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Packing of particles in confined environments is a common problem in multiple fields. Here, based on the two-
dimensional Hertzian particle model, we study the packing of deformable spherical particles under compression
and reveal the crucial role of stress as an ordering field in regulating particle arrangement. Specifically, under
increasing compression, the squeezed particles spontaneously organize into regular packings in the sequence
of triangular and square lattices, pentagonal tessellation, and the reentrant triangular lattice. The rich ordered
patterns and complex structures revealed in this work suggest a fruitful organizational strategy based on the
interplay of external stress and intrinsic elastic instability of particle arrays.
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I. INTRODUCTION

Achieving order in the packing of elementary constituents
in confined environments is an important problem arising in
the study of simple liquids [1-3], amorphous solids [4-6],
space tessellation [7-10], and especially in extensive soft-
matter systems such as the packing of granular materi-
als [11,12] and the self-assembly of colloids [13,14], fila-
ments [15,16], and other supramolecular structures [17,18].
To achieve ordered packing, several strategies have been
proposed based on patterned substrates [19,20], designed
particle-particle interaction [14,21,22], chemical decoration
of particles [23,24], and electromagnetic fields [25,26].
The resulting ordered patterns lay the foundation for the
fabrication of new nano- and microstructured materials and
provide broad possibilities of functionalization [27-29]. Es-
pecially, ordered two-dimensional (2D) arrays of particles on
the surface lead to unique and intriguing properties [13,30-
32]. Recent studies on the phase behavior of 2D soft-particle
systems show the crucial role of volume fraction on ordered
packing [33-35]. These studies inspire us to explore the role
of stress in the packing of geometrically confined deformable
particles. The imposed stress naturally reduces the free space
available to particles, and it also introduces subtle kinetic
effects on the microscopic elastic behavior of particles. These
combined effects of stress may lead to an elasticity-based
organizational principle for particle packing.

The goal of this work is to explore the role of stress as an
ordering field in regulating particle arrangement. Our model
consists of a collection of frictionless, spherical Hertzian par-
ticles confined in a two-dimensional box of tunable size. The
soft-particle model enables the variation of volume fraction
beyond the hard-sphere limit, and soft particles also serve as
artificial atoms to reveal fundamental processes in materials
design across many length scales [33,36]. This model system
allows us to clarify a series of questions: How does order arise
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from randomness under imposed stress? What kinds of order
could be realized in a system of elastic particles? What is the
microscopic behavior of defects in response to the external
stress? To address these inquiries, we perform numerical
experiments that allow us to track the detailed microscopic
process in the movement of particles. The data are subject
to a combined geometric, statistical, and force analysis for
extracting the essential physics. Here, we emphasize that, in
this work, we focus on 2D packing. The three-dimensional
(3D) packing problem is fundamentally different from the 2D
case due to the intrinsic geometric frustrations [37,38].

In this work, we reveal the scenario of how the collection
of deformable particles adapt their relative positions to the
squeezed space under compression. It is found that the highly
heterogeneous local stress eliminates the randomness in the
initial particle configuration, and guides the particles to form
regular crystal lattices and quasicrystal structures. Specifi-
cally, the ordering of loosely packed particles is dominated
by the entropic effect, and that of the squeezed particles
under larger compression is determined by the minimization
of elastic energy. We highlight the crucial role of the emergent
grain-boundary structure as an energy absorber to stabilize
the triangular lattice, and the formation of a square lattice
resulting from a series of local elastic instability events. Under
larger compression, we reveal the tessellation of deformable
pentagons and the reentrant behavior. We also discuss the
issue of reversibility and the kinetic effect of stress in facil-
itating ordered packing. This work illustrates the role of stress
as an ordering field that may be exploited in various contexts
of soft-matter packing.

