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Chiral motion in colloidal electrophoresis
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Asymmetrically charged, nonspherical colloidal particles in general perform complex rotations and oblique
motions under an electric field. The interplay of electrostatic and hydrodynamic forces complicates the prediction
of these motions. We demonstrate a method of calculating the body tensors that dictate translational and
rotational velocity vectors arising from an external electric field. We treat insulating rigid bodies in the
linear-response regime, with indefinitely small electrostatic screening length. The method represents the body as
an assembly of point sources of both hydrodynamic drag and surface electric field. We demonstrate agreement
with predicted electrophoretic mobility to within a few percent for several shapes with uniform and nonuniform
charges. We show that even symmetric shapes can have strong chiral twisting motions. The method applies more
generally to active colloidal swimmers.
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I. INTRODUCTION

An important class of driven-particle motion is swimming,
that is, propulsion through a fluid without external forces on
the particles. Swimming motion can be driven by chemical
reactions at the surface of the particles or by active beating
motion of projections from the surface of a living organism
[1]. The paradigm of such swimming motion is electrophore-
sis, driven by an external electric field on a charged body [2].
In ordinary fluids any such body is surrounded by ions that
cancel its net charge, thus canceling any net force due to the
external field. Still, the opposing forces on the surface and
the nearby screening ions create a relative motion between the
surface and the fluid. The body moves forward by pushing the
fluid backward.

Individual swimming bodies such as electrophoretic col-
loids can show complex and controllable motion. A body can
assume chiral steady-state rotation which can be synchronized
with other like bodies by suitable external driving [3–6]. This
is in addition to the striking forms of cooperative motion,
such as swarming, arising from interparticle interactions [1].
Equally dramatic effects have been demonstrated in nonlinear
electrophoretic phenomena [7–9]. Such motions are of in-
creasing interest as reproducible asymmetric colloidal bodies
become increasingly available [10,11]. Here we show that a
substantial chiral motion is to be expected for charge-bearing
colloidal particles, even without special asymmetry in their
shape.

The existence of chiral electrophoresis even for nonchiral
shapes is well established [3]. These chiral effects require only
a simple linear response under ordinary experimental condi-
tions. They follow from conventional laws of electrophoresis
[12]. They result from the body’s shape and charge distri-
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bution alone. Likewise, the effects we demonstrate lie well
within the scope of conventional numerical means [13]. How-
ever, we know of no demonstration of chiral electrophoresis
for general symmetric bodies like those treated here.

This enlarged range of chiral electrophoresis was found
via a simplified method of analysis.1 We begin with Ander-
son’s insightful representation of the electrostatic flow over a
charged surface [15]. At any point of the surface that bears
charge, there is a nonzero slip velocity proportional to the
external field. The flow velocity over a given point of the
surface is solely determined by electrostatic forces near that
point. At such a point there is a local transverse surface
electric field �Es proportional to the external field as perturbed
wby the nonconducting body. This �Es depends on the shape
of the body but not on the charge it bears. To determine the
flow velocity one needs only this surface field at the point in
question times the zeta potential between the bulk fluid and
the charged body beneath [15]. The electrophoretic motion of
the body is then generated by this given velocity field as the
sheath of fluid slips over the body.

Though determining the slip velocity field is straightfor-
ward, inferring the resulting body motion is more subtle.
To determine this motion from the velocity at the surface
is a challenging boundary value problem. Several numerical
methods exist to address such problems. Perturbation methods
exist for shapes close to a symmetrical shape that is analyti-
cally solvable [3,16]. Boundary element methods [13,17,18]
represent a smooth solid object by applying its boundary
conditions at an array of points. These methods are capable
in principle of exploring the chiral phenomena we report.

1In a prior work [14] we used a primitive version of this represen-
tation that did not exploit the Anderson slip velocity picture. Instead,
we used a separate shell of Stokeslets to represent the forcing by the
screening charges. It could not represent the limit of zero screening
length directly.
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Remarkably, one may represent the object adequately using
only a subset of the conventional boundary conditions. Our
representation is a set of N point forces called Stokeslets
distributed over the surface. Each Stokeslet produces a flow
proportional to its force as dictated by the Oseen tensor (3).
These Stokeslets are sufficient to control the surface velocity
at N points on the surface by solving a simplified set of simul-
taneous linear equations. The Stokeslets create a flow outside
the body consistent with the specified surface velocities [19].

