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Rodlike molecules in extreme confinement
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A unique feature of colloid particles and biopolymers is the molecule’s intrinsic rigidity characterized by
a molecular-level length scale. Under extreme confinement conditions at cellular scales or in nanodevices,
these molecules can display orientational ordering accompanied by severe density depletion. Conventional
liquid-crystal theories, such as the Oseen-Frank or Landau–de Gennes theories, cannot capture the essential
molecular-level properties: the boundary effects, which extend to a distance of the rigidity length scale, and the
drastic variations of the inhomogeneous molecular density. Here we show, based on a simple interpretation of
the Onsager model, that rodlike molecules in extreme annular confinement produce unusual liquid-crystal defect
structures that are independent phases from the patterns usually seen in a weaker confinement environment.
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I. INTRODUCTION

The fluid formed by rodlike molecules is a model system
of liquid crystals, which is often considered in computer
simulations. Closely related real systems are micron-sized
colloidal silica rods [1] or visible-range granular rods [2,3]
that display the typical behavior of lyotropic liquid crystals:
the formation of a nematic state when the particle density is
sufficiently high and the exhibition of defect patterns when the
orientationally ordered system is confined in a finite space.
A prominent feature of biopolymers and colloid particles is
the molecule’s intrinsic rigidity characterized by a molecular-
level length scale. Recent experimental systems include aque-
ous suspensions of actin filaments [4] and linearly shaped
viruses [5] confined in a microchamber. How does the finite
geometric confinement affect the orientational properties and
local molecular densities of a liquid crystal made of molecules
that have sizes competing with the confinement length scale?

One might say that this question is already answered by the
recent progress in liquid-crystal physics. The subject of liquid-
crystal defects caused by geometric frustrations has been one
of the central focuses in the liquid-crystal research community
in recent years. The defect morphologies appearing in single
and double liquid-crystal emulsions [6,7], liquid-crystal dis-
play cells [8], as well as confined semiflexible biomolecules
[4,5] are excellent experimental examples. The molecular-
level computer simulations produced defect patterns under
various physical conditions [9–16] that furthered our under-
standing of the nature of the defects. Most theoretical studies
in this research area [15,17–35] are based on the Oseen-Frank
(OF) model or the Landau–de Gennes (LdG) model, where the
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nematic director field or the Q-tensor field [36] are the main
concerns, respectively. These coarse-grained models, in which
the molecular individuality is mostly ignored, are suitable for
dealing with liquid crystals made of small molecules.

The case of liquid crystals under extreme confinement is
outside the realm of the conventional OF or LdG models,
when the molecular size is comparable with the confinement
dimension. Here the nonlocal boundary effects can extend to
a significant distance covering a several rigidity length scale.
Such a key physical feature cannot be described by the OF and
LdG theories, as they are models for local order parameters.
An excellent example is rodlike molecules, each having length
L, confined in the annular area formed by two concentric
circles of radii R1 and R2, as illustrated in Fig. 1. Recent
experiment observations and computer simulations revealed
molecular configurations that are unique to such finite-sized
systems [14]. The excluded-volume interaction between rods
prefers mutually parallel alignment of the rod axes. In an ideal
bulk state without a border, this drives the molecules into the
formation of a directionally ordered, but spatially homoge-
neous nematic state at a sufficiently high particle density. The
hard annular boundaries disrupt the uniform nematic order
and produce defect states in the interior. Depending on the
geometric ratios R2/L and R1/R2, molecular configurations
display multiple stable states, each characterized by particular
rotational symmetries.

Can we understand the stability of these states from a theo-
retical model? The OF model deals with a continuous, nematic
director field, and the LdG model deals with a continuous,
Q-tensor field, in which two crucial mechanisms required
for the current problem are lacking: a rod cannot cross any
hard-wall boundaries, illustrated in Fig. 1(b), and the density
depletion caused by such a boundary condition (BC) produces
an entropy cost to the free energy. Hence, we need another
level of coarse graining, i.e., a free-energy model that contains
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FIG. 1. Rodlike molecules of length L confined in concentric
annular circles of radii R1 and R2. (a),(b) Typical allowed (yellow)
and disallowed (blue) configurations, realized in our theory. (c) Two
phase regimes which exist when R2/L � 1: a twofold defect state
(D2) and a uniform defect-free state (D∞), divided by a phase
boundary. Multiple states exist in the extreme confinement region
of R2/L ∼ 1, as illustrated in phase diagram (d), based on the nu-
merical solution of the extended Onsager free energy for interacting,
rodlike molecules. An overall number density of rods, ρ0 = 20/L2,
is assumed here, where ρ0 is the number of rods per unit area on a
two-dimensional surface. The phase boundaries are determined by a
comparison of the free energies. The color of the rods illustrated in
(c) and (d) represents the angles that the rods make with respect to
the horizontal axis, specified in the inset of (c). The shaded area is
defined in Appendix B.

