
fracture mechanics [5].

In the model of Pradhan et al. [8], too, fiber breaks do not
interact. In this scheme, although zero traction is realized at
fiber breaks, the stress state ahead of a large cluster of breaks
does not follow the inverse square root decay with distance
from the crack tip. Also, two fiber breaks that do not have a
common neighboring intact fiber, produce equal overload on
their neighbors, regardless of the distance between the breaks,
which is different from the response of an interacting elastic
system [16–19].

On the one hand, the assumption of noninteraction between
fiber breaks in the models of Hidalgo et al. [7], Pradhan
et al. [8], and Roy et al. [10] makes the fracture simulations

computationally light and enables these studies to access large
system sizes. On the other hand, the load-sharing rules in these
works is not representative of physically important elastic
systems, such as fiber composites. Studies of the fracture
modes in elastic systems, on the other hand, have been limited
to small system sizes of the order of a few thousand fibers,
to keep the computational effort tractable [6,20]. While these
studies are able to identify the brittle fracture mode as such,
it is not clear whether the tough modes observed represent
size-independent response or are an artifact of limited system
size [6].

In recent work, an algorithm based on the fast Fourier
transform has been developed to simulate fracture of a two-
dimensional transverse plane [21,22]. These simulations are
asymptotically faster than the classical simulations and can
access composite bundles composed of millions of fibers,
while accounting for elastic interactions between fiber breaks.
Also, although Gupta et al. [21] and Mahesh et al. [22]
assumed Hedgepeth load sharing, the methodology developed
therein can be applied to arbitrary load-sharing rules, includ-
ing Eq. (2). These advantages mitigate the simulation cell size
limitations of fracture simulations in elastic composites [6,19]
and open up the possibility of exploring the tough-brittle
transition through fracture simulations.

As in Hidalgo et al. [7], Pradhan et al. [8], and Roy
et al. [10], it is attempted in the present work to identify the γ ∗
at which the tough-brittle transition occurs in the transverse
fracture of unidirectional composites. The difference between
those works, and the present one is that the elastic interactions
among fiber breaks is accounted for, so that fiber breaks in
the present work are traction free. The stress concentration
at the edge of a cluster of interacting fiber breaks is greater
than the simple sum of the stress concentrations induced by
noninteracting fiber breaks [6,17,19]. The increased stress
concentration may promote the brittle fracture mode and may
thereby decrease the value of γ ∗.

In Sec. II, the simulation methodology, cluster analysis
tools, and probabilistic models are recollected. Empirical
strength distributions obtained from the simulations are pre-
sented in Sec. III and interpreted using the probabilistic model
based on tight cluster growth [9]. The use of probabilistic
fracture models to identify the tough-brittle transition is a
novel feature of the present work. Of central importance in
this analysis is the size of the critical cluster of fiber breaks,
which triggers catastrophic crack growth. It is shown that the
size of the critical cluster scales as the system size for γ ≈ 2
but scales slower than the system size for γ > 2. This points
to a tough-brittle transition very near γ = 2, even when fiber
breaks interactions are accounted for.

II. FRACTURE MODES

A. Computational

1. Fracture simulations

Monte Carlo simulations are performed in rhombus-shaped
patches representing a transverse cross section of the fiber
composite. The transverse cross section is composed of N =
ν × ν fibers, as shown in Fig. 1. N is termed the system size.
The m-n coordinate system to locate fibers in the simulation
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FIG. 1. A rhombus-shaped periodic simulation cell of ν × ν

fibers arranged in a hexagonal lattice showing the m-n coordinate
system.

cell is also shown. Periodic conditions are imposed so that the
row of fibers at the left and right edges (m = 0 and m = ν − 1)
are neighbors. Similarly, the fibers at the bottom and top edges
(n = 0 and n = ν − 1) are also considered neighbors. The
periodic boundary conditions ensure that the stress concen-
trations induced by a single break is translation invariant, i.e.,
only the separation between the broken fiber and a surviving
fiber is important for determining the stress concentration in
the latter, due to the former, and not the absolute positions
of the two fibers. This property makes the matrix [�], whose
element �mnpq represents the stress overload in fiber (p, q)
due to a fiber break at (m, n), circulant in two modes [23]. The
circulance of [�] enables it to be diagonalized asymptotically
faster in Fourier space than in real space, as detailed in Gupta
et al. [21], and enables an asymptotically faster solution for
the opening displacements at the fiber breaks.

