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Giant amplification of small perturbations in frictional amorphous solids
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Catastrophic events in nature can be often triggered by small perturbations, with “remote triggering” of
earthquakes being an important example. Here we present a mechanism for the giant amplification of small
perturbations that is expected to be generic in systems whose dynamics is not derivable from a Hamiltonian.
We offer a general discussion of the typical instabilities involved (being oscillatory with an exponential increase
of noise) and examine in detail the normal forms that determine the relevant dynamics. The high sensitivity
to external perturbations is explained for systems with and without dissipation. Numerical examples are
provided using the dynamics of frictional granular matter. Finally, we point out the relationship of the presently
discussed phenomenon to the highly topical issue of “exceptional points” in quantum models with non-Hermitian
Hamiltonians.
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I. INTRODUCTION

There is growing evidence that remote earthquakes can
trigger subsequent large earthquakes with epicenters far away
from the original one, occasionally even far around the
world [1]. While it is obvious that seismic waves propagate
in the earth crust, intense ones are typically highly damped,
and only long wavelength perturbations, which are relatively
weak, can reach long distances. It is then natural to ask, what
might be the mechanism for the amplification of weak pertur-
bations that could be behind this “remote triggering” [2].

The aim of this paper is to introduce and discuss a generic
mechanism for the giant amplification of small perturba-
tions in systems whose dynamics is not derivable from a
Hamiltonian. The mechanism was discovered recently in the
context of frictional compressed granular matter [3–6], but
its relevance appears more general as is discussed below.
We therefore introduce the issue in Sec. II in a very general
setting, touching on fundamental notions of dynamics that are
not derivable from a Hamiltonian. We distinguish between
systems in which the forces depend on velocities and those
in which they do not. In the former, the generic oscillatory
instability is the Poincare-Andronov-Hopf (PAH) bifurca-
tion, which involves two modes whose eigenvalues cross the
imaginary axis [7]. In the latter, the generic mechanism for
oscillatory instability involves four modes with two pairs of
complex conjugate eigenvalues. This second instability is the
one that interests us here, and we show that before its onset
the system is highly sensitive to generic external perturbation.
Importantly, the presence of dissipation can turn the inter-
esting instability into a standard PAH bifurcation, and it is
therefore important to assess the role of dissipation, as is done
in Sub. II C. In Sec. III we present the normal forms that allow
us to compute how the amplification of small noise depends on
the frequency of the external noise and on the distance from
the instability. We show that without damping the effects of

external noise is giant, diverging as we approach the instabil-
ity. With small damping the amplification is still there, and
we compute the maximal amplification as a function of the
damping strength. In Sec. IV we turn to numerical examples.
We demonstrate the amplification mechanism in systems of
frictional disks, with and without dissipation. The predictions
of the normal form calculations are tested in details and are
vindicated. The last section offers a summary, conclusions,
and some comments on the road ahead.

II. INSTABILITIES IN SYSTEMS WITHOUT
A HAMILTONIAN

A. General setting

Consider the very general setting of a system whose N de-
grees of freedom q̄ ≡ {q1 · · · qn · · · qN } obey Newton’s equa-
tions of motion, but in which the forces are not derivable from
a Hamiltonian. These degrees of freedom can be positions
of centers of mass of granules but also angular degrees of
freedom or whatever is necessary to characterize the state
of a given system. Generically we expect in such cases that
it would be possible to separate the forces derivable from a
given potential energy, from those forces that are not. There
can be more than one reason why the equations of motion
are not derivable from a Hamiltonian. One common reason
is the existence of forces that depend on the velocities ˙̄q
of the degrees of freedom, with the very common example
of dissipative terms −γ ˙̄q. Other reasons abound, as will be
exemplified below. So quite generally we will consider the
equation of motion for the nth degree of freedom,

mnq̈n + ∂V (q̄)

∂qn
= F np

n (q̄, ˙̄q). (1)