a continuous field variable and yet allows for specification of
BCs at a molecular level.

In 1949, Onsager proposed an idea for studying the ori-
entational properties of rodlike molecules [37]. The purpose
of this paper is twofold: to demonstrate that the extended

version of the Onsager model fits into this requirement, and,
to provide a quantitative analysis of the annular confinement
problem. The extended Onsager model treats the problem at
a different level: the consideration is the molecular distri-
bution density, not the continuum local nematic director or
the Q-tensor fields. When the numerical analysis is done, we
show that a unique set of extreme-confinement states emerge,
which is different from the defect states predicted from the
conventional OF or LdG models.

II. THEORETICAL APPROACH

Our focus is on the distribution density function ρc(r, u)
in a flat two-dimensional (2D) space. It characterizes the
probability density of finding the centers of mass of rod-
like molecules at a spatial position specified by the vector
r, with the condition that the rods point at the direction
specified by the unit vector u. The normalization condition∫

dr
∫

duρc(r, u) = n is assumed here, where n is the total
number of confined rodlike molecules in an area A. We follow
Onsager’s approach [37] to write the free energy of the system
by using a Mayer expansion accurate to the second virial
term [38],

βF =
∫

ρc(r, u) ln[L2ρc(r, u)]drdu

+ 1

2

∫
ρc(r, u)w(r, u; r′, u′)ρc(r′, u′) drdudr′du′,

(1)

where β = 1/kBT , with kB being the Boltzmann constant
and T the temperature. The free energy includes two terms.
The first term takes into account the translational, density-
depletion, and orientational entropies of a spatially inhomoge-
neous and orientationally ordered fluid of rodlike molecules.
The second term describes the interaction between two rodlike
molecules having the coordinates (r, u) and (r′, u′), where the
Mayer function −w = exp(−βv) − 1, and v is the interaction
potential energy between the two rigid molecules. When the
configuration (r, u; r′, u′) makes two rods overlapping, v =
∞; otherwise, v = 0. On a 2D surface, the mathematical
criterion for determining rod overlapping becomes simple.
The vectors r and u are represented by the variables (r, ϕ)
and θ , respectively [Fig. 1(a)].

The reduced free energy βF as a functional of the function
ρc(r, u) needs to be minimized. The stationary solutions
satisfy

δF

δρc(r, u)
= 0. (2)

In a spatially homogeneous system where ρc(r, u) is actually
a function of u only, one can analytically show that based
on this requirement, the isotropic-nematic phase transition
takes place when the 2D particle density ρ0 = n/A reaches
a critical ρ∗

0 = 3π/(2L2) [39–41]. For the current confined
case where ρc is a function of both r and u, we established
a high-precision computational procedure, required to solve
the above condition and to calculate the free energy. We refer
to Ref. [42] for the detailed numerical procedure, which was
established based on the equivalent self-consistent field theory
of polymers [43,44].
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III. VISUALIZATION OF THE STRUCTURES

In the following, a number of physical properties are
analyzed and displayed, calculated from the distribution func-
tion of the center of mass of a rodlike molecule, ρc(r, ϕ; θ ),
obtained from minimizing the free energy. The center-of-mass
molecular density, for example, is represented by

�c(r, ϕ) = 1

ρ0

∫ 2π

0
ρc(r, ϕ, θ )dθ, (3)

which is plotted in Fig. 2.
One can deduce the distribution density function for seg-

ments on the rodlike molecules, regardless of the position on
the rod, by defining

f (r, u) = 1

ρ0

∫ 1

0
ρc

[
r − uL

(
s − 1

2

)
, u

]
ds, (4)

where the distribution of the segments at the path coordinate
s is traced back to the rod center. The integrant represents
the probability density of finding the segment labeled by
s on the rodlike molecule to appear at a location with the
coordinate r. With this definition, f (r, u) is dimensionless
and

∫
dr

∫
du f (r, u) = A.