The computational time of the Monte Carlo simulations
can also be decreased by a considerable factor by noticing that
in a two-dimensional simulation cell, the stress overload in a
surviving fiber increases monotonically with the number of
fiber breaks. This enables the determination of the ultimate
tensile strength of the simulation cell to any desired accuracy
using successive bisection. If the ultimate tensile strength of
the composite can be bracketed tightly, then this proves to
be much faster than the commonly followed approach [6,24]
of gradually increasing the applied load up to the point of
catastrophic crack growth, as detailed in Mahesh et al. [22].

For each Weibull exponent ρ, and system size, N , Nsim

statistically identical composite specimen are generated by as-
signing fiber strengths drawn from Eq. (1). Let σ̄(i) denote the
strength of the ith weakest specimen for i ∈ {1, 2, . . . , Nsim}.
The empirical strength distribution, GN (σ(i); γ , ρ) is then
defined as

GN (σ(i); γ , ρ) = i − 1/2

Nsim
, (5)

for i ∈ {1, 2, . . . , Nsim}.

2. Cluster analysis

The fracture mode—tough or brittle—can sometimes be
identified visually by examining snapshots of fracture de-
velopment [6]. Clustering together of breaks into a critical
cluster, and their propagation suggests brittle fracture. How-
ever, seemingly disperse fiber breakage can also cause brittle
fracture [22]. Visual identification of the fracture mode may
thus be erroneous.

Kun et al. [25], Roy et al. [10], Hidalgo et al. [7], Pradhan
et al. [8], and others have used a quantitative method to
identify the fracture mode, based on cluster analysis. In this
method, the frequency f (s) of clusters of fiber breaks of size s
is obtained just before catastrophic crack growth begins. The
moments of f (s), defined as:

Mk =
∑

s

sk f (s), (6)

are calculated for k ∈ {0, 1, 2, . . .}. M0 and M1 represent the
number of clusters, and the number of broken fibers, respec-
tively. Hidalgo et al. [7] have identified the γ at which M2/M1

achieves a maximum with the brittle-ductile mode transition.
In the present setting, cluster analysis has been imple-

mented using the classical Hoshen and Kopelman [26] and
union-find [27, Sec. 22.3] algorithms. As noted in Sec. II A 1,
composite strength is determined presently by a bracketing
procedure. The lower end point of the bracket signifies a
load level at which the model composite survives. Cluster
frequencies, f (s), are calculated or recalculated at the lower
end point whenever it is set or updated. The f (s) when the
simulation terminates characterize the computational critical
cluster, which propagates to rupture the remaining fibers. The
moments, Mk , are calculated from f (s), and the values of Mk

are averaged across the Monte Carlo simulations.

B. Probabilistic models

The empirical strength distributions obtained from the
Monte Carlo simulations will be interpreted using the prob-
abilistic models of composite fracture, recalled below.

1. Tough mode

The prototypical example of a unidirectional tough com-
posite is the loose bundle of threads studied by Daniels [13].
The load dropped by a broken fiber is redistributed equally
among all the surviving fibers in a loose bundle of threads,
following ELS. Qualitatively, in a tough composite, fracture
occurs by the linking up of multiple clusters of fiber breaks
spatially distributed over the entire cross section. The number
of fiber breaks in these clusters is comparable to the total
number of fibers in the composite.

