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Electrically driven nematic flow in microfluidic devices containing a temperature gradient
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Fluid pumping principle has been developed utilizing the interaction, on the one hand, between the electric
field E and the gradient ∇n̂ of the director’s field, and, on the other hand, between the ∇n̂ and the temperature
∇T gradient arising in a homogeneously aligned liquid crystal (HALC) microfluidic channel. Calculations,
based upon the nonlinear extension of the classical Ericksen-Leslie theory, with accounting the entropy balance
equation, show that due to the coupling among the ∇T , ∇n̂, and E in the HALC microfluidic channel the
horizontal flow v = vx î = uî may be excited. The direction and magnitude of v is influenced both by the heat
flux q across the microfluidic channel and the strength of the electric field E. The results of calculations showed
that the dependence of the maximum value of the equilibrium velocity distribution |umax(E/Eth )| across the
LC channel versus electric field E/Eth is characterized by maximum value at E/Eth = 2.0. In the case when
the electric field E � Eth, the horizontal flow of the LC material completely stops and a novel mechanism of
converting of the electric field in the form of the kinklike wave reorientation of the director field n̂ can be excited
in the LC channel.
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I. INTRODUCTION

The current trend toward further miniaturization in the drug
delivery devices, manipulation of biomolecules and biosens-
ing has brought an increasing number of integrated microde-
vices for chemical and biological applications [1]. Such a
manipulation, for instance, of flow, can be achieved either by
forces applied macroscopically, e.g., at appropriate inlets or
outlets, or can be generated locally within the microfluidic
channel or liquid crystal (LC) cell [2–4]. Electro-osmosis,
dielectrophoresis, and electrowetting have been explored for
controlling microflows [1–4]. Nematic liquid crystal (NLC)
cells of appropriate size are microdevices whose molecular
orientations can be manipulated by the presence of electric
field E and the temperature gradient ∇T [5,6]. A challenging
problem in all such systems is the precise handling of LC or
anisotropic liquid microvolume, which in turn requires self-
contained micropumps of small package size exhibiting either
a very small displacement volume (displacement pumps) or a
continuous volume flow (dynamic pumps). One of the liquid
crystal pumping principles is based on the coupling between
the electric and director fields, together with accounting the
effect of the temperature gradient ∇T [5,7]. In this case, the
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uniform textures of nematic LCs are produced by orienting
a drop of bulk material in between two conveniently treated
bounding surfaces, which define usually a fixed orientation
for the boundary molecules. When there is no temperature
gradient, applying the electric field E perpendicular to a
uniformly (homogeneously) oriented NLC can distort the
molecular orientation â with respect to director n̂, at a critical
threshold field Eth given by [8]

Eth = π

d

√
K1

ε0εa
, (1)

where d is the thickness of the microsized LC channel, K1

is the splay elastic constant, ε0 is the absolute dielectric
permittivity of free space, and εa is the dielectric anisotropy
of the NLC. This form for the critical field is based upon
assumption that the director remains strongly anchored (in our
case, homogeneously) at the two horizontal bounding surfaces
and that the physical properties of the LC are uniform over the
entire sample for E < Eth. When the electric field is switched
on with a magnitude E greater than Eth, the director n̂, in the
“splay” geometry, reorients as a simple monodomain [5], and
exciting of the electrically driven nematic flow in microfluidic
channel containing a temperature gradient is a question of
great fundamental interest, as well as essential piece of knowl-
edge in soft material science [1]. In the nematic microfluidic
channel where director anchoring on the bounding surfaces
are the same, i.e., both homogeneous, and when the gradient
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of the temperature field ∇T does not exist, the horizontal flow
of the nematic material is excited only by the electric field E =
E (z)k̂ directed orthogonally to the homogeneously aligned
LC sample. In turn, accounting the temperature gradient ∇T ,
generated, for instance, by the uniform heating both from
below or above, leads to the additional contributions to the
torque and linear momentum balance equations.

Based upon the nonlinear extension of the classical
Ericksen-Leslie theory, with accounting the entropy balance
equation, the effect of coupling among the ∇T , ∇n̂, and E on
the electrically driven nematic flow in microfluidic LC chan-
nel containing the temperature gradient will be investigated.

The outline of this paper is as follow: The system of
hydrodynamic equations describing both the director motion
and the fluid flow in microfluidic LC channel containing the
temperature gradient under the effect of the external electric
field is given in Sec. II. Numerical results for the relax-
ation regimes, caused both the electric field and the vertical
temperature gradient, describing orientational relaxation of
the director, velocity, and temperature are given in Sec. III.
Conclusions are summarized in Sec. IV.

II. FORMULATION OF THE BALANCE OF THE LINEAR
MOMENTUM, TORQUE, AND CONDUCTIVITY

EQUATIONS FOR MICROSIZED NEMATIC FLUIDS

We are primarily concerned with the description of the
physical mechanism responsible for the electrically driven
nematic flow in microfluidic homogeneously aligned liquid
crystal (HALC) channels containing a temperature gradient
∇T . This gradient was fixed between two boundaries of this
channel, for instance, between the planar warmer upper and
planar cooler lower bounding surfaces. As a result, one arrives
at the picture where there is a balance between the applied
∇T and the electric, viscous, elastic, and anchoring forces,
and, in general, the LC fluid settles down to a stationary
flow regime in the horizontal direction [7]. Upon assuming an
incompressible fluid, the hydrodynamic equations describing
the orientational dynamics induced both by electric field E =
E k̂ and ∇T can be derived from the torque, linear momentum,
and the entropy balance equations for such LC system. We
consider a homogeneously aligned nematic system such as
cyanobiphenyls, which is delimited by two horizontal bound-
ing surfaces at distance d on a scale in the order of tens
micrometers (see Fig. 1).