Here V (q̄) is the potential energy, mn are the elements
of the mass matrix (including if necessary moments of
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inertia, etc.), and F̄ np(q̄, ˙̄q) is the vector of nonpotential forces.
We assume that the system possesses a state of equilibrium
q̄ = Q̄ = const that should satisfy:

∂V (q̄)

∂qn

∣∣∣∣
q̄=Q̄

= F np
n (Q̄, 0). (2)

The stability of this equilibrium point can be explored in the
state space of the system. Rewriting Eq. (1) in terms of the
state space, we have

M ˙̄S =
[

p̄

− ∂V (q̄)
∂ q̄ + f̄ np(q̄, p̄)

]
,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1 0 0

0
. . . 0

0 0 mN

0

0

1 0 0

0
. . . 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

We use the following notations:

S̄ =
(

q̄
p̄

)
; f̄ np(q̄, p̄) = F̄ np(q̄, m−1 p̄)

m−1 =

⎛
⎜⎝

m−1
1 0

. . .
0 m−1

N

⎞
⎟⎠. (4)

The equilibrium value of the state vector is S̄0 = (Q̄
0 ). Perturb-

ing it as S̄ = S̄0 + δ̄, one obtains:

M ˙̄δ = Dδ̄ + O(|δ̄|2); D =
(

0 IN×N

−H + ∂ f̄ np

∂ q̄
∂ f̄ np

∂ p̄

)
,

H =
∥∥∥∥ ∂2V

∂qn∂qm

∥∥∥∥. (5)

The stability of the state of equilibrium is determined by the
solutions of the following eigenvalue problem:

det(D − Mλ) = 0. (6)

The state of equilibrium is stable as long as all the eigenval-
ues λ have negative real parts, Reλ < 0. The only apparent
generic property of matrix D is that it has real entries. There-
fore, the loss of stability occurs by two generic scenarios:

(i) One of the eigenvalues passes through zero
(ii) A complex conjugate pair passes through the imagi-

nary axis; this is the common PAH bifurcation.
As stated, these scenarios appear when some forces are not

derivable from a Hamiltonian. To proceed, we discuss the two
cases separately. In the first the forces do not depend explicitly
on the velocities ˙̄q; then the effect of adding the dependence
on the velocities will be explored.

B. Nonpotential forces that do not depend on velocities

When the nonpotential forces are independent of the veloc-
ities, i.e., the nonpotential forces depend only on coordinates,

the stability analysis can be performed in configuration space.
Rewriting Eq. (1) in a form

m ¨̄q + ∂V (q̄)

∂ q̄
= f̄ np(q̄), (7)

we introduce the perturbation q̄ = Q̄ + �̄ and obtain the
following linearized problem:

m ¨̄� = J�̄ + O(|�̄|2); J = −H + ∂ f̄ np

∂ q̄
. (8)

Setting �̄ = �̄0 exp(iωt ), one finally arrives to the following
eigenvalue problem:

det(J − mλ) = 0, λ= − ω2. (9)

The matrix J is real but generically not necessarily symmet-
ric. Without the nonpotential forces this matrix becomes the
classical Hessian matrix which is necessarily symmetric. The
equilibrium is stable if all eigenvalues λ are real and negative.
Then, one identifies two possible generic bifurcation scenarios
for the loss of stability in this case:

(i) a single real eigenvalue passes through zero
(ii) a pair of negative eigenvalues collide, with the forma-

tion of a complex conjugate pair.
It should be stressed that the second scenario substantially

differs from the PAH bifurcation, since it requires a minimum
of four-dimensional state space. We will show below that this
bifurcation has huge implications for the our central issue
of the giant noise amplification. The reader should note that
these results are generic, i.e., they do not depend on the
nature of particular models under consideration. In any such
case we will have bifurcations with nonzero frequency at the
bifurcation point that will provide the required sensitivity to
small perturbations. On the other hand, the need for four si-
multaneous modes makes this bifurcation “less generic” than
the PAH bifurcation which requires the involvement of only
two modes. We explain why this more sensitive bifurcation is
nevertheless highly relevant for noise sensitivity in the next
subsection.