A number of properties are calculated by using f (r, u).
The distribution density function for rod segments is calcu-
lated from

φ(r, ϕ) =
∫ 2π

0
f (r, ϕ, θ )dθ, (5)

which is plotted in Appendix A. The 2 × 2 Q-tensor,

Q(r, ϕ) = 1

2

[
S(r, ϕ) T (r, ϕ)
T (r, ϕ) −S(r, ϕ)

]
, (6)

is calculated from

S(r, ϕ) =
∫ 2π

0 dθ cos(2θ ) f (r, ϕ, θ )

φ(r, ϕ)
, (7)

T (r, ϕ) =
∫ 2π

0 dθ sin(2θ ) f (r, ϕ, θ )

φ(r, ϕ)
. (8)

Both S and T characterize the orientational ordering of the
rodlike molecules by themselves and can be used directly.
The scalar orientational order parameter is determined by the
positive eigenvalue of the Q-tensor,


(r, ϕ) =
√

S2(r, ϕ) + T 2(r, ϕ), (9)

which is plotted in Fig. 2. Particularly, the locations where

 → 0 are considered as defect points.

The nematic-director field itself is projected on the polar
coordinates by

n(r, ϕ) = cos θ0(r, ϕ)er + sin θ0(r, ϕ)eϕ, (10)

where θ0 is determined from

cos θ0(r, ϕ) = 1

2

[
1 + S(r, ϕ)


(r, ϕ)

]
. (11)

The unit vectors er and eϕ are those associated with the
definition of the polar coordinates r, ϕ. We can then assess
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FIG. 2. Defect structures under the extreme confinement condi-
tion. Three illustration methods are used, all based on the numerical
solution of ρc(r, u). The first row in each plot is a reconstructed,
real-space illustration; the second row is the scalar orientational
order parameter, calculated from the distribution function; and the
third row is the center-of-mass distribution function, after averaging
over all orientations. The first-order phase boundaries separating Dm

from D′
m are represented by the change of the background shades:

from white to light gray, where m = 2, 3, and 4 in (a) R1/R2 = 0.1,
(b) R1/R2 = 0.3, and (c) R1/R2 = 0.45, respectively. The color used
in the first row of each plot has the same meaning as in the inset of
Fig. 1(c). The intensities of both 
 and �c are represented by the
blue color bar. The light-blue and green circles indicate the defect
locations on Dm, of −1/2 and 1/2 winding numbers, respectively.

the variance of the angle θ0 at r = R2,

σ 2 =
∫ 2π

0
θ2

0 (R2, ϕ)dϕ −
[∫ 2π

0
θ0(R2, ϕ)dϕ

]2

, (12)
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FIG. 3. Phase transitions between D′
m and Dm. For each case of

(a) m = 2, (b) m = 3, and (c) m = 4, two branches of the reduced
free energy per rod, triangles for D′

m and circles for Dm, are plotted
in (a)–(c). The variance of the nematic direction at r = R2, σ 2, is
used as the order parameter of the D′

m-Dm transitions and displayed
in (d)–(f) for m = 2, m = 3, and m = 4, respectively. Jumps of σ 2

can be seen at the transition points.

which is used in Fig. 3 as the order parameter for the D′
m

phases.
To simulate the defect patterns seen by the cross-polarizer

experiments, the first polarizer is assumed to make an angle
α with respect to the x axis in the Cartesian coordinates used
to illustrate the defect patterns. After the light passes through
the liquid-crystal cell, the outcome of the light intensity is
proportional to

Iα (r, ϕ) = 1

4

∫ 2π

0
dθ [sin(2ϕ + 2θ − 2α)]2 f (r, ϕ, θ ), (13)

which is illustrated below.