Consider a loose bundle of M threads, whose strengths are
Weibull [11] distributed, following Eq. (1). Then the classical
result of Daniels [13] states that as M → ∞, the bundle
strength per fiber, EM (σ ), is Gaussian distributed:

EM (σ ) = 	

(
σ − μM

σM

)
= 1√

2πσ 2
M

exp

[
− (σ − μM )2

2σ 2
M

]
,

(7)
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with mean bundle strength [24],

μM = (1/ρ)(1/ρ) exp(−1/ρ), (8)

and standard deviation,

σM =
√

exp(−1/ρ)[1 − exp(−1/ρ)]/n. (9)

Equation (7) is a good approximation of the bundle
strength for large M. For smaller M, McCartney and
Smith [28] have proposed a recursive formula for the strength
of the M bundle,

EM (σ )={F (σ ′
M−1)}M −

M−1∑
k=0

(
M

k

)

(k){F (σ ′

M−1)−F (σ ′
k )}M−k .

(10)
In Eq. (10), F (·) is given by Eq. (1),


(k) = {F (σ ′
k−1)}m −

k−1∑
l=0

(
k

l

)

(l ){F (σ ′

k−1) − F (σ ′
l )}k−l ,

( k
l ) = k!/(k!(k − l )!), σ ′

k = Mσ/(M − k), and 
(0) = 1.
This formula becomes too computationally intensive and
prone to floating point truncation errors to use beyond about
M = 100. Presently, therefore, the strength distribution is
taken to follow Eq. (7) for M > 100 and to follow Eq. (10)
for 1 � M � 100.

The ELS bundle has been investigated extensively in the
literature. Much is known about the fracture characteristics
of ELS bundles, including the scaling of avalanche sizes
and energy released. These results may be found in Hansen
et al. ([29], Chaps. 2, and 3).

2. Brittle mode

The fracture of the composite bundle exhibits a brittle
character when a localized cluster of fiber breaks forms and
propagates catastrophically. The number of fiber breaks in the
localized cluster is much smaller than that in the composite.
Let GN (σ ; γ , ρ) denote the empirical strength distribution,
obtained from the Monte Carlo simulations, and defined in
Eq. (5). Following Harlow and Phoenix [14], an unequivocal
signature of the brittle mode is that the weakest-link empirical
strength distribution,

WN (σ ; γ , ρ) = 1 − [1 − GN (σ ; γ , ρ)]1/N , (11)

is independent of the number of fibers, N . Pictorially, the
existence of a weakest-link failure event is confirmed by the
collapse of plots of WN (σ ; γ , ρ) for different system sizes N
into a common master curve. If WN were independent of N ,
it is reasonable to write W (σ ; γ , ρ), which now denotes the
system-size independent strength distribution of the weakest-
link failure event.

Two models available in the literature for predicting
WN (σ ; γ , ρ), viz., the Curtin [20] model, and the tight cluster
growth model [9,22,30], are now summarized.

Curtin [20] proposed that composite failure occurs when
at least one of N/Nc, 1 � Nc � N events occurs, the event
being the failure of an Nc bundle of fibers obeying ELS. Ac-
cordingly, the composite strength distribution, GN (σ ; γ , ρ), is
related to the strength distribution of the weakest-link event

➊ ➋

➌➍

➎

➏➐

➑

➒

➓

FIG. 2. Schematic representation of the failure event hypothe-
sized to be the weakest-link event by the tight cluster growth model.
The composite cross section is viewed as a patch-work of bundles. In
this figure, each bundle is composed of 19 fibers, obeying equal-load
sharing. The failure of a bundle, labeled ➊, causes an overload in
its six neighbors. Under this overload, one of them (bundle ➋) fails.
The overloads due to the pair of failed bundles leads to the failure of
bundle ➌, and so on.

given by Eq. (7) through:

GN (σ ; γ , ρ) = 1 − [
1 − ENc

(
σ ; μ′

Nc

)]N/Nc
. (12)

Here ENc (σ ; μ′
Nc

) denotes the strength distribution of an Nc

fiber ELS bundle, with M = Nc, and standard deviation given
by Eq. (9). The mean, μ′

Nc
, of ENc (σ ; μ′

Nc
) generally differs

from that given by Eq. (8). The shifted mean, μ′
Nc

, and the
size of the weakest link, Nc, are the two parameters of the
Curtin [20] model.