C. The effects of velocity dependence

The assumption of complete velocity independence is too
restrictive for many realistic macroscopic systems, since some
viscous damping is commonly present. On first sight, the
addition of any amount of viscous damping brings the Eq. (8)
back to the generic setting Eq. (1), with the “more generic”
set of bifurcations. However, if the damping is relatively small
and it is possible to consider it as a perturbation, one can still
have important consequences of the collision of the pair of
negative eigenvalues in the unperturbed system Eq. (8).

To illustrate this point, we consider the following generic
linear part of the normal form for two degrees of freedom, first
without damping:

q̈1 + a11q1 + a12q2 = 0

q̈2 + a21q1 + a22q2 = 0. (10)

Assuming that a11 and a22 are both positive, we can rescale
time to choose a11 = 1 and then a22 will be denoted �2. Then
the scale of q2 can be modified to adjust a12 = 1. Finally, a21
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FIG. 1. (a) Evolution of eigenvalues in the case of zero damping.
The arrows denote the growth of ε. (b) Evolution of eigenvalues
in the case of small, but nonzero damping. The arrows denote the
growth of ε.

will be denoted as shown below:

q̈1 + q1 + q2 = 0

q̈2 −
[
ε + 1

4
(1 − �2)

2
]

q1 + �2q2 = 0. (11)

Adding now the dissipative terms we obtain, finally,

q̈1 + q1 + q2 + γ11q̇1 + γ12q̇2 = 0,

q̈2 + �2q2 −
[
ε + 1

4
(1 − �2)

2
]

q1

+ γ21q̇1 + γ22q̇2 = 0. (12)

As before, we look for a solution in the form qj =
q j0 exp(λt ), j = 1, 2. It is easy to check that in the case of
zero damping γkl = 0, for ε = 0 one obtains a collision of

the eigenvalues λ1,2 = −λ3,4 = i
√

1+�2

2 . The evolution of the
eigenvalues with the growth of ε in this case is schematically
presented in Fig. 1(a) (for an analytic calculation of the
trajectory of eigenvalues see Ref. [3]). This is the ideal case
of the clean bifurcation involving four modes. The inclusion
of a small damping changes the flow of the eigenvalues, and
they do not collide anymore. The flow of the eigenvalues
with ε when damping is included is depicted in Fig. 1(b).
Strictly speaking, one observes the classical PAH bifurcation,

with only two eigenvalues crossing the imaginary axis, as
expected in the “more generic” system. However, the other
pair of eigenvalues that passes nearby has substantial effect
on the dynamics, especially on the sensitivity of the system to
external perturbations, as it will be demonstrated below. The
normal form and the sensitivity to small external perturbations
has to be studied with the effect of a small damping as is done
explicitly below.

III. NORMAL FORMS AND SENSITIVITY
TO SMALL PERTURBATIONS

In this section we present solutions of the normal form
equations with external perturbations. The main result of this
section is that there are two mechanisms for enhanced sensi-
tivity to external small broadband noise. The first is the usual
resonance which is obtained when the external noise includes
a frequency which is very close to the natural frequency
of the system mode that is going to become unstable. This
resonance is not of a particular interest since it requires an
excitation in the direction of the critical eigenvector. The other
more interesting mechanism is induced by perturbations that
are orthogonal to the critical eigenvectors (which become
identical at the instability). It is then sufficient to be in
a plane formed by the two colliding eigenvectors, leading
to much higher genericity. In addition, in the second case
the amplification of the noise diverges at criticality in the
dissipation-less limit (with any frequency of perturbation) and
it remains anomalously large also in the presence of small
dissipation. We will first study the undamped case and then
add the dissipation.