According to this geometry the director is maintained
within the xz plane (or in the yz plane) defined by the electric
field and the unit vector î directed parallel to the horizontal
surfaces, k̂ is a unit vector directed normal to the horizontal
surfaces, and ĵ = k̂ × î. Because we deal with the HALC
channel under influence both the electric field E = E (z)k̂
and the temperature gradient ∇T directed perpendicular to
the HALC channel, and taking into account that the length
of the channel L much bigger than the thickness d , we can
suppose that the component of the director n̂ = nx î + nzk̂ =
sin θ (z, t )î + cos θ (z, t )k̂ as well as the rest of the physical
quantities also depend only on the z coordinate and time t .
Here θ denotes the angle between the director and the unit
vector k̂.

FIG. 1. The coordinate system used for theoretical analysis. The
x axis is taken as being parallel to the director directions on the lower
and upper surfaces, θ (z, t ) is the angle between the director n̂ and
the unit vector k̂, respectively. Both the electric field E and the unit
vector k̂ are directed normal to the horizontal surfaces of the LC
channel.

Our main aim is to investigate the influence of the external
electric field E and the heat flux q, generated by uniform
heating both from below or above, on the process of the
director reorientation n̂ and electrically driven nematic flow v
in the microfluidic HALC channel containing the temperature
gradient. To elucidate the role of both the temperature gradient
∇T and the electric field E on the reorientation process in the
microsized HALC channel, we consider a number of regimes,
first, when the LC sample is subjected to uniform heating from
below and the director n̂ is strongly anchored to both solid
surfaces, planarly to the lower cooler (T1) and the upper hotter
(T2) bounding surfaces, where

θ (z)z=0 = π

2
, θ (z)z=d = π

2
,

T (z)z=0 = T1, T (z)z=d = T2 (T2 > T1). (2)

If the director is disturbed by both the electric field E and
the heat flux q = −T δR

δ∇T , generated by the uniform heating
both from below or above, then the relaxation of n̂(z, t ) to its
equilibrium orientation n̂eq(z) in the HALC channel is gov-
erned by electric Tel = δψel

δn̂ × n̂, elastic Telast = δWF

δn̂ × n̂, vis-

cous Tvis = δRvis

δn̂t
× n̂, and thermomechanical Ttm = δRtm

δn̂t
×

n̂ torques exerted per unit LC′s volume. Here R = Rvis +
Rtm + Rth is the full Rayleigh dissipation function, Rvis,
Rtm, and Rth are the viscous, thermomechanical and thermal
contributions to R, and will be defined below, whereas WF =
1
2 [K1(∇ · n̂)2 + K3(n̂ × ∇ × n̂)2] denotes the elastic energy
densities, K1 and K3 are splay and bend elastic coefficients,
ψel = − 1

2ε0εa(n̂ · E)2 is the electric energy density, and n̂t =
dn̂
dt is the material derivative of the director n̂, respectively.

The application of the voltage across the nematic film
results in a variation of E (z) through the channel which is
obtained from [5]

∂

∂z

[(
ε⊥
εa

+ sin2 θ (τ, z)

)
E (z)

]
= 0, 1 =

∫ d

0
E (z)dz, (3)
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where E (z) = E (z)
E , E = U

d , and U is the voltage applied
across the channel, εa = ε‖ − ε⊥, ε‖, and ε⊥ are the dielectric
constants parallel and perpendicular to the director. Note that
the overbars in the electric field E will be eliminated in the
following equations.

The hydrodynamic equations describing the reorientation
of the LC phase in our case, when there exists the heat flux
q across the HALC microfluidic channel, can be derived
from the torque balance equation [9,10] Tel + Telast + Tvis +
Ttm = 0, which has the form[

δψel

δn̂
+ δWF

δn̂
+ δRvis

δn̂,t
+ δRtm

δn̂,t

]
× n̂ = 0. (4)

The linear momentum equation for the velocity field v can
be written as [9,10]

ρ
dv
dt

= ∇ · σ, (5)

where σ = σ elast + σ vis + σ tm − PI is the full stress tensor
(ST), and σ elast = − ∂WF

∂∇n̂ · (∇n̂)T, σ vis = δRvis

δ∇v , and σ tm =
δRtm

δ∇v are the ST components corresponding to the elastic,
viscous, and thermomechanical forces, respectively. Here P
is the hydrostatic pressure in the HALC system and I is the
unit tensor, respectively.

When the gradient of temperature ∇T is set up across the
HALC channel, we expect that the temperature field T (z, t )
satisfies the heat conduction equation [11]

ρCP
dT

dt
= −∇ · q, (6)

where q = −T δR
δ∇T is the heat flux in the nematic phase, and

CP is the heat capacity of the LC system and ρ is the mass
density of the nematic system.