II. MODEL AND METHOD

The model system consists of N identical elastic particles
of mass mgy confined in a two-dimensional box of Ly x L.
The initial particle configuration is generated by random disk
packing that naturally creates inhomogeneity in the density
and stress distribution [39]. In the initial random disk packing,
the particles of radius R are not in contact. To promote
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FIG. 1. Schematic plot of the model system. The circles repre-
sent elastic particles of uniform size. The initial state is generated by
random packing of particles. In the zoomed-in plot, the colored dots
represent different kinds of disclinations, and the red lines represent
the contact force.

efficiency of simulation, we increase the radius of the particles
in the initial state from R to Ry. The volume fraction and
stress are thus controllable by specifying the radius R, of the
expanded particles. A typical random initial particle config-
uration is presented in Fig. 1. In our numerical experiment,
the four walls of the box are simultaneously pushed inward,
and the side length becomes Ly — AL in the final state. The
number density of the particles is p = N/(Lg — AL)?. In each
step of the compression process, L is reduced by 5L, which is
set to be sufficiently small to ensure that the system evolves
quasistatically.

The mechanical relaxation of the stressed system is gov-
erned by the particle-particle and particle-wall interactions,
both of which are modeled by the Hertzian potential [36].
Specifically, the particle-particle interaction potential is

2Ry 3
S
0, r > 2Ry,

where r is the distance between the particle centers, and Ry
is the radius of the particles. D = 3(1 — v?)/(2E), where
E is the Young’s modulus and v is the Poisson ratio.
The interaction potential between the particle and the rigid
wall is

SRRy -3,

vz <R
VPW(F)Z{SD TR

, r > Ry,

where r is the distance from the center of the particle to the
wall, and D' = D/2.

With a given box size, we perform the steepest descent
method to find the lowest-energy state which corresponds to
the optimal packing of the particles. Specifically, the parti-
cle configuration is continuously updated by simultaneously
moving all of the particles along the direction of the force.
The displacement is proportional to the magnitude of the
force. The typical step size of the particle that is subject to
the maximum force is s = 1073R. Evolution of the system
is terminated when the slope of the energy curve becomes

(a) AL/Ly=0 (b) AL/Ly=0.05

(¢) AL/Ly=0.08

(d) AL/Ly=0.09

FIG. 2. Entropic ordering of random particle configuration into
a triangular lattice. All the configurations are in the lowest-energy
state. Each dot represents a particle. The red and blue dots are the
five- and sevenfold disclinations. (a)—(c) The total energy £ = 0,
and (d) E = 1.12 x 1079, which corresponds to a negligibly small
overlap of particles. The compression rate §L = 0.1, and (a) p =
0.23, (b) 0.25, (c) 0.26, and (d) 0.27. The mean lattice spacing
is (a) 2.25, (b) 2.14, (c) 2.07, and (d) 2.05. N = 1600. L, = 84.
R=0.7.

sufficiently flat. Typically, termination occurs if the reduction
rate of the energy is less than 0.1% in ten thousand steps. In
this work, we set Rp = 1, my = 1, and D = 1. The units of
length, time, and mass are thus Ry, /moD/Ry, and my. By
denoting 7y = +/moD/Ry, the unit of force is myRy/ tg.

We resort to the combination of geometric, statistical, and
force analyses on the lowest-energy particle configurations.
Specifically, by Delaunay triangulation, one can identify dif-
ferent kinds of disclinations, which are elementary topological
defects in a two-dimensional triangular lattice [40]. An n-
fold disclination refers to a vertex whose coordination num-
ber n deviates from six. The crystallization process can be
well characterized by tracking the evolution of the emergent
disclinations. In the zoomed-in plot in Fig. 1, we show the
fivefold (red dots) and sevenfold (blue dots) disclinations.
The red lines between the dots represent the contact force. The
magnitude of the force is indicated by the length of the line.
We also analyze the diffraction pattern of the particle config-
urations calculated from the structure function [41]: S(§) =
(n(g)n(—G)). The particle density n(¥) =Y 8 — %),
and n(g) = YN, exp(—ig - %).