The use of the Oseen tensor here implies the assumption
that the body is at rest with respect to the distant fluid. Holding
the body at rest requires a net force and torque, which are
transmitted to the fluid. This net force and this torque are
necessarily the sums of the Stokeslet forces and torques that
give the required surface flow, as determined above. These are
the constraint forces required to hold the body at rest.

Knowing these Stokeslet forces is sufficient to determine
the motion when the body is released from rest [12]. Its veloc-
ity is simply the Stokes sedimentation velocity corresponding
to the given force and torque. Its angular velocity is given
by an analogous rotation sedimentation mobility. Imposing
this velocity and angular velocity on the body necessarily
generates a drag force and torque which cancels the electro-
static force and torque calculated above. The result is that
no force or torque is transmitted to infinity, as required for
electrophoresis. This simple superposition of sedimentation
drag and electric effects is possible because the electrostatic
slip velocity relative to the body is not affected by the overall
motion of the body, as recognized by Anderson [15].

In Sec. II we spell out our implementation of this scheme.
Section III describes our numerical validations of known
mobilities of spheres, cubes, and spherocylinders. In Sec. IV
we discuss how chiral motion arises in terms of the two
tensors that give the velocity and angular velocity. In Sec. V
we give quantitative predictions of chiral motion for specific
shapes. Even shapes as symmetric as a cube are shown to
give a substantial chiral response. In Sec. VI we discuss ex-
perimental implementations, concluding that these effects are
readily observable despite potential limitations. We discuss
how the distinctive responses of asymmetric bodies can be
used, noting how chiral response allows different ways to ma-
nipulate the orientations of bodies via time-dependent applied
fields. We also discuss how our method may be generalized to
other forms of driving. We summarize in Sec. VII.

II. POINT-SOURCE IMPLEMENTATION

We begin by defining a set of mesh points labeled i at
which our various fields are to be sampled. Several hundred
mesh points at positions �ri are spread evenly over the surface
as shown in Fig. 1. For what follows, it is also necessary to
know the normal unit vector n̂i and the Voronoi area [20] Ai

associated with each mesh point.
We then place a small Stokes sphere or Stokeslet at each

source point. An imposed set of forces �fi on these Stokeslets
generates a velocity field everywhere described by the Os-
een tensor mentioned above. By constraining the Stokeslets
to maintain fixed relative positions, we may determine its
rigid-body motion in an external field by the method of
Kirkwood and Riseman [21,22], detailed in Appendix B. We

FIG. 1. Representation of a solid sphere as a distribution of point
sources used in Sec. III. One-quarter of the sphere is shown; the
full sphere has 499 points. We place the polarization charges Qi and
Stokeslet forces �fi at these points to generate the surface electric field
�Es

i and velocity field �vs
i . To determine the Stokes drag, a different set

of Stokeslet forces is determined at these same points.

refer to the set of fixed points at fixed mutual separations as
a Stokeslet object. Analogously, we may place charges at the
source points to create an electric field around the object. We
may choose these charges to implement a desired boundary
condition on the electric fields at each Stokeslet point under a
given external field.

We may consider this Stokeslet object as a physical ob-
ject which has a well-defined response to external forces or
electric fields. Once the Stokeslet object is defined, these
responses are uniquely determined by finite matrix operations
to arbitrary accuracy, as discussed in the Appendices. By
choosing the Stokeslet points to mimic the shape and charge
distribution of a desired solid object, the Stokeslet object’s
responses can also mimic those of the solid object to good
accuracy, as shown below.

As noted in the Introduction, we simplify the description
by holding the charged object at rest and calculating the force
and torque exerted on the fluid as a result of the external
electric field. The numerical steps needed to determine elec-
trophoretic mobility tensors are as follows.

Step 1. Determine the surface electric field, denoted by �Es
i ,

induced by a given imposed field �E0.
Step 2. Determine the slip velocity field �vs

i .
Step 3. Determine a set of Stokeslet forces �fi that reproduce

these �vs
i .