A. Undamped case

To develop a normal form for studying the sensitivity to
external perturbations, we conclude from Sub. II C that the
linear equations should include two independent parameters.
We first assume that the equations of motion do not depend
on velocities. Then the most general 2 × 2 matrix with two
independent parameters can be cast in the form of a sum of
symmetric and skew-symmetric matrix. We choose the axes
so that the symmetric part of the Jacobian matrix is diagonal.
Choosing appropriate units of time the general equation of
motion can be written as

∂2
t

(
x
y

)
= −J

(
x
y

)
= −

(
1 − δ η

−η 1 + δ

)(
x
y

)
(13)

with 1 > δ.
Substituting (x, y) = (X,Y )eiωt with constant X,Y we find

that the eigenfrequencies are obtained as ωi = √
λi with λi

being the eigenvalues of the Jacobian matrix J:

λ1,2 = 1 ∓ δ
√

1 − μ2, (14)

where μ = η

δ
. Clearly, the system develops a complex pair of

eigenvalues for μ > 1. We now take ε = 1 − μ = 1 − η

δ
and,

in order for the system to be critical, assume that ε � 1. Using
Eq. (14), the associated frequencies are to leading order

ω1,2 ≈ 1 ∓ δ
√

ε/2. (15)
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The eigenvectors ṽ1,2 = (X,Y ) are obtained as

ṽ1,2 =
(

1 ±
√

1 − μ2

μ

)
. (16)

In the limit μ → 1 the two critical eigenvectors coincide and
become (1,1). The two eigenvectors (16) then become, after
normalizing such that v1,2 ≡ ṽ1,2/|ṽ1,2| = 1 + O(

√
ε),

v1,2 = 1√
2

(
1 ± √

ε/2
1 ∓ √

ε/2

)
. (17)

The system has two mechanisms for amplifying outside
noise: First, when the frequency of the outside noise is close to
ω1,2 we obtain a solution whose amplitude is proportional to
|ω − ω1,2|−1; this is a simple resonance mechanism and has
nothing to do with our criticality. Second, from Eq. (17) we
can observe that near the critical point the two eigenvectors
become parallel. As a result, an initial condition (x0, y0)
orthogonal to v∗ = (1, 1)/

√
2 will result in oscillations whose

amplitude diverges as ε−1/2.
The traditional resonance is obtained as a particular solu-

tion of the following equation in which the external perturba-
tion can have any arbitrary frequency ω:

∂2
t

(
x
y

)
= −

(
1 − δ η

−η 1 + δ

)(
x
y

)
+ f cos ωt, (18)

with f = F (1,−1)/
√

2 chosen so that f⊥v∗.
Substituting (ξ, ζ ) = (X,Y ) cos ωt , we get the particular

solution (
ξ

ζ

)
= F√

2(ω2 − λ1)(ω2 − λ2)

×
[

1 − ω2 + δ(2 − ε)
−1 + ω2 + δ(2 − ε)

]
cos ωt . (19)

As expected, with identifying ωi = ±√
λi, the amplitude of

this particular solution diverges as

Apar ∼ F |ω − ω1,2|−1, (20)

as a result of the resonance.
The more interesting and important mechanism for noise

amplification is associated with the homogeneous solution of
Eq. (18). This solution is identified by choosing the initial
displacement (x(0), y(0)) = −(ξ (0), ζ (0)), which annuls the
particular solution.

The general form of the homogeneous solution is

xhom =
∑
i=1,2

aivi cos ωit, (21)

where ai are determined from the equation

∑
i

aivi =
[−ξ (0)
−ζ (0)

]
. (22)

We will show here that if the angle between v1 and v2 is small
[v1 · v2 = 1 + O(ε)], then an initial condition perpendicular
to vi will result in divergences of ai as |ai| ∝ ε−1/2 (see Fig. 2).

v1 v2

F

FIG. 2. The eigenvectors are close to coalescence when critical-
ity is approached. The external force is perpendicular to them. When
there are many degrees of freedom the external force should have a
component in the plane containing the two coalescing eigenvectors,
and see below for more details.