III. RESULTS AND DISCUSSION

Figure 2 shows the growing region of triangular lat-
tice as the system is slightly compressed. The particles are
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FIG. 3. Triangular-to-square lattice transformation under compression. (a)—(d) Lowest-energy particle configurations as the compression
proceeds. In panels (a) and (b), the red and blue dots are the five- and sevenfold disclinations. The red lines represent the contact force. The
grain boundaries are indicated by the long, colored curves. In panel (b), we also show the drift of the grain boundary with the compression
of the system. In panel (c), the shadowed green domains indicate the square lattice in the background of the triangular lattice. (a) p = 0.31,
(b) 0.57, (c) 0.58, and (d) 0.69. The mean lattice spacing is (a) 1.94, (b) 1.42, (c) 1.39, and (d) 1.29. (e)—(h) Characterization of the lattice
transformation. (e) Faster reduction of the grain-boundary width (red curve with squares) in comparison with that of the lattice spacing (black
curve with circles). (f) Quantitative characterization of the bond-orientational order of the crystal lattice by the order parameter &, (see main
text for more information). The three sets of red and black curves are obtained at the compression rates of L = 0.05 (circles), L = 0.1
(triangles), and §L = 0.2 (squares). (g), (h) Splitting of the peak in the distribution profile of the contact force as the lattice transformation

occurs. N = 400. Ly =42. R =0.7.

represented by dots, and the disclinations are indicated by
different colors. The red and blue dots are the five- and
sevenfold disclinations. Figures 2(a)-2(c) show the gradually
established order in the arrangement of particles. Remarkably,
the particles are free of overlap in this process, which indicates
that spherical particles in a sufficiently crowded environment
have the strong tendency to spontaneously form a triangular
lattice. In Fig. 2(d), the total energy is on the order of 1076,
which corresponds to an average overlap of particles as small
as about 0.01%R,. Therefore, the initial crystallization of par-
ticles is driven by entropy instead of energy, and it is known
as entropic ordering [42]. The microscopic dynamics of this
ordering process involves a series of defect events including
disclination, annihilation, and dislocation glide [40].

Further compressing the system leads to the transition from
triangular to square lattice. Scrutiny of the typical particle
configurations presented in Figs. 3(a) and 3(b) reveals the
crucial role of the grain-boundary structure in resisting the
increasing external compression and preserving the triangular
lattice. A grain boundary in a two-dimensional lattice is a
linear interface where crystallites of distinct orientations meet.
Figure 3(a) shows that, in the squeezed elastic particle system,
the grain boundary as indicated by the blue curve consists
of a series of empty pentagons. Under compression, these
pentagonal voids shrink much faster than the lattice spacing in
the crystallized regions. The quantitative result is presented in
Fig. 3(e). It indicates that the grain-boundary structure plays a

dominant role in absorbing the volume reduced by the external
compression. As the grain-boundary width shrinks, we also
observe the drift of the entire grain boundary towards the left
boundary, as shown in Fig. 3(b); the light blue curve indicates
the relative location of the grain boundary in Fig. 3(a). Here,
the drift of the grain-boundary structure is purely driven by
external stress. Grain-boundary migration as driven by the
competition between thermal energy and the tendency to
minimize the grain-boundary curvature has been discussed in
Ref. [43].

When the grain-boundary width is reduced to the size
of the lattice spacing, a slight compression from AL/Ly =
0.37to AL/Ly = 0.38 triggers the triangular-to-square lattice
transition [see Figs. 3(b) and 3(c)]. The lattice transformation
is initiated in a few random domains that are colored in green
in Fig. 3(c). Note that all the particle configurations in Fig. 3
have reached the lowest-energy state. The coexistence of the
square and triangular lattices in Fig. 3(c) is a mechanically
stable state. Further compressing the system leads to the ex-
tension of the square lattice to the entire system [see Fig. 3(d)].