IV. RESULTS

A. Boundary-driven phase separation

Note that we implemented the steric hard-wall BCs, which
forbid the example configurations illustrated in Fig. 1(b), with
no further assumptions of density function ρc(r, u) at the
boundaries. The BCs amount to letting the density ρc(r, u)
vanish when a rod, having coordinates (r, u), overlaps with
any part of the two concentric circles. This nonlocal inter-
action has a correlation length of order L, which cannot be
ignored when R1, R2, and L become comparable. The second,
nonlocal term in (1) connects the density function at different
locations. After solving the minimization condition in (2) for

the entire (r, u) space, we can then deduce the normalized
density function �c(r) by averaging over all directions, and
the Q(r)-tensor for any r. The eigenvalues and eigenvectors
of the Q-tensor also yield the scalar orientational order pa-
rameter 
(r) and the main-axis nematic director n(r).

The numerical solution reveals the existence of two dif-
ferent types of defect states, Dm and D′

m, each displaying an
m-fold rotational symmetry (Fig. 1), where m = 2, 3, 4, . . . .
The extreme defect states D′

m are characteristically identified
to have the strong presence of self-aggregation of the center of
mass (Fig. 2). Accompanying the density-depleted regions are
weakly ordered rod segments, which can be compared with a
much clearer signal of defect points in Dm. At a low R2/L
ratio, the geometric frustrations due to the BCs reduce the
available free space for the rodlike molecules and effectively
drive up the excluded-volume effects; rich domains of rod
centers with orientationally ordered configurations reduce the
overall excluded-volume effects, at the expense of unwanted
reduction of the translational entropy in the polar-angle
direction.

In addition to these effects, at the inner and outer circular
boundaries, the configurational properties of D′

m significantly
differ from those of Dm. At r = R2 and r = R1, both 
(r, ϕ)
and n(r, ϕ) vary as functions of ϕ and the variation becomes
stronger as R2/L decreases, under extreme confinement. In
contrast, these boundary properties remain at almost constant
values in Dm. In a typical treatment of the LdG theory for
a confinement problem, �c(r) is assumed to be a constant
over the entire confined space; at the boundaries, 
(r, ϕ) is
assumed to be a constant and n(r, ϕ) to point at a constant
angle from the boundary tangent direction. Indeed, a LdG
theory can describe the D2, D∞, and spiral states [32,33].

B. Phase transitions

The fact that D′
m and Dm are different defect phases can be

assessed from the free-energy branches of these two types of
states. Displayed on the left panels of Fig. 3 are the typical
free energies of these states, where R1/R2 = 0.1 for m = 2
in Fig. 3(a), 0.3 for m = 3 in Fig. 3(b), and 0.45 for m = 4 in
Fig. 3(c). The plots clearly show how the D′

m and Dm branches
cross each other at the transition points, as R2/L varies. These
and other crossing points (not displayed in Fig. 3) are used for
the final determination of the first-order phase boundaries in
the phase diagrams, shown by Figs. 1(c) and 1(d). Through the
eigenvectors of the deduced Q-tensor at r = R2, we calculate
the nematic angle at the boundary. The variance of this angle,
σ 2, can be used as the order parameter for this transition, as
displayed in Figs. 3(d)–3(f). The jumps at the transition points
clearly indicate the strong variations of the nematic angles in
the D′

m states.
In a continuous vector field, a winding number can be

assigned to a field-defect point. As a general rule, the total
sum of the winding numbers in a given geometry is assumed
conservative [17,45–47]. One can argue, e.g., that the annuler
confinement amounts to a total winding number zero, and the
circular confinement total winding number +1 [42]. Indeed,
the ideal annular D∞ is a state without any defect. The
continuous Dm states contain m pairs of defect points that
can be assigned positive and negative winding numbers (see
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FIG. 4. All topologically different states found from our solutions to the extended Onsager model for the current geometry. Some of them
show up in the phase diagrams, shown in Figs. 1(c) and 1(d). The snapshots in the first column illustrate the positions of the rods and their
orientations, where the color represents the angle of a rod with respect to the horizontal axis specified by the color bar. For easy reference, we
produce simulated cross-polarizer images of these states, Iα (α = π/4, 5π/16, and 3π/8), according to (13), where α is the angle between the
first polarizer direction and the horizontal axis of these plots.