Namely, solving (13) with xhom(0) = (1,−1)/
√

2 we obtain

xhom,⊥ ≈
(

1
2
√

ε
+ 1

2
√

2
1

2
√

ε
− 1

2
√

2

)
cos(ω1t ) −

(
1

2
√

ε
− 1

2
√

2
1

2
√

ε
+ 1

2
√

2

)
cos(ω2t )

≈ 1√
ε

(
1
1

)
sin(t ) sin

(
δε1/2

√
2

t

)

+ 1√
2

(
1

−1

)
cos(t ) cos

(
δε1/2

√
2

t

)
. (23)

Two important conclusions are to be drawn here: First, the
amplitude A of the homogeneous solution goes as

A ∼ ε−1/2. (24)

Second, we find a new time constant τd for the divergent
solution to become significant or the proper time for the
solution to reach the maximal amplitude Amax. From (23) we
obtain

τd ∼ 1

δ
√

ε
∼ 1

|ω1 − ω2| . (25)

In particular, the time for the maximal amplitude to be reached
diverges as ε → 0. This leads to the final solution for the
amplitude gain, taking (19) and (23) we obtain

Amax ∼ ε−1/2

|ω − 1|F. (26)

This holds true for ω ≈ ω1 or ω ≈ ω2. Note that for any
arbitrary frequency one still has the divergence proportional
to ε−1/2.

The reader should note that when this normal form is
embedded in a nonlinear system, the increase in oscillations
can easily ignite the nonlinear terms and drive the system
further from equilibrium. Thus one may not see the linear
blow-up in its entirety because nonlinearities will become
dominant. An example will be shown in Sec. IV.
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B. The effects of damping

Let us now consider the case in which a damping force

f damp = − 1

τ
∂t

(
x
y

)
(27)

is added to Eq. (18). How is the scaling relation (26) expected
to change?

For the particular solution with the standard resonance, the
problem reduces to a simple damped-driven oscillator, which
results in a Lorentzian response, so that Eq. (20) will become

Apar ∼ 1√
ω2/τ 2 + (

ω2 − ω2
1,2

)2
F. (28)

Similarly to Eq. (20) for ω − ω1,2 � 1/τ . The response will
achieve a maximal value that is evaluated as

Apar,max ∼ Fτ ∼ FQ, (29)

where Q is the quality factor of the system at criticality.
For the homogeneous solution (23), we note that v1,2 from

Eq. (17) are still the eigenvectors of the system near criticality.
A homogeneous solution of the form (X,Y )eiωt will now solve[

−
(

ω2 − iω/τ 0
0 ω2 − iω/τ

)

+
(

1 − δ η

−η 1 + δ

)](
X
Y

)
= 0, (30)

so that v1,2 will still be obtained from (17). In the case of a
small damping (1/τ � 1) Eq. (23) will then become

xhom ≈ 1√
ε

(
1
1

)
sin (t ) sin

(
δε1/2

√
2

t

)
e− t

τ

+ 1√
2

(
1

−1

)
cos (t ) cos

(
δε1/2

√
2

t

)
e− t

τ . (31)

The maximal amplitude is obtained as

A ∼ max
t

[
1√
ε

sin(t/τd )e− t
τ

]
, (32)

which can be approximated near criticality, i.e., for τd � τ ,
as

A ∼ max
t

[δte− t
τ ] ∼ δτ = δQ. (33)

This means that the scaling (24) has a point of saturation
as ε → 0, which is proportional to the quality factor. From
Eq. (29) and Eq. (33) we finally obtain for |ω − ω1,2| � 1/τ

and τd � τ ,

Amax ∼ Q2δF, (34)

which is our main result.
Note that in the opposite limit, i.e., if τd � τ , the damping

is not strongly effective and we expect and recover Eq. (24).
The conclusion is that while the amplification due to the

regular resonance is bounded by the quality factor, here we
have amplification by the square of the quality factor. This
is likely to bring the system into the nonlinear regime where
the response can spontaneously grow further, and sometime
catastrophically.