To quantitatively characterize the triangular-to-square lat-
tice transition, we introduce the p-fold bond-orientational
order parameter &, defined as [40]

np

=2 2| Y exn indy) (M

n
=1 |0 o1
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FIG. 4. Triangular-to-square lattice transformation of a circular system under quasistatic compression. (a) Variation of the bond-
orientational order in the lattice transformation (see main text for more information). (b)—(d) Typical snapshots of lowest-energy configurations
as the compression proceeds. The colored dots represent different kinds of disclinations, and the red lines represent the contact force. ry is the
initial radius of the circular boundary. ry = 20.8. (b) The grain boundary in the triangular lattice is indicated by the blue curve. (d) The square
lattice is colored green. The compression rate 6 = 0.1. (b) p = 0.96, (c) 1.18, and (d) 2.17. The mean lattice spacing is (b) 1.94, (c) 1.75, and

(d) 1.29. N = 400.

where n,, is the number of neighbors surrounding particle i,
6;j is the angle between the line connecting particles i and j
and some chosen reference line, and N is the total number of
particles. The bond order in triangular and square lattices can
be characterized by ®4 and &g, respectively. The dependence
of &4 and ®g on AL/Ly is presented in Fig. 3(f). With the
increase of compression, the sixfold bond-orientational order
emerges when AL/Ly > 0.1, and the triangular-to-square lat-
tice transition occurs at AL/Ly ~ 0.4. Simulations of systems
with N ranging from 100 to 2000 show that the critical values
for the appearance of the triangular lattice and the lattice
transformation are independent of the number of particles.
A further inquiry is if the formation of the square lattice
is due to the square shape of the boundary. To address this
question, we simulate systems with a circular boundary and
also find a triangular-to-square lattice transition, as well as the
coexistence of triangular and square lattices as a mechanically
stable configuration. The critical value for the triangular-to-
square transition in the circular system is identical to that of
the square system, as presented in Fig. 4.

In the triangular-to-square lattice transition, it is found
that the distribution of the contact force f is qualitatively
changed. f is the magnitude of the force between two par-
ticles in contact. Statistical distributions of the magnitude of
the contact force are plotted in Figs. 3(g) and 3(h) for the
triangular and square lattices, respectively. We see that the
lattice transformation leads to the split of the peak structure
in Fig. 3(g). The separation of the contact-force distribution is
also seen in Figs. 3(b) and 3(d), where the length of the red
lines represent the magnitude of the contact force. The short
lines at the center of each square element in Fig. 3(d) corre-
spond to the peak at the lower end of the force distribution in
Fig. 3(h).

Here, we mention that the fabrication of the square
lattice generally involves anisotropic interactions. Vari-
ous sophisticated schemes have been proposed to create
anisotropic interactions, including the design of particle shape
and chemistry [23,24,44], application of electro-magnetic
fields [25], and capillary interactions [14,22]. In our system,
the triangular-to-square lattice transformation is driven by the
microscopic elastic instability of the squeezed particles under

enhanced stress. This elasticity-based scheme may provide a
general strategy in the broad contexts of soft-matter packing
like directed self-assembly and colloidal crystallization.

The triangular-to-square lattice transition can be under-
stood by the following energetic calculation: Consider a col-
lection of N particles in triangular and square lattices in a
square box of side length L. A geometric argument shows
that the total energies of these two systems are E3 = 3Nej,
and E4 = 2Ney. €3 and €4 are the energy costs for a pair of
particles in contact in the triangular and square lattices. When
L < L., E4(L) becomes smaller than E3(L); the system is thus
dominated by the energetically favored square lattice. The
critical value L. is derived as

LC = ZCOWRQ, (2)

where ¢y = [(3/2)*° — 1]/(108"/2° — 1) ~ 0.67, and R, is
the radius of the particle. For N = 400, we have L, ~ 26.7.
Simulations at varying compression rate (from §L = 0.05R,
to L = 0.2R in each step) and initial particle radius R (from
R =0.5to R =0.7) return a common critical value of L. ~
26.0. These two critical values from numerical experiment
and theoretical analysis are very close, and it shall be related
to the friction-free feature of the particles that can facilitate
the lattice transformation.