It follows from Eqs. (11) and (12) that

WN (σ ; γ , ρ) = 1 − [
1 − ENc (σ )

]1/Nc
. (13)

The Curtin [20] model regards the Nc cluster of fiber breaks as
the nucleus of brittle fracture; fibers ahead of this cluster are
assumed to break almost surely, i.e., with probability 1.

The following procedure is used to fit the parameters of
the Curtin [20] model. For each N ′

c ∈ {1, 2, . . . , N}, the em-
pirical distribution, 1 − [1 − GN (σ(i); γ , ρ)]N ′

c/N , is plotted on
Gaussian probability coordinates. The empirical distribution
is assumed Gaussian distributed, and a minimum least-squares
straight line is fit to it. The reciprocal of the slope of this
straight line gives the standard deviation of the empirical
distribution. The empirical standard deviation so obtained is
compared with the standard deviation of the Daniels distri-
bution, Eq. (9), with M = N ′

c. The N ′
c for which the relative

error between the empirical and Daniels standard deviations
is the least is considered the best fit. The corresponding N ′

c is
taken to be Nc. With Nc fit, μ′

Nc
is fixed by determining the

translation to be applied to the mean of the model predicted
strength distribution so that it matches the mean of the empir-
ical strength distribution.

The second model of interest is called the tight cluster
growth model [9,22,30]. The development of the weakest-link
event, according to this model, is depicted schematically in
Fig. 2. Here, neighboring ELS bundles, each composed of
M fibers, hereafter termed M bundles, fail sequentially. The
sequence begins with the failure of one M bundle, labeled ➊
in the schematic Fig. 2. The failure of this M bundle overloads
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its six neighboring ELS bundles. The second step involves the
failure of one of these overloaded ELS M bundles, say, ➋,
due to the overload. The third step involves the failure of one
of the overloaded neighbors of the pair of M bundles ➊ and
➋, and so on. Growth of the cluster of bundles in this manner
has been termed “tight cluster growth” [6].

Let N (M,N )
j denote the number of overloaded neighboring

M bundles surrounding a tight cluster of j M bundles, in a
composite composed of N fibers. Let N (M )

0 ≡ 1. Let K (M,N )
j

denote the stress concentration imposed by this tight cluster
on its neighbors. Let K0 ≡ 1. Then, assuming the successive
steps of tight cluster growth are approximately independent,
the probability of tight cluster growth, W (M,N )(σ ; γ , ρ), can
be written as:

W (M,N )(σ ; γ , ρ) =
�N/M�−1∏

j=0

{
1−[

1−E (M )
(
K (M,N )

j σ
)]N (M,N )

j
}
.

(14)
W (M,N )(σ ; γ , ρ) depends on γ through the stress concentra-
tions, K (M,N )

j , and on ρ through E (M )(·). The upper limit on
the index j, �N/M� − 1 indicates the number of M bundles
that can fit into the simulation cell of size N . The tight cluster
growth model thus directly accounts for the finiteness of the
system.

Although K (M,N )
j , and N (M,N )

j can be evaluated directly
following Gupta et al. [21], an approximation is presently
used to speed up the evaluation of Eq. (14). Consider a tight
cluster of j fiber breaks in a simulation cell composed of N/M
fibers. The problems of j M bundles, and j single breaks,
differ only in terms of size scale. Also, K (M )

j and N (M )
j are

nondimensional quantities. Therefore, it is presently assumed
that

K (M,N )
j = K (1,N/M )

j , and N (M )
j = N (1,N/M )

j . (15)

Now N/M in Eq. (15) need not, in general, be a square number
and may therefore not fit in a rhombus-shaped patch, Fig. 1.
Also, it is computationally advantageous if the system size
were an even power of 2 [21]. The approximations

K (M,N )
j ≈ K (1,N1 )

j and N (M,N )
j ≈ N (1,N1 )

j , (16)

with N1 = 22[log2
√

N/M], address these issues. Here [·] denotes
rounding off to the nearest natural number.