FIG. 3. The model consists of N identical disks (here and in the
simulations below N = 10) which interact via Hertz and Mindlin
forces between themselves and the substrate below. A constant force
Fy is applied to press them against the substrate, and an external force
Fx is applied to the first disk, increasing it quasistatically until a pair
of complex eigenvalues gets born, signaling an oscillatory instability.
From that point on the Newtonian dynamics takes the system from
static to dynamical friction.

IV. EXAMPLE: FRICTIONAL DISKS
IN TWO DIMENSIONS

As an example we choose a system that was studied in
detail to demonstrate a transition from static to dynamical
friction [5], see Fig. 3. It consists of N two-dimensional disks
of radius R, with their initial center of mass positioned at
xi = (2i − 1)R; yi = R, i = 1 · · ·N , aligned over an infinite
substrate at y = 0. Each disk is pressed with an identical force
Fy normal to the substrate, providing a very simple model
of asperity contacts in more realistic systems. The boundary
conditions are periodic such that the disk i = N is in contact
with the disk i = 1. The disk-disk and and disk-substrate
interactions are the time honored Hertz and Mindlin forces
that are not derivable from a Hamiltonian. These forces are
described in detail in Ref. [5]. Forces and torques are annulled
by force minimization protocol to reach mechanical equilib-
rium. After attaining equilibrium we increase quasistatically
a force Fx which is applied at the center of mass of the disk
i = 1. At some critical value of Fx = Fx,c the system becomes
unstable with respect to an oscillatory instability [3,4]. This
instability can trigger a transition from static to dynamical
friction. It was demonstrated before that once the system is
in the unstable regime, even numerical noise can trigger the
instability, and the response can exhibit signal increase of 20
orders of magnitude. The aim of this section is to study the
sensitivity of the system when it is still in the stable regime.
We will demonstrate extreme sensitivity with giant response
to small perturbations, triggering the instability also when in
the absence of perturbations the system is completely stable.

The dynamics are Newtonian; denoting the set of coordi-
nates qi = {ri, θi}:

m
d2ri

dt2
= F i(qi−1, qi, qi+1), qN+1 = q1, (35)

I
d2θi

dt2
= T i(qi−1, qi, qi+1), (36)

where m and I are the mass and moment of inertia of the ith
disk, F i and T i are the total force and the torque on disk
i, respectively. Time is measured in units of

√
m2Rkn and

length in units of 2R. To study the effect of dissipation we
add to the right-hand side of Eq. (35) a term −ṙi/τ . We will
study the effect of decreasing τ (increasing dissipation) on the
sensitivity of the system to small external perturbations.
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FIG. 4. The bifurcation diagram. At Fx = Fx,c ≈ 0.0779 the two
real eigenvalues coalesce and the two imaginary parts bifurcate.

The critical point Fx,c is identified as the point of coales-
cence of two real eigenvalues and the bifurcation of imaginary
part, cf. Fig. 4. Without damping, when Fx exceeds the critical
value Fx,c the system is always unstable, and it suffices to have
numerical noise to develop the instability. To see the effect
on the instability, we measure the mean-square displacement
(MSD) defined here as

M(t ) ≡ 1

10

10∑
i=1

|ri(t ) − ri(0)|2. (37)

The development of this quantity in the unstable regime is
exemplified in Fig. 5. One sees that just with numerical

100 101 102 103 104 105

t

10−21

10−17

10−13

10−9

10−5

10−1

102

M
(t

)

FIG. 5. Unstable dynamics after the bifurcation of the imaginary
parts of the eigenvalues. Here Fx = 0.086 and numerical noise is
sufficient to bring about a huge growth in the MSD, more than 20
orders of magnitude.

noise the response increases by more than 20 orders of
magnitude and the system exhibits a transition from static to
dynamic scaling, where the MSD is growing exponentially in
time.