Taking into account the microsize of the HALC channel,
one can assume the mass density ρ to be constant over the LC
volume, and thus we can deal with an incompressible fluid.
The incompressibility condition ∇ · v = 0 assumes that only
one nonzero component of the vector v exists, viz. v(z, t ) =
u(z, t )î.

To be able to observe the evolution of the director field
n̂ [or the polar angle θ (z, t )] to its equilibrium orientation
n̂eq(z), and exciting the velocity field v(z, t ) caused both by
the temperature gradient and the external electric field, we
consider the dimensionless analog of the torque and linear
momentum balance equations, as well as the entropy balance
equation.

The dimensionless torque balance equation describing the
reorientation of the LC phase can be written as [5,7]

θτ = A(θ )uz + �

[
(G(θ )θz )z − 1

2
G,θ (θ )θ2

z

]

−�δ1χzθz

(
1

2
+ sin2 θ

)
− E2(z)

2
sin 2θ, (7)

here A(θ ) = 1
2 (1 − γ21 cos 2θ ), G(θ ) = sin2 θ + K31 cos2 θ ,

Gθ (θ ) is the derivative of G(θ ) with respect to θ , χ (z, τ ) =
T (z, τ )/TNI is the dimensionless temperature, TNI is the
nematic-isotropic transition temperature, θ,z = ∂θ (z, τ )/∂z,
χ,z = ∂χ (z, τ )/∂z, � = ( Eth

πE

)2
, γ21 = γ2/γ1, γ1, and γ2 are

the rotational viscosity coefficients (RVCs), K31 = K3/K1, K1,
and K3 are the splay and bend elastic constants of the LC
phase, τ = (ε0εaE2/γ1)t is the dimensionless time, z = z/d is
the dimensionless distance away from the lower solid surface,
u = ( γ1

dε0εaE2 )u is the dimensionless velocity, δ1 = ξTNI/K1

is the parameter of the system, and ξ ∼ 10−12J/mK is the
thermomechanical constant [7]. Notice that the overbars in the
space variable z and velocity u have been eliminated. In the
case of incompressible fluid the dimensionless Navier-Stokes
equation reduces to [5,7]

1

�
δ2uτ (z, τ ) = [h(θ )uz − A(θ )θτ ]z

− δ1�

[
χzθz sin2 θ

(
1 + 1

2
sin2 θ

)]
z

. (8)

Here R(z, τ ) = γ1d4

K2
1
R(z, t ) is the full dimensionless Rayleigh

dissipation function, where R(z, t ) = Rvis + Rtm + Rth,
Rvis = 1

2 h(θ )u2
z − A(θ )θt uz + 1

2γ1θ
2
t is the viscous, Rtm =

ξθtθzTz( 1
2 + sin2 θ ) − ξTzuzθz sin2 θ (1 + 1

2 sin2 θ ) is the
thermomechanical, and Rth = 1

2T (λ‖ cos2 θ + λ⊥ sin2 θ )T 2
z

is the thermal contributions, respectively. Here h(θ ) =
α1 sin2 θ cos2 θ − A(θ ) + 1

2α4 + g(θ ), A(θ ) = γ1A(θ ),
g(θ ) = 1

2 (α6 sin2 θ + α5 cos2 θ ), uz = ∂u(z, t )/∂z, θz =
∂θ (z, t )/∂z, Tz = ∂T (z, t )/∂z, and δ2 = ρK1/γ

2
1 is a

parameter of the system. Here αi (i = 1, . . . , 6) are
six Leslie coefficients, and λ‖ and λ⊥ are the heat
conductivity coefficients parallel and perpendicular to
the director n̂, respectively. The stress tensor component
σzx is given by [7] σzx(τ ) = δR(τ )

δuz
= h(θ )uz − A(θ )θτ −

δ1�
2χzθz sin2 θ (1 + 1

2 sin2 θ ), where h(θ ) = h(θ )/γ1. When
the temperature gradient ∇T is set up across the HALC
channel, we expect that the temperature field χ (z, τ ) satisfies
the dimensionless heat conduction equation [7]

χτ (z, τ ) = δ3�[χz(λ cos2 θ + sin2 θ )]z

+ δ4

{
χθz

[
θτ

(
1

2
+ sin2 θ

)

− uz sin2 θ

(
1 + 1

2
sin2 θ

)]}
z

, (9)

where λ = λ‖/λ⊥, and δ3 = λ⊥γ1/ρCpK1 and δ4 =
ξ/(d2ρCp) are two extra parameters of the system. Note
that the overbars in the space variable z in Eqs. (7), (8), and
(9) have also been eliminated.