As the compression proceeds, the square lattice is trans-
formed into the pattern shown in Fig. 5(a). We observe
the tessellation of space by the three kinds of elementary
shapes: squares, triangles, and pentagons. The zoomed-in
plot in Fig. 5(b) shows that each pentagon is character-
ized by five long red lines connecting the five particles
and five short lines inside the pentagon. The short lines
represent the contact of a particle with its next-nearest neigh-
bors around the pentagon. We emphasize that the introduction
of contact force lines allows us to unambiguously identify
the pentagonal units. Comparison of the straight contact force
lines in the rectangular lattice in Fig. 3(d) and the zigzag
force lines in Fig. 5(a) shows that the pentagonal structures
originate from the local elastic instability characterized by
the buckling of the contact force lines. Figure 5(c) shows
the packing of the emergent pentagonal units. The black dots
represent real particles. Each pentad of particles is represented
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FIG. 5. Formation of quasicrystal structure as the compression proceeds. (a) Tessellation of space by triangles, squares (both enclosed by
blue lines), and nonregular pentagons. p = 0.84. The mean lattice spacing is 1.2. (b) Zoomed-in plot of the region in the red circle in panel
(a). The red lines represent the contact force. (c) Delaunay triangulation of the pentagons in the red square box in panel (a). The black dots
represent the real particles. (d), (e) Diffraction patterns of the pentagonal tessellation in the systems of N = 400 and N = 900 show the tenfold
rotational symmetry, as indicated by the green cross marks. 6L = 0.1. R = 0.7.

by a pentagon. Delaunay triangulation reveals the underlying
topological structure. The red and blue pentagons indicate the
five- and sevenfold disclinations in the triangulated pentagons.
These pentagonal objects enrich the scenario of regular pack-
ing and 2D crystallography [30,34,45,46].

The tessellation of a continuous flat region by pentagons
is remarkable. As a geometric restriction, regular pentagonal
tiling on the Euclidean plane is impossible. Regular pen-
tagons can tile the hyperbolic plane and the sphere though
Ref. [47]. Here, the key to achieving pentagonal tessellation
is the deformability of the pentagons due to the softness of
the particles [8]. The tessellation of deformable pentagons
implies an induced non-Euclidean geometric structure in the
particle array under high compression [48—50]. The nonreg-
ular pentagonal tessellation realized in soft-particle arrays
explains the extensive existence of quasicrystals in soft-matter
systems [34,35,51-53]. In our system, we reveal the tenfold
rotational symmetry in the diffraction patterns as a character-
istic of a quasicrystal, which is indicated by the ten green cross
marks in Figs. 5(d) and 5(e). It is in contrast with the eight-
and twelvefold rotational symmetries of quasicrystals found
in unconstrained soft-particle systems in Ref. [35].

The distinct rotational symmetries of the quasicrystal struc-
tures reported in Ref. [35] and that in our work suggest
the subtle kinetic effect of external stress on the packing of
soft particles, which is beyond merely changing the particle
density. We notice that, in our system, crystallization is initi-
ated at the boundary as the compression proceeds. To further
illustrate the kinetic effect of the external stress, we examine
the mechanical relaxation of randomly distributed particles
in boxes of given sizes and compare the resulting lowest-
energy configurations with those obtained via the compression
procedure. In Fig. 6, the upper panels show the lowest-energy
configurations in a single gradual compression process. The
lower panels show the corresponding lowest-energy config-
urations upon the same amount of compression, but each of
them is via the independent relaxation of random particle
distribution. Comparison of these two kinds of cases clearly
shows that imposing compression can significantly facilitate
ordered packing, especially for the systems with relatively
high particle density.

Under even larger compression, it is observed that the
pentagonal tessellation becomes unstable, and the system
returns to the triangular lattice, as shown in Fig. 7. This
reentrant behavior can be attributed to the effect of density
variation under compression [34,54]. Scattered dislocational
(green) and disclinational (purple) pentagonal vacancies are
observed in the triangular lattice. Pentagonal vacancies of
distinct topological nature have been found in Lennard-Jones
crystals confined on a sphere in our previous work [55].
Statistical distribution of the contact force in the configuration
of Fig. 7(a) is presented in Fig. 7(b). The number of peaks
increases from two [see Fig. 3(h)] to three. Furthermore, the
peaks experience rightward drift under enhanced compres-
sion. The close connection of contact force distribution and
particle configuration suggests the contact-force analysis as
a useful tool for revealing important structure information in
deformable particle systems. Here, we note that high compres-
sion may be realized in a series of deformable mesoparticle
systems, such as ultrasoft colloids and hydrogel beads [34,56].
The Hertzian model, which is based on the linear continuum
elasticity theory, may not quantitatively describe the relevant
soft interactions [33,34,57]. The strong repulsion between
two close particles is qualitatively captured by the Hertzian
potential. As such, the numerical results in Figs. 5 and 7
present a plausible scenario of ordered packing of elastic
particles under high compression.