To demonstrate the sensitivity associated with this instabil-
ity, we will apply now small perturbations at given forces Fx <

Fx,c and will monitor the response for different values of ε and
τ . The problem is now multidimensional (3N dimensional), so
we extract ε from the scalar product of the two eigenvectors
that coalesce at Fx = Fx,c. Having Eq. (17) in mind, and
continuing to denote the two coalescing vectors as v1 and v2

(of the 3N available eigenvectors), we define

ε ≡ 2(1 − v1 · v2). (38)

The perturbation will be taken in the form

f cos(ωt ) ≡ α(v2 − v1) cos(ωt ), (39)

with small α and ω far from resonance. In Fig. 6 we then
demonstrate how, for ε ≈ 0.058 the dynamics is stable in the
absence of forcing and damping. This is seen in Fig. 6(a).
The dynamics remains for ever in the numerical noise level of
order 10−18. In Fig. 6(b) we demonstrate the response of the
MSD to a small perturbation with α = 0.005 and ω = 0.1, far
away from resonance. Without damping the effect of the small
perturbation is so huge that the system is kicked over to the
unstable regime and the transition to dynamic friction takes
place. Note that the MSD shoots up by more than 20 orders
of magnitude, making manifest the huge sensitivity to small
perturbations. Figure 6(c) demonstrates the effect of damping.
With τ = 100 the transition to dynamic friction is avoided, but
the response of the MSD is eight orders of magnitude larger
than that obtained without the small perturbation.

Is damping always saturating the instability? Of course not.
In Fig. 7 the results of repeated simulations with the strength
of forcing as in Fig. 6(c) with the only difference that now
ε ≈ 0.01. In other words, the system is in the stable regime
but closer to the instability. Now the damping fails to delay
the onset of the instability. The growth in the amplitude of
oscillations is large enough to trigger the onset of instability
as the nonlinearities kick in. Note that we kept the value of α

fixed but |v1 − v2| is reduced here, so the noise amplitude is
smaller than before. Nevertheless, the instability was triggered
in spite of the damping due to the enhanced amplitude of the
response.

Finally, we should discus the dependence of the response
on the distance ε from the point of instability and on the
magnitude of the damping coefficient. Equations (24) and (33)
predict that for a fixed τ � τd , the maximal amplitude of
the response should be linear in 1/

√
ε, and that for fixed

(and small) ε and τ � τd , it should be linear in τ . Both
expectations are validated by measuring the square root of
the maximal MSD response as shown in Fig. 8. This maximal
value is denoted Amax. In Fig. 8(a) of that figure we present the
dependence on ε for fixed τ and in Fig. 8(b) the dependence
on τ for fixed ε. The results are in excellent agreement
with Eqs. (24) and (33). Together these results also validate
Eq. (34).

We reiterate that the present numerics serve just to demon-
strate the validity of the theoretical analysis, which is much
more general than the present example. The giant sensitivity to
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FIG. 6. (a) With ε ≈ 0.058 and without perturbation and without
damping the systems is stable, never reaching any substantial value
of MSD. (b) For the same value of ε with α = 0.005 and ω = 0.1
and without damping the small perturbation is sufficient to throw
the system unstable. (c) With τ = 100 and the same perturbation the
MSD grows by more than nine orders of magnitude but the instability
is not switched on. Here Fx = 0.076.

external noise should exist in a variety of systems in the class
studied above, i.e., systems in which the forces appearing
in Newton’s equations of motion are not derivable from a
Hamiltonian.