To elucidate the role of both the temperature gradient ∇χ

and the electric field E on the reorientation process in the
microsized HALC channel, we consider a number of regimes,
first, when the director n̂ is strongly anchored to both solid
surfaces, planarly to the lower cooler (χ1) and the upper hotter
(χ2) bounding surfaces, where

θ (z)z=0 = π

2
, θ (z)z=1 = π

2
,

χ (z)z=0 = χ1, χ (z)z=1 = χ2 (χ2 > χ1) (Case I), (10)

second, when the director n̂ is strongly anchored to both solid
surfaces, planarly to the lower hotter (χ1) and to the upper
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cooler (χ2) bounding surfaces, where

θ (z)z=0 = π

2
, θ (z)z=1 = π

2
,

χ (z)z=0 = χ1, χ (z)z=1 = χ2 (χ1 > χ2) (Case II), (11)

third, when the director n̂ is weakly anchored to the upper
hotter (χ2) and strongly (planarly) to the lower cooler (χ1)
bounding surfaces, where

θ (z)z=0 = π

2
, (∂θ (z)/∂z)z=1 = Ad

2K1
sin 2�θ,

χ (z)z=0 = χ1, χ (z)z=1 = χ2 (χ2 > χ1) (Case III), (12)

respectively, and its initial orientation is perturbed parallel to
the interface, with

θ (z, τ = 0) = π

2
, (13)

and then allowed to relax to its equilibrium distribution θeq(z)
across the microsized HALC channel.

In our case, when the director n̂ is weakly anchored to
the upper bounding surface, the anchoring energy W can be
written in the form [12] W = 1

2 A sin2 �θ , where A is the
anchoring strength, �θ = θs − θ0, θs and θ0 are the polar
angles corresponding to the director orientation on the upper
bounding surface n̂s and easy axis ê, respectively.

The velocity on these surfaces has to satisfy the no-slip
boundary condition,

u(z)z=0 = 0, u(z)z=1 = 0. (14)

Now the reorientation of the director in the microsized
HALC channel confined between two solid surfaces, when
the relaxation regime is governed by the viscous, electric,
elastic, and thermomechanical forces, and with accounting the
flow, can be obtained by solving the system of the nonlinear
partial differential Eqs. (3), (7), (8), and (9), with the appro-
priate boundary conditions both for the polar angle θ (z, τ )
[Eqs. (10)–(12)] and the velocity u(z, τ ) [Eq. (14)], as well
as with the initial condition [Eq. (13)].

III. NUMERICAL RESULTS FOR THE RELAXATION
REGIMES IN HALC CHANNEL

Here we focus on the problem of how much the coupling
between the temperature ∇χ and the director ∇n̂ gradients, as
well as the external electric field E, influences both the direc-
tion and magnitude of the hydrodynamic flow v, excited in the
HALC microfluidic channel. In our case the ∇χ is produced
by the heat flux q, directed across the HALC channel, whereas
the ∇n̂, in the initially homogeneously aligned microfluidic
channel, is set up due to the electric field, which penetrates
the bulk of the LC phase.

For the case of 4-cyano-4′-pentylbiphenyl (5CB), at tem-
perature corresponding to nematic phase, the first four pa-
rameters of our system of the nonlinear partial differen-
tial Eqs. (2), (7), (8), and (9) are δ1 = ξ TNI

K1
= 30.7, δ2 =

ρK1/γ
2
1 = 2 × 10−6, δ3 = λ⊥γ1/ρCpK1 = 9.23 × 102, and

δ4 = ξ/(d2ρCp) = 4 × 10−8, respectively. For calculations,
the value of the density ρ was chosen to be equal to
103 kg/m3, whereas both the Frank elastic coefficient K1 and
the RVC γ1 were chosen as ∼10 pN [13] and ∼0.071 Pa s [14],

respectively. The value of the heat conductivity coefficient λ⊥
is equal to ∼0.24 W/m K [15], whereas the measured value of
the specific heat Cp is equal to ∼103 J/kgK [16], respectively.

Accounting the electric field E = E k̂ directed across the
homogeneously aligned nematic channel leads to reorienta-
tion of the director field n̂, being initially parallel to the
bounding surfaces, to be parallel to E. Thus, in initially homo-
geneously aligned LC volume, the hybrid-aligned microsized
domain may arise, with nonzero gradient of the director
field ∇n̂,

Case E > Eth.