Step 4. Determine the total force �F and torque �τ resulting
from these Stokeslet forces.

Step 5. Find the four Stokes mobility tensors that give the
linear velocity �U and angular velocity �� of the body for a
given �F and �τ .

A. Charge-independent aspects

Of these quantities, the surface electric field (step 1) and
the Stokes mobility tensors (step 5) depend only on the
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body’s shape, not its charge distribution in the absence of
the imposed �E0. Other numerical methods are available to do
these steps. Our method enables us to describe the object in a
common Stokeslet representation throughout the calculation.
For these steps we follow the methods of Ref. [14] with little
modification. For definiteness we give the explicit equations
in Appendix A.

In Appendix B we also summarize our calculation of the
Stokes mobility tensors for the object as in Ref. [14], using
the method of Kirkwood and Riseman [21,22]. This method
can represent a hydrodynamically opaque object in which the
interior fluid moves along with the body. This calculation
produces four tensors MV F , MV τ , M�F , and M�τ such that

�V = MV F · �F + MV τ · �τ , �� = M�F · �F + M�τ · �τ . (1)

These are the Stokes mobility tensors.

B. Charge-dependent aspects

The remaining steps depend on the charge distribution
or zeta potential over the object. First we consider step 2:
determining the surface velocities �vs

i at the mesh points. Each
of these is determined by the von Smoluchowski formula [23]
using the local electric field �Es

i and zeta potentials ζi,

�vs
i = −ζi

εrε0

η
�Es

i , (2)

where η is the viscosity of the fluid, εrε0 is the dielectric
constant, and ζi is the potential of the charged surface relative
to the bulk (resting) solvent, proportional to the surface charge
density and the screening length. (A positively charged body
with positive ζ moves towards the electric field, and the flow
over the surface relative to the body is away from the field).
Since �Es

i was computed above and the ζi are presumed to be
known, this formula determines the �vs

i and completes step 2.
To address step 3 we determine the Stokes velocity vs

i j at
mesh point i owing to a Stokeslet at mesh point j �= i exerting
a force �f j on the fluid. This velocity is given by the Oseen
formula [19]

�vs
i j = 1

8πη

�f j + ( �f j · r̂)r̂

|r| , (3)

where �r ≡ �ri − �r j and η is the viscosity. The total �vs
i at

Stokeslet i from step 2 is then the sum of these �vs
i j over j,

as detailed in Appendix C. The resulting 3N equations give
linear conditions sufficient to determine the 3N �f ’s.

Once the �fi have been determined, the total force �F trans-
mitted to the fluid is simply

∑
i

�fi. Likewise, the total torque

�τ about a given origin is
∑

i �ri × �fi. As seen above, this
force and torque are proportional to the external field �E0. By
calculating these for a basis set of �E0 we thus determine the
matrices MFE and MτE defined by

�F = MFE · �E0, �τ = MτE · �E0. (4)

Determining MFE and MτE accomplishes step 4.
At this point we have determined the force and torque

applied to the object and transmitted to the fluid when the
object is held at rest. It remains to find the velocity and angular
velocity of the object when released from rest. This motion of

the released body does not alter the electrophoretic force and
torque calculated above; these are determined by the viscous
drag across the slip layer and they depend only on the relative
velocity between the local surface and the adjacent screening
charge.2 Without constraint forces, these electric forces are
balanced by drag forces due to the motion. These drag forces
themselves are just those that appear on the right-hand side of
Eq. (1).

Combining Eq. (1) with Eq. (4), we obtain the desired �V
and �� for given �E0. These have the form [3]

�V = MV E · �E0, �� = M�E · �E0, (5)

where

MV E = MV F · MFE + MV τ · MτE ,

M�E = M�F · MFE + M�τ · MτE .
(6)

This procedure generates motion of the Stokeslet object with
no addition of force or torque to the fluid, by construction.
It also obeys a discrete form [24] of the Lorentz reciprocal
relation [19], adapted by Teubner [25]. Further, it may be used
to represent solid objects to good accuracy, as we now show.