V. SUMMARY AND CONCLUDING REMARKS

The aim of this paper was to present a generic mecha-
nism for high sensitivity to small external perturbations that
can trigger a major event that is associated with a close-by
instability in an otherwise stable system. We have in mind
remote triggering of earthquakes, but our discussion is more
general, pertaining to physical systems in which the forces are
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FIG. 7. The effect of coming closer to the onset of instability.
Here the forcing amplitude, ω, and τ are same as in Fig. 6(c) with
the only difference that ε ≈ 0.01 instead of 0.058. This is enough to
increase the response to a level that is picked up by the nonlinearities
to trigger the instability. Here Fx = 0.0776.

not derived from a Hamiltonian. In such systems, there is a
generic instability in which pairs of complex eigenvalues get
born, leading to an exponential growth of any deviation from
mechanical equilibrium. We explained that this instability
differs from the standard Hopf bifurcation in which only two
modes are involved. Here we need four modes to be involved,
making this instability “less generic.” On the other hand,
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FIG. 8. The dependence of the amplitude of the response on the
distance from instability and damping. (a) Amax as a function of
1/

√
ε for fixed τ ≈ 14925. In this range of ε the largest τd ≈ 1404,

satisfying the condition τ � τd . (b) Amax as a function of τ for
ε ≈ 0.0313. In this range the opposite condition τ � τd is satisfied.
Here Fx = 0.0769.
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the standard Hopf bifurcation is only sensitive to resonant
perturbations. The instability discussed here is sensitive to
any perturbation independent of its frequency, which is in
the plane containing the two eigenvectors that coalesce at the
instability. It is enough to have a component in the direction
perpendicular to the coalescing eigenvectors to trigger the
instability. Thus the perturbation can be “more generic” than
the one required to trigger a Hopf phenomenology. We have
demonstrated this high sensitivity with a simple model of fric-
tional disks that exhibit a transition from static to dynamical
friction. The direct connection to geophysical instabilities and
earthquakes needs further study, but in light of the genericity
discussed above we hope that this paper will motivate such
studies in the near future.

Finally, we should comment on the issue of “exceptional
points” in quantum models with non-Hermitian Hamiltonians.
The bifurcation mechanism described in this paper is directly,
albeit somewhat unexpectedly, related to the notion of ex-
ceptional points known as degeneracies in systems governed
by non-Hermitian evolution operators [8,9]. The exceptional
points are defined as special degeneracies, where, similarly
to the granular systems considered in our paper, two (or
more) eigenmodes of the system have the same eigenvalues
and eigenvectors [8–10]. Non-Hermitian operators are used in
various physical settings, and in the vicinity of the exceptional
points the systems behave in a nontrivial manner, highly
sensitive to tuning and external excitations. For instance,
one encounters a plethora of counterintuitive phenomena in
open optical systems, such as giant spontaneous light emis-
sion [10], unidirectional reflection and transmission [11], or
topological mode switching [12]. In laminate composites the

exceptional points are related to anomalous energy transport
phenomena, such as negative refraction, beam steering, and
splitting [13]. The exceptional points are generic feature of the
non-Hermitian evolution operators in the space of parameters.
The possible coincidence of the modal frequencies and cor-
responding eigenvectors in the system of frictional disks also
generically stems from the asymmetry of the stability matrix
and for the same mathematical reasons. It is also clear that
the bifurcation involving the coincidence of frequency and
modal shape in the system of frictional disks is analogous
to the exceptional points. In all aforementioned applications,
the exceptional points are treated as exotic degeneracies that
require precise, possibly multiparametric tuning of the sys-
tem. In contrast, our systems are disordered and have a large
number of degrees of freedom. Substantial deformation leads
to multiple events of the loss of mechanical stability; the
latter occurs through two generic scenarios. If the viscous
damping is absent, then the mode coalescence is one of these
generic scenarios. It is characterized by infinite sensitivity
in the linear approximation, due to violation of the mode
orthogonality. Small damping preserves the giant sensitivity,
while the bifurcation remains generic. Thus, in the dynamics
of forced systems of frictional disks states similar to the
exceptional points should be considered as generic and not
exceptional.
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