In the case when the electric field is equal to E/Eth = 2.0
and there is no temperature gradient ∇χ = 0.0, the evolution
of the director field n̂ to its equilibrium orientation n̂eq in
the microsized HALC channel, which is described by the
polar angle θ (z, τk ), at different times τk = �τ (k − 1) (k =
1, . . . , 11), is shown in Fig. 2(a). Here �τ = 0.05 and
τ11(E/Eth = 2.0) = 0.5 (∼ 2.25 ms). In the calculations, by
means of the numerical relaxation method [17], the relaxation
criterion ε = |[θ(m+1)(z, τ ) − θ(m)(z, τ )]/θ(m)(z, τ )| was cho-
sen to be equal to 10−4, and the numerical procedure was then
carried out until a prescribed accuracy was achieved. Here
m is the iteration number. In turn, when the electric field is
equal to E/Eth = 2.0 and the temperature gradient ∇χ �= 0
(�χ = 0.0162) is directed from the lower cooler χ1 = 0.97
(T1 = 300 K) to the upper hotter χ2 = 0.9862 (T2 = 307 K)
restricted surfaces (case I), the evolution of the director field
n̂ to its equilibrium orientation n̂eq in the microsized HALC
channel, which is described by the polar angle θ (z, τk ), at
different times τk = �τ (k − 1) (k = 1, . . . , 11), is shown in
Fig. 2(b). The curves shown on the left-hand side in Fig. 2(a)
has been obtained by solving the system of the nonlinear par-
tial differential Eqs. (3), (7), and (8), with χ (z, τ ) = 0, sup-
plemented with appropriate dimensionless boundary Eqs. (10)
and (14) and initial Eq. (13) conditions. The curves shown on
the right-hand side in Fig. 2(b) (case I) correspond to the polar
angle θ (z, τ ) dependencies calculated taking into account the
effect of the electric field E/Eth = 2.0, and the temperature
gradient ∇χ �= 0 is directed from the lower cooler χ1 = 0.97
(T1 = 300 K) to the upper hotter χ2 = 0.9862 (T2 = 307 K)
restricted surfaces, has been obtained by solving the system
of the nonlinear partial differential Eqs. (3), (7), (8), and (9),
with the appropriate dimensionless boundary Eq. (11) and
initial Eq. (13) conditions. It should be noted that accounting
the heat flux q leads to asymmetry in the distributions of
the polar angle θ (z, τ ), shifted to the hotter side. Second,
based on our calculations, one comes to conclusion that under
the influence both the electric field and the heat flux q, the
director’s field is more strongly turned toward the unit vector
k̂. The influence of the direction of the heat flux q on the
reorientation of the director field is shown in Fig. 3. The
curves shown on the right-hand side in Fig. 3(a) correspond
to the polar angle θ (z, τ ) dependencies calculated taking into
account both the effect of the electric field E/Eth = 2.0 and
the heat flux q = qk̂, when the temperature gradient ∇χ is
directed from the lower cooler χ1 = 0.97 (T1 = 300 K) to
the upper hotter χ2 = 0.9862 (T2 = 307 K) restricted surfaces
(case I), and has been obtained by solving the system of the
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FIG. 2. Plot of the evolution of the polar angle θ (z, τk ) to its equilibrium distribution across the HALC microfluidic channel, under the
effect of the electric field E/Eth = 2.0, at different times τk = �τ (k − 1) (k = 1, . . . , 11), respectively. The curves shown on the left-hand side
(a) correspond to the case when �χ = 0.0, whereas the curves shown on the right-hand side (b) correspond to the case when �χ = 0.0162,
respectively.

nonlinear partial differential Eqs. (3), (7), (8), and (9), with
the appropriate dimensionless boundary Eqs. (10) and (14)
and initial Eq. (13) conditions. In turn, the curves shown
on the right-hand side in Fig. 3(b) (case II) correspond to
the polar angle θ (z, τ ) dependencies calculated taking into
account both the effect of the electric field E/Eth = 2.0 and
the heat flux q = −qk̂, when the temperature gradient ∇χ

is directed from the upper cooler χ2 = 0.97 (T2 = 300 K) to
the lower hotter χ1 = 0.9862 (T1 = 307 K) restricted surfaces,
and has been obtained by solving the system of the nonlin-
ear partial differential Eqs. (3), (7), (8), and (9), with the
appropriate dimensionless boundary Eqs. (11) and (14) and
initial Eq. (13) conditions. First of all, it should be noted
that in both cases I and II, accounting the heat flux q leads
to asymmetry in the distributions of the polar angle θ (z, τ ),
shifted to the hotter side. Second, based on our calculations,
one comes to the conclusion that the influence of the heat
flux q on the orientation of the director field over the HALC
microfluidic channel is negligible in comparison with the
electric field E/Eth = 2.0. Below it will be shown that the
main role of the heat flux q is that it determines the direction
of the hydrodynamic flow v in the HALC microfluidic channel
[see Figs. 4(a) and 4(b)]. The evolution of the dimensionless
velocity field u(z, τ ) = ( γ1

dε0εaE2 )vx(z, τ ) to its equilibrium
distribution u(z, τ10) across the microsized HALC channel,

both in cases I and II, at different times τk (k = 1, . . . , 11),
under the effect of the electric field E/Eth = 2.0, are shown in
Figs. 4(a) and 4(b). The curves shown on the left-hand side
in Fig. 4(a) (case I) correspond to the evolution of the dimen-
sionless velocity field u(z, τk ) to its equilibrium distribution
across the HALC microfluidic channel, both under the effect
of the electric field E/Eth = 2.0 and the heat flux q = qk̂,
directed from the lower cooler χ1 = 0.97 (T1 = 300 K) to
the upper hotter χ2 = 0.9862 (T1 = 307 K) restricted surfaces,
whereas the curves shown on the right-hand side in Fig. 4(b)
(case II) correspond to the case when the heat flux q = −qk̂
is directed from the upper cooler χ2 = 0.97 (T2 = 300 K) to
the lower hotter χ1 = 0.9862 (T1 = 307 K) restricted surfaces.
It is shown, based on our calculations, that changing the
direction of the heat flux q, from the up direction (q = qk̂)
to the down direction (q = −qk̂), leads to a change in the
direction of the hydrodynamic flow u(z, τ ). In case I, when the
heat flux q = qk̂ is directed from the lower cooler to the upper
hotter restricted surfaces, the hydrodynamic flow is directed in
the negative sense as v(z, t ) = −u(z, t )î, whereas in case II,
when the heat flux q = −qk̂ is directed from the upper cooler
to the lower hotter restricted surfaces, the hydrodynamic flow
is directed in the positive sense as v(z, t ) = u(z, t )î. In the
first case (case I) when the direction of the heat flux q = qk̂
coincides with direction of the electric field (E = E k̂), the ab-