III. VALIDATION

To verify that our discrete source method is reliable in prac-
tice, we simulated several objects where we could validate the
method against independent calculations. We did extensive
comparisons using a spherical object. We also simulated a
cube and a capsule shape to verify their behavior with uniform
charge.

A. Sphere

For our comparisons we used the 499-point Stokeslet
object pictured in Fig. 1 and Table I. We first checked the
accuracy of step 1 by comparing our discrete-source values
of Es/E0 against the known analytic formula. The induced
dipole moment resulting from Es differed by 3.8% relative to
the exact result.

We then used our method to calculate the electrophoretic
mobility of several charge distributions on a sphere. Here we
used the known analytic formula for Es [26]. The calculation
was simpler and the results more accurate than our earlier
version [14]. We studied a uniformly charged sphere with a
zeta potential of 1 and two nonuniform distributions. One of
these was a capped sphere where Stokeslets in the top hemi-
sphere had a zeta potential of 1 and Stokeslets on the bottom
hemisphere had a zeta potential of −1. The other was a striped
sphere with Stokeslets in the top and bottom quarters having
a zeta potential of 1 and the middle half having a zeta
potential of −1, giving overall charge neutrality. We observe

2For general Stokeslet objects, this locality may not be well defined,
since an arbitrary set of Stokeslets need not resemble any smooth
surface. However, if Stokeslets are arranged over a smooth surface
with spacing much smaller than the local inverse curvature, the
Stokeslet object may approximate the corresponding smooth body,
as noted above. Then the above reasoning applies, a Stokes mobility
tensor may be determined, and the �V and �� may be calculated [14].
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TABLE I. Calculated electrophoretic motion for known cases. The Stokeslet object for the three sphere cases was the 499-point object
pictured in Fig. 1. Stokeslets have a radius of 0.0252 and cover the sphere with an area fraction of 8%. The plane of the figure is the x-z plane.
The notation �yx indicates the y-directed angular speed (out of the page) in a horizontal (x-directed) electric field, and similarly for velocities V .
Predicted velocities [15] are given in units of the von Smoluchowski velocity of Eq. (2) for the uniformly charged object. Measured velocities
are given in the same units. The cube Stokeslets are indicated in Fig. 6. The density in the y-z faces is slightly smaller than in the other faces,
leading to a small anisotropy in the velocity response. For each of the spheres the unreported forces and torques are consistent with 0 or are
equal to the reported ones by symmetry.

Charge distribution Predicted Measured Error

uniform sphere Vxx = 1.00 1.01 1%
capped sphere

�yx = 1.125 1.133 1%

striped sphere Vxx = −0.19 −0.18 2.8%
Vyy = −0.19 −0.18 2.8%
Vzz = 0.38 0.39 1%

Vxx = 1.00 0.90 10%
Vyy = 1.00 0.93 7%

uniform cube Vzz = 1.00 0.93 7%
uniform capsule

Vxx = 1.00 1.05 5%
Vyy = 1.00 1.06 6%
Vzz = 1.00 1.07 7%

that even using as little as 499 Stokeslets, the motion due to
an electric field in the three Cartesian directions are within
3% of the expected electrophoretic mobility as shown in
Table I. Discrepancies improved when the number of points
was increased.

We also observed the total flow field created by the
Stokeslet forces �fi. As expected, we see a tangential flow
around the surface of the body. Additionally, there is a flow
inside the body, since we do not use a solid body constraint in
our calculations.3 The field for the uniform sphere is visible
in Fig. 2. While not apparent from the field diagram, the flow
in the figure falls off inversely with distance as expected from
Stokes flow.

B. Cube

We calculated the electrophoretic motion of a cube rep-
resented by 1542 Stokeslets, as shown in Fig. 6. We repre-
sented each face as a regular lattice of points.4 Maintaining
continuity at the edges while maintaining a symmetric cubical
shape required slight anisotropy of the lattice on the different

3The interior flow is that which would occur if the slip velocity
were imposed on a liquid sphere or cube. It is not an artifact of the
Stokeslet discreteness.