K (1,N1 )
j can be directly evaluated following Gupta

et al. [21]. To evaluate N (1,N1 )
j , the tight cluster of j breaks

is associated with radius, R, given by

j = πR2. (17)

The intact neighbors of a tight cluster of radius R are taken
to be those fibers that are broken in a tight cluster of radius
R + 1 but not in one of radius R. The number of neighbors
can be determined by a simple geometric calculation and is
plotted in Fig. 3. It is seen that

N (1)
j = 2√

3
× 2πR = 4

√
π j

3
(18)

captures the empirical scaling very well, provided j � N1.
However, if j ≈ N1, then the number of neighbors will be lim-
ited by the system size and is better approximated as N (1)

j =

 0
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N
(1)
j = 2√

3
2πR

FIG. 3. The number of intact neighbors of penny-shaped clusters
of fiber breaks obeys Eq. (18). The system size, N1 = 220, is much
larger than the size of the largest cluster considered.

N1 − j. Both possibilities are approximately accounted for by
taking

N (1,N1 )
j = min(4

√
π j/3, N1 − j). (19)

This concludes the discussion of the parameters appearing in
Eq. (14).

Let the composite cross section be a priori partitioned into
N/M M bundles. Assuming the weakest-link event may ini-
tiate from any of these bundles with equal likelihood implies
that

GN (σ ; γ , ρ) = 1 − [1 − W (M,N )(σ ; γ , ρ)]N/M . (20)

Comparing Eqs. (11) and (14) shows that

WN (σ ; γ , ρ) = 1 − [1 − W (M,N )(σ ; γ , ρ)]1/M . (21)

The case M = N represents a degenerate condition, wherein a
single M bundle occupies the entire composite cross section.
In this case, Eqs. (14) and (20) reduce to GN (σ ) = EM (σ ),
where EM (σ ) is given by either Eq. (7) or (10). The tight
cluster growth model reduces to the Curtin [20] model if only
the first factor were retained in the product of Eq. (14). It
reduces to the tight cluster growth model of Mahesh et al. [6]
by setting M ≡ 1.

The tight cluster growth model is more complex than the
Curtin [20] model. First, it requires the direct calculation
of K (M,N )

j , as described above. The Curtin [20] model does
not require any stress concentration calculations. Second,
the tight cluster growth model requires the evaluation of a
product in Eq. (14). This may be computationally intensive,
particularly if the individual factors must be evaluated using
the McCartney and Smith [28] recursion, Eq. (10).

In return for the added complexity, the tight cluster growth
requires only that a single parameter, M, be fit. M may be
regarded as the counterpart of the fitting parameter Nc in the
Curtin [20] model. There is no analog of the Curtin [20] model
fitting parameter, μ′

Nc
, in the tight cluster growth model.
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FIG. 4. Variation of the moment ratio, M2/M1, averaged over all
the simulations. Solid lines correspond to system size, N = 220, and
dashed lines to N = 214.

III. RESULTS AND DISCUSSION

Monte Carlo fracture simulations have been run on
Nsim = 256 computer specimen with system sizes, N ∈ {214,

216, 218, 220}, for each Weibull exponent ρ ∈ {1, 2, 3, 5, 10}
and for each load-sharing power-law exponent γ ∈ {0, 1, 1.5,

2, 2.05, 2.1, 2.2, 2.5, 3}. Of these γ , only those in the range
2 < γ � 3 represent physical load-sharing rules in elastic
composites, as noted in Eq. (4). Therefore, attention is focused
on this range. This range is of interest also because Hidalgo
et al. [7] and Roy et al. [10] observed a transition within it.

Cluster moments Mk , defined in Eq. (6) have been recorded
at the point of catastrophic crack propagation from each of
these simulations. Specimen strengths are also recorded, and
the empirical strength distributions, GN (σ(i); γ , ρ), are derived
using Eq. (5).