FIG. 3. Plot of the evolution of the polar angle θ (z, τk ) to its equilibrium distribution across the HALC microfluidic channel, both under
the effect of the electric field E/Eth = 2.0 and the heat flux q, at different times τk = �τ (k − 1) (k = 1, . . . , 11), respectively. The curves
shown on the left-hand side (a) correspond to case I, when q = qk̂, whereas the curves shown on the right-hand side (b) correspond to case II,
when q = −qk̂, respectively.
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FIG. 4. Plot of the evolution of the dimensionless velocity field u(z, τk ) to its equilibrium distribution across the HALC microfluidic
channel, under the effect of the electric field E/Eth = 2.0, at different times τk = �τ (k − 1) (k = 1, . . . , 11), respectively. The curves shown
on the left-hand side (a) correspond to case I, when q = qk̂, whereas the curves shown on the right-hand side (b) correspond to case II, when
q = −qk̂, respectively.

solute value of the hydrodynamic flow |u(z, τ )| is greater than
in case II, when these contributions partially compensate for
each other. In case I, the highest velocity value |umax(E/Eth =
2.0)| ∼ 2.92 (∼ 3.24 × 10−3 m/s) is reached near the hotter
upper (z = 0.8) restricted surface, whereas in case II, the
highest velocity value |umax(E/Eth = 2.0)| ∼ 2.32 (∼ 2.58 ×
10−3 m/s) is reached near the hotter lower (z = 0.185) re-
stricted surface. The evolution of the dimensionless tempera-
ture field χ (z, τ ) = T (z, τ )/TNI to its equilibrium distribution
χ (z, τ11) across the microsized HALC channel, both in cases
I and II, at different times τk (k = 1, . . . , 11), are shown in
Figs. 5(a) and 5(b). In both cases I and II, we have an almost
linear distribution of the temperature field χ (z, τ ) across the
microsized HALC channel.

It should be noted that in the case when the electric field is
equal to E/Eth = 2.0, the value of voltage across the 5-μm-
thick LC channel, is equal to 2.12 V.

As the magnitude of the electric field increases, up to
E/Eth = 8.0 and 10.0, respectively, the picture of the evo-
lution of the director’s field changes. In initially homoge-
neously aligned LC volume, the bigger hybrid-aligned mi-
crosized domain may arise, with nonzero gradient of the
director field ∇n̂. In the case when the temperature gradi-
ent ∇χ �= 0 [�χ = 0.0162 (∼ 7 K )], and the value of the
electric field increases to E/Eth = 8.0 and 10.0, respec-
tively, the evolution of the director field n̂ to its equilibrium
orientation n̂eq in the microsized HALC channel, which is

described by the polar angle θ (z, τk ), at different times τk =
�τ (k − 1) (k = 1, . . . , 11), are shown in Figs. 6(a) and 7(a).
Here �τ = 0.05 and τ11(E/Eth = 8.0) = 0.5 (∼ 0.14 ms),
whereas τ11(E/Eth = 10.0) = 0.5 (∼ 0.09 ms), respectively.

First of all, it should be noted that accounting the stronger
electric field E/Eth = 8.0 and 10.0, respectively, directed
across the homogeneously aligned nematic channel leads to
reorientation of the most part of the central domain of the
LC volume along the direction of the electric field E = E k̂.
Second, with increasing of the electric field up to values of
8.0 and 10.0, accounting or not accounting the temperature
gradient ∇χ practically does not affect the final distribution
of the director field n̂ across the microsized HALC channel,
although the intermediate profiles of the polar angle θ (z, τk ),
with k = 1, . . . , 5 retain asymmetry [see Figs. 6(a) and 7(a)].

The curves shown in Figs. 6(c) and 7(c) (case A)
correspond to the evolution of the dimensionless velocity
field u(z, τk ) to its equilibrium distribution across the
HALC microfluidic channel, both under the effect of the
stronger electric field E/Eth = 8.0 and 10.0, respectively,
and the heat flux q = qk̂, directed from the lower cooler
χ1 = 0.97 (T1 = 300 K) to the upper hotter χ2 = 0.9862
(T2 = 307 K) restricted surfaces, whereas the curves shown
in Figs. 6(d) and 7(d) (case AA) correspond to the evolution
of the dimensionless velocity field u(z, τk ) to its equilibrium
distribution across the HALC microfluidic channel, under the
effect of only the stronger electric field E/Eth = 8.0 and 10.0,

FIG. 5. Same as described in the caption of Fig. 4, but a plot of the evolution of the temperature field χ (z, τ ) to its equilibrium distribution
across the HALC microfluidic channel.
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FIG. 6. Plot of the evolution of the polar angle θ (z, τk ) (a) and the dimensionless velocity field u(z, τk ) (c) to their equilibrium distributions
across the HALC microfluidic channel, both under the effect of the electric field E/Eth = 8.0 and the heat flux q = qk̂. (b), (d) Same as in
panels (a) and (c), respectively, but there is no temperature gradient ∇χ = 0.0.

when there is no temperature gradient ∇χ = 0.0. In case
A, the highest velocity value |umax(E/Eth = 8.0)| ∼ 40.0
(∼ 0.71 m/s) and |umax(E/Eth=10.0)|∼120.0 (∼ 3.34 m/s),
respectively, whereas in case AA, the highest velocity
value are: |umax(E/Eth = 8.0)| ∼ 55.0 (∼ 0.98 m/s) and
|umax(E/Eth = 10.0)| ∼ 27.0 (∼ 0.75 m/s), respectively.