4Automatic means to place the Stokeslets on the surface are avail-
able [27]. We did not explore these in this initial study.

faces. While flat-sided shapes simplify the uniform placement
of points on each face, they complicate the treatment of edges.
Our calculation requires assigning a normal direction to each
point. Thus we omitted the edge points in our cube, which
have no well-defined normal. Our calculation also requires an
assigned area for each point. These areas varied in our cube,
especially next to the edges. To obtain well-defined areas we
numerically determined the Voronoi area for each point.

FIG. 2. Flow fields calculated by the method of Sec. II. Shown on
the left is the flow around a uniformly positively charged fixed sphere
in a cross section across the equator. The external field �E 0 is pointing
up. The black outline shows the position of the surface of the sphere.
The flow lines show direction only; they do not show magnitude.
Flow of the screening charge, and hence the fluid, is opposite to the
field. Shown on the right is the analogous picture for a cube.
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TABLE II. The depolarization field created to counteract the nor-
mal component of �E 0 creates a dipole in the direction of �E 0. Here the
dipole moments for a cube with �E 0 in each of the Cartesian directions
are recorded. The calculated dipoles are identical in two directions;
however, due to the varying density of depolarization charges on
two of the six faces of the cube, the dipole moment in the third
direction is slightly (1%) different. The predicted dipole moments
are 11% greater than the dipole moments of the depolarization field
of a sphere with the same volume. This source of discrepancy was
treated in [29].

�E 0 Dipole moment Predicted dipole moment Error

{0, 0, 1} {0, 0,−0.0804} {0, 0, −0.0795} 1.2%
{0, 1, 0} {0, −0.0804, 0} {0, −0.0795, 0} 1.2%
{1, 0, 0} {−0.0794, 0, 0} {−0.0795, 0, 0} 0.1%

By assigning a unit zeta potential to the Stokeslets, we
could compare the calculated electrophoretic speed with the
von Smoluchowski prediction. The calculated speed was
8–10 % too small, depending on orientation. The observed
anisotropy arises from the different arrangement of the points
on different faces of the cube. To understand the overall
discrepancy, we checked the Stokes sedimentation mobility
[28] and the induced electric dipole moment of the cube
(Table II) against published calculations. Both showed only
small discrepancies from the predications. We further verified
that the flow velocity around the cube falls off as the inverse
third power of the distance at large distances, as expected for
electrophoretic motion. We observed the flow generated by
the Stokeslet forces �fi (Fig. 2). As with the sphere, we saw the
required tangential flow near the boundary of the body and a
flow inside the body.

A remaining aspect that we could not check was whether
the imposed surface velocities �vs at the Stokeslets sufficed
to represent the expected potential flow [30] around a uni-
formly charged object. Since our velocities necessarily change
abruptly at the edges of our object, it is plausible that our
discrete representation is deficient in this respect. Our im-
proved agreement with the smooth capsule shape reported
below supports this view.

C. Capsule shape

To evaluate the accuracy of representing smooth objects
of lower symmetry, we studied the 1542-Stokeslet sphero-
cylinder or capsule shape of Fig. 11(a). As with the cube, we
assigned a unit zeta potential to each Stokeslet. The transla-
tional velocity thus obtained was only 5–7 % different from
the expected von Smoluchowski velocity. This velocity varied
by no more than 2% in different orientations despite sub-
stantial anisotropy of the capsule. Unlike for the cube where
the velocity was smaller than expected, the capsule traveled
faster than expected. We attributed these higher speeds to
inaccuracy in determining the Stokes sedimentation mobility.
This calculation requires good exclusion of the external flow
from the interior of the object, but we noticed incomplete
exclusion where the density of points was low, so that the
external flow is like that of a smaller object. We verified that

the velocity field around the object varies smoothly away from
the object, as with the sphere and the cube.

IV. CHIRAL RESPONSES

Having validated our methodology, we now turn to the
main goal of the paper: demonstrating chiral effects in realistic
objects. For this, we must determine �V and �� for each step
of the motion, using Eq. (5). This motion can be subtle
since the M depend on orientation and are thus influenced
by the calculated ��. To work out this dependence, it suffices
to consider the �� equation. Once ��(t ) is found from this
equation, the matrices MV E and M�E are known functions of
time and �V (t ) may be inferred immediately.