We finally briefly discuss the robustness of the
compression-driven ordered packing, the reversibility issue,
and the role of dimension on particle packing. In our
preceding discussion, we show that external compression
eliminates the randomness in the initial particle configuration
and pushes the system to develop a series of ordered
structures from triangular and square lattices [see Fig. 3] to
pentagonal tessellation [see Fig. 5], and finally back to the
triangular lattice [see Fig. 7]. In this process, as shown in
Fig. 8, the system energy increases with AL at a faster rate
than the quadratic law, which indicates an enhanced rigidity
of the system. Systematic simulations at varying compression
rate (6L ranges from 0.05 to 0.2) and R-controlled initial
stress level (R ranges from 0.5 to 0.8) reveal that the particle
configuration always evolves by the same sequence. By
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FIG. 6. Imposing compression significantly improves ordered packing of elastic particles, especially in the regime of high particle density.
(upper panels) The evolution is driven by a single gradual compression process. The system is initially free of stress at L = Ly = 84. 5L = 0.1.
(lower panels) Lowest-energy configurations via relaxation of randomly distributed particles in the boxes of given sizes. The colored dots
represent different kinds of disclinations, and the red lines represent the contact force. N = 1600.

reversing the compression process, could the system exhibit
any memory effect? To address this question, we start from
the triangular lattice under high compression and gradually
enlarge the box size. It turns out that the sequence of order
is reversed. At the end of the cycle of compression and
expansion, the initial randomness in the packing of particles
is eliminated, and the system terminates at the stress-free
triangular lattice. Our simulations imply that two-dimensional
monodisperse elastic particles have the natural tendency to
form ordered phases. This tendency can be attributed to
the lack of geometrical frustration; the local dense packing
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FIG. 7. Reentrant configurational transition to triangular lattice
at larger compression. (a) The triangular lattice with scattered dis-
locational (green) and disclinational (purple) pentagonal vacancies.
The red lines represent the contact force. (b) Further splitting of
the peak in the distribution profile of the contact force as the lattice
transformation occurs [in comparison with Figs. 3(g) and 3(h)]. p =
0.98. The mean lattice spacing is 1.1. N = 400. 6L = 0.1. L, = 42.
R=0.7.

is compatible with global dense packing in the form of a
triangular lattice [38]. In contrast, a three-dimensional system
is intrinsically geometrically frustrated, because the preferred
local icosahedral structure cannot be extended to the whole
flat space [37,38].

IV. CONCLUSION

In summary, by the Hertzian particle model, we have
illustrated the crucial role of stress in organizing particles
from random to ordered states in 2D packings. Specifically,
we have revealed regular packings from triangular and square
lattices to the remarkable quasicrystal structure, and to the
reentrant triangular lattice under increasing compression. We
have also identified the grain-boundary structure as an energy
absorber to stabilize the triangular lattice, and characterized

250
200

" 150
100
50

5 10 15 20
AL

FIG. 8. Plot of total energy versus the amount of compression
AL. E is the energy of the relaxed particle configuration at a given
box size L = Ly — AL. Ly = 42. The red dashed curve is a quadratic
fitting. SL = 0.1. N =400.R = 0.7.
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the regular packing at high compression in terms of pentag-
onal tessellation. The physical origin of ordered packing is
essentially from the interplay of external stress and intrinsic
elastic instability of the particle array. In combination with
the broad possibility of interaction potential design in soft-
matter systems, exploiting the role of stress as an ordering
field may provide a new dimension for realizing ordered
packings in various 2D cases like self-assembly and colloidal
crystallization on interfaces. Due to the intrinsic geometric
frustration in 3D systems that is absent in planar 2D systems,

it is of interest to further explore the role of stress in regulating
3D packings that may lead to new physics not seen in 2D
systems.
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