Equilibrium distribution of the velocity profile u[z, τ11 =
ueq(z)] across the microsized HALC channel, both under the
effect of the electric field E/Eth, for the number of values
2.0, 4.0, 8.0, and 10.0, and the heat flux q = qk̂, directed
from the lower cooler χ1 = 0.97 (T1 = 300 K) to the upper
hotter χ2 = 0.9862 (T2 = 307 K) restricted surfaces, is shown
in Fig. 8(a). Our calculations have shown that as the electric
field increases greater than E/Eth = 2.0, the velocity pro-
files |u(z, τ11) = ueq(z)| gradually decrease. The dependence
of the maximum value of the absolute equilibrium velocity
|umax(E/Eth )| on the value of electric field E/Eth, for the
number of regimes is shown in Fig. 8(b). First of all, it should
be noted that when calculating the first two curves [curves 1
(case B) and 2 (case BB), Fig. 8(b)], the influence of electric
field E was taken into account using Eq. (1), while when
calculating curve 3 (case BBB) [Fig. 8(b)], it was used the
relation E = U/d , where U is the voltage applied across the
LC channel. Second, the first (case B) and third (case BBB)
curves were calculated for the case when the director n̂ is
strongly anchored to both solid surfaces, planarly to the lower
cooler and the upper hotter bounding surfaces, whereas the
second curve (case BB) was calculated for the case when the

director n̂ is weakly anchored to the upper hotter and strongly
(planarly) to the lower cooler bounding surfaces. For the case
of 5CB, at temperature corresponding to nematic phase, the
combination Ad/2K1 is approximately equal to 0.1.

Our calculations have shown that the dependence of
the maximum value of the absolute equilibrium velocity
|umax(E/Eth )| on the value of electric field E/Eth is char-
acterized by the monotonic increase of |umax(E/Eth )| up to
maximum value 1.66 at E/Eth ∼ 2.0, whereas further increase
of the value of E/Eth leads to decrease in |umax(E/Eth )|.
Such behavior of |umax(E/Eth )| versus E/Eth can be explained
by the rapid growth of the coefficient 1/� = ( πE

Eth
)
2
, in the

left-hand side of Eq. (8), with the growth of E/Eth. In this
case, the contribution of electric forces prevails over the con-
tributions of viscous, elastic, and thermomechanical forces.
In this case, any horizontal flow of the LC phase stops in the
microsized HALC channel, since under the influence of strong
external electric field E the dipoles of molecules forming
the LC phase are oriented along this field. This once again
shows that the macroscopic description of the nature of the
hydrodynamic flow of an anisotropic liquid subtly senses
the microscopic structure of the LC material. In this case,
any horizontal flow of the LC phase stops in the microsized
HALC channel, since under the influence of strong external
electric field E, the dipoles of molecules forming the LC
phase are oriented along this field. This once again shows that
the macroscopic description of the nature the hydrodynamic
flow of an anisotropic liquid subtly senses the microscopic

FIG. 7. Same as described in the caption of Fig. 6, but the value of the electric field E/Eth is equal to 10.0
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FIG. 8. (a) Plot of the equilibrium dimensionless velocity u(z, τ11) = ueq(z) vs. the dimensionless space coordinate z, both under the effect
of the heat flux q = qk̂, directed from the lower cooler to the upper hotter restricted surfaces, and the electric field E/Eth = 2.0 (curve 1), 4.0
(curve 2), 8.0 (curve 3), and 10.0 (curve 4). (b) Dependence of the maximum value of the absolute equilibrium velocity |umax(E/Eth )| on the
value of the electric field E/Eth, for the number of regimes, cases B (curve 1), BB (curve 2), and BBB (curve 3).

structure of the LC material,

Case E � Eth.