A. Cluster statistics

As noted in Sec. II A 2, Kun et al. [25], Hidalgo et al. [7],
Pradhan et al. [8], and Roy et al. [10] have used cluster
analysis to quantitatively identify the parametric value cor-
responding to the tough-brittle transition in systems wherein
fiber breaks are assumed to be noninteracting. Of these stud-
ies, Hidalgo et al. [7] and Roy et al. ([10], Fig. 7) have
considered power-law load sharing. The former work assumes
Weibull-distributed strengths, with ρ = 2, while the latter
assume uniform or power-law distributed fiber strengths. They
locate the transition at γ = 2.17 and γ = 2.15, respectively.
The proximity of the transition point despite quite different
fiber strength distributions suggests its robustness.

Figure 4 shows the variation of the moment ratio, M2/M1

with γ for all the presently studied ρ and for two simulation
cell sizes, N = 214 and N = 220. For 2 � ρ � 10, M2/M1

maximizes at γ � 2, with the maximum moving from γ =
2 for ρ = 10 to γ = 2.2 for ρ = 2. When ρ = 1, M2/M1

increases from γ = 3 to γ = 2.5 and remains nearly constant
over 0 � γ � 2.5. That is, the largest γ at which M2/M1

maximizes increases with decreasing ρ. These observations
hold for both simulation cell sizes.

Applying the criterion of Hidalgo et al. [7] and Roy
et al. [10] to the present results, it is found that the tough-
brittle transition occurs at γ = 2 for ρ = 10 and monoton-
ically increases to γ = 2.5 for ρ = 1. The γ at which the
presently obtained M2/M1 maximize are comparable to those
of Hidalgo et al. [7] and Roy et al. [10]. It is speculated
that for still smaller ρ < 1, the transitional γ will increase
further toward γ = 3. However, the present results do not
clearly indicate if the transitional γ will decrease with in-
creasing system size, N , for fixed ρ. This is because the
same transitional γ is presently obtained for both the largest
and smallest system sizes studied for all ρ. Much larger
simulations than those presently feasible will be required to
resolve this question through cluster analysis.

B. Strength distributions

Figure 5 shows the empirical strength distributions for
γ ∈ {3, 2.5, 2} composites with ρ ∈ {10, 1} in Gaussian prob-
ability coordinates. These are compared with the best fit lines
obtained from the Curtin [20] model. It is seen that in every
case, the Curtin [20] model fits the empirical distributions very
well. Model parameters Nc and μ′

Nc
are fit following the pro-

cedure given in Sec. II B 2. However, only the parameter Nc,
which is important to understand the tough-brittle transition,
is listed in the legends.

Figure 5(a) corresponds to the most localized load sharing,
with the least fiber strength variability, among the cases shown
in Fig. 5. In this case, the Curtin [20] model fits the empir-
ical strength distributions of variously sized simulation cells
within a relatively narrow range 64 � Nc � 96. As the load
sharing becomes less localized with decreasing γ , the strength
distributions approach the corresponding ELS distributions.
Thus, for γ = 3, good fits are obtained using Nc � N , for
both ρ considered. For γ ≈ 2, good fits are obtained only with
Nc � N .

In Fig. 6, the same empirical distributions as those in Fig. 5
are fit to the tight cluster growth model, in Weibull probability
coordinates. Again, it is seen that in all the cases, good fits are
obtained with the tight cluster growth model. The parameter,
M, is fit for each γ , and ρ; its value is listed in the legends.

The weakest-link strength distributions corresponding to
different N collapse onto a single master curve only in
Fig. 6(a) for γ = 3, ρ = 10, with M = 25. For all the other
cases shown, the classical collapse of the weakest-link distri-
butions into a common master curve [6,14] is not observed.

Both the Curtin [20] and tight cluster growth models are
thus able to fit the empirical strength distributions very well.
This is true not only in the probability range of interest but also
in lower the tail of the distribution (not shown). It is known
that the predictions of the two models agree for Hedgepeth
load sharing, which corresponds to γ = 3 [30]. The present
result extends this conclusion to less localized load-sharing
rules, viz., γ � 3, also.