Fig. 2), and hence the total winding number is still zero. The
−1/2 defect points, labeled in Fig. 2 by the blue color, appear
near the inner circle. As the ratio R1/R2 decreases, these
−1/2 defect points are attracted to the vicinity of the inner
circle, which has an increasing curvature (another property
of liquid-crystal defect points [45]). This is consistent with
the observation from Monte Carlo simulations [14]. As R1/R2

goes to zero, the annular confinement approaches the limit of a
circular confinement of radius R2. The two −1/2 defect points
in the D2 state diminish together with the inner circle, leaving
a total winding number m/2 = +1 for m = 2, expected for
the circular confinement [42,43]. This crossover requirement
alone establishes the fact that the low-R1/R2 Dm state must be
D2, not another m.

Although the density functions ρc(r, u) of the extreme D′
m

states are continuous, they vary drastically in both r- and
u-variable spaces. This makes the orientational-configuration
variation almost disruptive, as can be seen in the left panels
of Fig. 2. As a result, significant regions of 
 = 0 appear
in the order parameter profile, where the concept of defect
points becomes irrelevant. In a recent theoretical study of

a semiflexible polymer chain confined in a spherical cavity,
a density-depletion region is also found under the extreme-
confinement condition, when the confinement dimension has
the same order of magnitude as the persistence length of
the polymer [48]. This places the applicability of the gen-
eral theory of defect points in question, on the extreme
defect states.

There are two types of steric-repulsion effects in the current
model. One is the boundary effects that completely forbid typ-
ical configurations, illustrated in Fig. 1(b). A long rod (small
R2/L) cannot fit into the interior of the annular geometry,
which determines the lower bound of the phase diagram in
Fig. 1(c) (see Appendix B). The other type is due to the
Mayer function −w. While v = +∞ when two rods overlap,
illustrated by an example configuration in Fig. 1(a), the Mayer
function allows the configuration but with a “soft” energy
penalty w = 1, appearing in Eq. (1). As such, the Mayer func-
tion more appropriately approximates a thin, 2D-like layer of
rodlike molecules. In some extreme states, the continuum �c

varies drastically crossing depletion and nondepletion regions,
but is still continuous due to the soft penalty.
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R1 R2

L*

FIG. 5. Illustration of the limit of the rod length, L∗, which
allows the rod to just fit into the annular confinement.

V. SUMMARY

A distinct feature of the Onsager model is its simplicity: a
term describing entropy and a term describing the excluded-
volume interaction. The original model was proposed to de-
scribe the bulk isotropic-nematic transition. Yet, the extended
version to include the spatial variation expands much be-
yond the original model—it can be used to describe much
more complicated, liquid-crystal problems of current interest.
[42,43,49–52].

Here we demonstrate its capability to describe the physics
of extreme confinement through nonlocal boundary condi-
tions, which the conventional Oseen-Frank and Landau–de
Gennes models fail to capture [32,33]. A rich phase diagram
is obtained—not only are the states of different rotational
symmetries separated by phase-transition boundaries, but two
separate phases of the same symmetry are identified. Our
free-energy calculation provides a theoretical foundation to
establish the liquid-crystal properties under extreme annular

confinement, for which Monte Carlo configurations were re-
cently reported [14].
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APPENDIX A: STATIONARY SOLUTIONS

In the main text, we presented our solutions from mini-
mization of the free energy, which produce the defect profiles
Dm, where m = 2, 3, 4, and ∞, and D′

m, where m = 2, 3, 4,
and 5. Additional profiles, containing rotational symmetries
up to m = 6, are also found from our numerical solutions, as
illustrated in Fig. 4. Notably, a spiral, defect-free configura-
tion V can be stabilized when R1/R2 � 0.5. These additional
states could be metastable defect patterns, but have higher
free energies in comparison with those of the states plotted
in Fig. 1 of the main text.

APPENDIX B: LOWER BOUND IN FIG. 1

In the main text, Figs. 1(c) and 1(d) contain a shaded region
where no possible states exist in the phase diagrams. The
boundary is determined by the consideration of the geometry
shown in Fig. 5, which yields

R2

L∗ = 1

2
√

1 − (R1/R2)2
. (B1)

Here, the rod thickness is ignored. Below R2/L∗, no rigid
rodlike molecules can fit into the confinement geometry.
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(2007).

[23] U. Ognysta, A. Nych, V. Nazarenko, I. Muševič, M. Škarabot,
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