In the case when the electric field E is much greater than
Eth, the evolution of the velocity field u(z, τ ) in the microsized
HALC channel is described by the reduced dimensionless
Navier-Stokes Eq. (8), which can be written as

lim
E→∞

1

�
δ2u,τ (z, τ ) → ∞, (15)

where 1/� = (
πE
Eth

)2
. In this case when limE→∞ 1

�
→ ∞,

one has, with accounting the no-slip boundary condition [see
Eq. (14)], that u(z, τ ) = 0. As a result, in the case when
E → ∞, the dimensionless torque balance Eq. (7) is reduced
to equation

θτ (z, τ ) = −E2(z)

2
sin 2θ (z, τ ). (16)

By substitutions θ = 2θ and β = E2τ , the last equation takes
the form

θβ (z, β ) = − sin θ. (17)

There is exact solution of Eq. (17)

θ (z, β ) = tan−1[sinh−1(wβ − z + z0)], (18)

where z0 is a constant, and w is the solitary wave
velocity along the axis z. Indeed, ∂βθ (z, β ) =
− cosh−1 (wβ − z + z0), and taking into account the relation
tan θ (z, β ) = sinh−1 (wβ − z + z0) = A, one has that
sin θ (z, β ) = A/

√
1 + A2 = cosh−1 (wβ − z + z0). Finally,

one can rewrite Eq. (17) in the following way: ∂βθ (z, β ) =
− cosh−1 (wβ − z + z0) = − sin θ (z, β ). Solution Eq. (18)
describes the solitary kink θ (z, β ) which is spreading along
the z axis with the velocity

w(z, t ) = E2E (z)dεaε0

γ1
= 1

�

K1

dγ1
E (z), (19)

where E (z) = E (z)/E , E = U/d , and U is the voltage applied
across the LC channel. Physically, this means that in the case
E � Eth, directed across the HALC channel, the director field

n̂ has initially been disturbed, for instance, at the bottom of
the LC channel, with the condition θ (z0 = 0, τ = 0) = π

2 , and
that disturbance must propagate in the form of the solitary
wave along the z axis with the velocity w. For instance, when
the electric field E = 100Eth (U ∼ 106V ) is applied across
the HALC channel 5 μm thick, the solitary wave velocity w

along the z axis is equal to 2.87 m/s.

IV. CONCLUSION

The nonmechanical method for producing flow in a mi-
crofluidic homogeneously aligned liquid crystal (HALC)
channel containing a temperature gradient ∇T under the
effect of the external electric field E has been proposed.
Fluid pumping principle is based on the coupling between the
electric and director fields, together with accounting the effect
of the temperature gradient ∇T . In the nematic microfluidic
channel where director anchoring on the bounding surfaces
are the same, i.e., both homogeneous, and when the gradient
of the temperature field ∇T does not exist, the horizontal
flow of the nematic material is excited only by the electric
field E = E (z)k̂ directed orthogonally to the homogeneously
aligned LC sample. In turn, accounting the temperature gra-
dient ∇T leads to the additional contributions both to the
torque and linear momentum balance equations. Calculations,
based upon the nonlinear extension of the classical Ericksen-
Leslie theory, with accounting the entropy balance equation,
show that due to the coupling among the ∇T , ∇n̂, and E
in the HALC microfluidic channel the horizontal flow v =
vx î = uî may be excited. The direction and magnitude of v
is influenced both by the heat flux q across the microfluidic
channel and the strength of the electric field E. The results
of calculations showed that the dependence of the maximum
value of the equilibrium velocity distribution |umax(E/Eth )|
across the LC channel versus electric field E/Eth is character-
ized by maximum value at E/Eth = 2.0. In the case when the
electric field E � Eth, the horizontal flow of the LC material
completely stops and a novel mechanism of converting of the
electric field in the form of the kinklike wave reorientation of
the director field n̂ can be excited in the LC channel.
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Physically, this means that in the case E � Eth, directed
across the HALC channel, the director field n̂ has initially
been disturbed, for instance, at the bottom of the LC chan-
nel, and that disturbance must propagate in the form of the
kinklike wave across the LC channel.

Notes that the relaxation behavior of the director field n̂
in the form of the kinklike wave θ (z, β ) which is spreading
along the z axis with the velocity w, probably can be ob-
served in polarized white light. Taking into account that the
director reorientation takes place in the narrow area of the LC
sample (the width of the kinklike wave) under influence of
the electric field E, for instance, E = 100Eth or U ∼ 106V
across the 5 μm nematic 5CB channel, the kinklike wave can
be visualized in polarized white light as a dark strip running
along the normal to both bounding surfaces, with the velocity
w ∼ 2.87 m/s.

It should be noted that the role of temperature gradient in
formation of the number of nematorheological regimes, using
the Ericksen-Leslie (EL) theory, under isothermal condition
(without accounting the entropy balance equation) and with-
out the external electric field, has been investigated [18]. It
was shown that the EL theory is able to describe a number
of rheological regimes, including alignment and tumbling
behavior in the shear flow for polar LC compound, such as

4-cyano-4′-octylbiphenyl (8CB) [19]. It was shown that the
director field n̂ can be oriented in two ways under the action
of the shear flow v. First, the hydrodynamic torque, exerted
per unit LC volume, vanishes when the director aligns at an
equilibrium angle θeq = cos−1 (−γ1/γ2), with respect to the
velocity v. Second, the director continuously rotates in the
shear plane. Taking into account that both coefficients γ1 and
γ2 are temperature dependent functions, one should expect
that some LC materials undergo a transition from an aligning
regime to a tumbling instability in the vicinity of a second
order nematic-smectic A phase transition temperature [19,20].
But we are dealing with a typical aligning nematic (5CB), and
in our case a strong transverse electric field tends to orient the
director’s field along this field.

This once again shows that the macroscopic description of
the nature of the hydrodynamic flow of an anisotropic liquid
subtly senses the microscopic structure of the LC material.
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