The parameter M of the tight cluster growth model is
always smaller than Nc of the Curtin [20] model. This is
to be expected since M is the size of the initiating cluster
leading up to fracture, while Nc is the size of the propagating
cluster. However, M is significantly smaller than N only in
Figs. 5(a)–5(c) and Figs. 6(a)–6(c). In Figs. 5(d)–5(f) and
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FIG. 5. Empirical strength distributions of γ ∈ {3, 2, 1}, ρ ∈ {10, 1} load-sharing bundles plotted on Gaussian probability coordinates and
fit with the Curtin [20] model. Each plot shows the empirical strength distribution of N ∈ {214, 216, 218, 220} composites with yellow, blue, red,
and black dots. The model fitting parameter, Nc, is listed in the legends.

Figs. 6(d)–6(f), M ≈ Nc. In the latter cases, the weakest-link
product of Eq. (14) in the tight cluster growth model also con-
verges after just one factor, j = 1. These observations suggest
that with decreasing γ and ρ, fracture development in the
tight cluster growth model approaches that of the Curtin [20]
model.

C. Tough-brittle transition

Nc/N in the Curtin [20] model represents the fraction of
fibers from which brittle fracture develops. Figure 7 shows

the variation of Nc/N with system size, N on log-log scale
for ρ = 10 and ρ = 1. The points denote the values of Nc/N .
Lines obtained by least-squares fitting are also shown. Nc/N
shows a decreasing trend for 2.1 � γ � 3 in Fig. 7(a), which
corresponds to ρ = 10, implying that the size of cluster of
fiber breaks from which brittle fracture initiates scales slower
than the system size. This suggests that brittle fracture, i.e.,
catastrophic crack growth from a localized Nc-fiber break nu-
cleus will occur for 2.1 � γ � 3, as the system size, N ↑ ∞.
For γ = 2.05, neither a clear decreasing nor a clear increasing
trend is seen. It is therefore, not possible to decide whether
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FIG. 6. Empirical strength distributions of γ ∈ {3, 2.5, 2}, ρ ∈ {10, 1} load-sharing bundles plotted on Weibull probability coordinates,
and fit with the tight cluster growth model. Each plot shows the empirical strength distribution of N ∈ {214, 216, 218, 220} composites with
yellow, blue, red, and black dots, respectively. The model fitting parameter M is listed in the legends.

the γ = 2.05, ρ = 10 specimen will fail by the tough or
brittle mode. For γ = 2, however, Nc/N shows an increasing
trend with N , implying that the size of the cluster of fiber
breaks from which brittle fracture initiates grows faster than
the system size. This indicates the tough fracture mode, with
Nc/N ↑ 1 with increasing N . The Curtin [20] model thus
predicts a tough-brittle transition for ρ = 10 for some γ ∈
[2.0, 2.1].

Similar considerations, applied to Fig. 7(b), correspond-
ing to ρ = 1, reveals a tough-brittle transition at some
γ ∈ [2.1, 2.2]. Interestingly, this transitional parameter value
range includes that (γ ≈ 2.17) obtained by Hidalgo et al. [7]
and Roy et al. [10], assuming no interaction between the fiber
breaks for fiber Weibull exponent ρ = 2.

In the tight cluster growth model, M/N denotes the frac-
tion of fibers from which brittle fracture may develop. The
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FIG. 7. The scaling of the fraction of the Curtin [20] model
bundle size, Nc/N , with system size N for various γ for (a) ρ = 10
and (b) ρ = 1 composites.

variation of M/N with system size, N on log-log scale for
ρ = 10, and ρ = 1 are shown in Fig. 8. Again, the points
denote the calculated values of M/N , and the lines are ob-
tained by linear least-squares fitting the points. For ρ = 10, a
decreasing trend of M/N with N can be seen in Fig. 8(a) for
2.05 � γ � 3, which indicates the brittle failure mode. The
M/N corresponding to γ = 2, however, shows an increasing
trend with N , which again points to the tough mode. The
tough-brittle transition must therefore occur over the interval
γ ∈ [2, 2.05]. In Fig. 8(b), for ρ = 1, the γ = 2.1 and 2.05
lines are nearly horizontal. The scatter of the data points
about their least-squares lines is also significant. Therefore,
the fracture mode in these cases is ambiguous. For γ = 2,
however, a positive slope, and therefore the tough mode is
clearly indicated.

Table I summarizes the γ ∗ range over which the tough-
brittle transition is predicted by cluster analysis, by the
Curtin [20] model, and by the tight cluster growth model.
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FIG. 8. The scaling of the fraction of the tight cluster growth
model bundle size, M/N , with system size N for various γ for
(a) ρ = 10 and (b) ρ = 1 composites.

Regardless of the method, the γ ∗ range is wider for the smaller
Weibull exponent, ρ = 1, than for ρ = 10. Also, for fixed
ρ, the latter two methods, based on analyzing the strength
distribution provide tighter bounds on the transitional γ ∗. It
seems plausible that the γ ∗ ranges can be further narrowed
if fracture simulations could be performed on even larger

TABLE I. Ranges of the power-law load-sharing exponent, γ ∗,
over which the tough-brittle transition is predicted to occur by
the three approaches. ρ denotes the Weibull exponent of the fiber
strengths.

ρ = 10 ρ = 1

Cluster analysis γ ∗ ∈ [2.0, 2.1] γ ∗ ∈ [2.0, 2.5]
Curtin [20] model γ ∗ ∈ [2.0, 2.1] γ ∗ ∈ [2.0, 2.2]
Tight cluster growth model γ ∗ ∈ [2.00, 2.05] γ ∗ ∈ [2.0, 2.2]
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FIG. 9. Empirical strength distributions obtained from Monte Carlo simulations with load-sharing exponent γ ∈ {0, 1, 1.5, 2}. The first
row corresponds to ρ = 10 and the second row to ρ = 1. The first and second columns correspond to system sizes N = 214 and 220,
respectively.

system sizes, N > 220. It is speculated that for large-enough
N , γ ∗ ↓ 2, for all Weibull exponents ρ.

D. The load-sharing regime 0 � γ � 2

It was noted in connection with Eq. (4) that the regime
0 � γ � 2 cannot be realized in physical elastic composites,
because the load redistribution in this regime also depends on
system size, N . In this regime, the increasing trend of Nc/N ↑
1 and M/N ↑ 1 with system size N , observed for γ = 2 in
Figs. 7 and 8 can be expected to hold. Thus, for sufficiently
large N , the strength distributions of these composites will be
given by Eq. (7), derived for ELS bundles [13].

The convergence of the 0 < γ � 2 empirical strength dis-
tributions toward the γ = 0 ELS distribution can be directly
demonstrated. Figure 9 shows these distributions for N ∈
{214, 220} composites with γ ∈ {0, 1, 1.5, 2}. The first row
corresponds to ρ = 10 and the second row to ρ = 1. The
first column corresponds to the small system size N = 214,
while the second corresponds to the larger size N = 220. The
variability of the composite strengths in the second column is
clearly much smaller than that in the first column. Empirical
distributions corresponding to all the four γ are seen distinctly
in the first column. In the second column, corresponding to the
larger system size, the empirical distributions corresponding

to γ = 0, 1, and 1.5 are observed to overlap. The distribution
corresponding to γ = 2 is also to seen to approach that for
γ = 0 with increasing N but not to overlap.

IV. CONCLUSION

The influence of load sharing on the fracture mode of
unidirectional composites in a transverse plane by fiber break-
age has been studied through Monte Carlo fracture simu-
lations over a range of load-sharing exponent, γ , and fiber
strength variability. Interactions, which ensure traction-free
fiber breaks, are accounted for in the fracture simulations.
The pattern of fiber breaks just before catastrophic crack
propagation begins has been interpreted using cluster analysis.
The empirical strength distributions given by the simulations
have been interpreted using two stochastic models of compos-
ite failure, viz., the Curtin [20] model, and the tight cluster
growth model [9,22,30]. All the approaches point to a tough-
brittle transition near γ = 2. On the one hand, for γ � 2,
brittle fracture ensues from a critical cluster of fiber breaks,
which becomes increasingly localized with increasing system
size. On the other hand, for γ � 2, the size of the critical
cluster grows faster than the system size, which will result
in the tough fracture mode for sufficiently large systems.
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