As the body rotates with angular velocity ��, any matrix M
characterizing it rotates together with the body. Denoting by
R(t ) the rotation matrix from the laboratory frame to the body
frame at time t , the matrix M(t + dt ) in the laboratory frame
is then [31]

M(t + dt ) = R(dt ) · M(t ) · RT (dt ). (7)

Here R(dt ) is a differential rotation related to �� by the
antisymmetric matrix denoted by ( ��)×, defined by

( ��)× · �A ≡ �� × �A (8)

for any vector �A. Specifically,

( ��)× ≡ −
⎛
⎝

0 �3 −�2

−�3 0 �1

�2 −�1 0

⎞
⎠. (9)

Now R(dt ) and RT (dt ) can be written

R(dt ) = 1 + dt ( ��)×,

RT (dt ) = R(−dt ).
(10)

Using these relations, we infer

Ṁ(t ) = ( ��)× · M(t ) − M(t ) · ( ��)×, (11)

or in commutator notation

Ṁ = [( ��)×, M(t )]. (12)

Recalling that �� = M�E · �E0, the equation of motion for M�E

is evidently

d

dt
M�E = [(M�E · �E0)×, M�E ]. (13)

Rotational motion of the form of Eq. (13) is encountered in
several contexts. One is sedimentation of an asymmetric body
under an external force �F . Here M�E is replaced by M�F of
Eq. (1) and �E0 is replaced by �F . Another is the free rotation
of a rigid body with conserved angular momentum �L and
inertia tensor I [31]. Here the equation of motion has the form
�� = I−1 · �L, so M�E is replaced by I−1 and �E0 is replaced
by �L. Here the tensor of interest is symmetric. We begin our
discussion of the electrophoretic motion by considering the
analogous case of a symmetric M�E tensor.

A symmetric M has three orthogonal eigenaxes and hence
six eigendirections. When �E0 is aligned with one of these,
it remains so aligned and thus �� remains fixed. When �E0 is
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FIG. 3. Example motions induced by M�E showing the effect of
the antisymmetric part. Colored lines are trajectories traced by �E 0 as
viewed in the frame of the object, beginning near each fixed point.
The color of the trajectory indicates which eigenaxis it started from.
(a) No antisymmetric part. All trajectories are closed. Fixed points
are at the center of each cube face. Two pairs of trajectories (red
and green) remain localized near their starting points. Trajectories
starting near the bottom and top fixed points (blue) form a single
connected trajectory that oscillates between the two starting points.
(b) Small antisymmetric part. Trajectories starting near the three
unstable fixed points (front, left, and bottom) spiral away from their
starting point. All converge to the stable fixed point on the right.
Trajectories near the right and rear stable fixed points converge to the
local stable fixed point. Since the motion of any point on a trajectory
depends only on its location on the sphere, no two trajectories may
cross. (c) Large antisymmetric part. All starting points converge
to the stable fixed point on the right. The trajectory from the top
unstable fixed point is not shown.

slightly displaced from one of these directions, it does not
systematically return to it. That is, the fixed �� are at most
neutrally stable. Figure 3(a) shows an example.

If one perturbs such a symmetric M with a small antisym-
metric addition, the equivalence of the positive and negative
eigendirections is broken. One of this pair of fixed points
becomes locally stable while the other is unstable [6]. The
eigendirections n̂ in which M�E n̂ = λnn̂ also shift and are
no longer orthogonal. Now, typically �� evolves to one of
the locally stable fixed points. Thus the long-time motion is
rotation around a stable eigendirection such that �� (=M�E �E0)
and �E0 are parallel. The final angular velocity �� f is given by
the corresponding λn �E0.

The opposite extreme is a purely antisymmetric M. Any
antisymmetric M can be written in the form M = ( �p)× for
some vector �p referred to as the dipole vector. The unit vector
p̂ rotates in time according to

˙̂p = �� × p̂ = [( �p)× · �E0] × p̂ = ( �p × �E0) × p̂. (14)

This simplifies to

˙̂p = pE0[Ê0 − p̂( p̂ · Ê0)]. (15)

This is just the equation for an electric dipole relaxing in the
external field �E0. The quantity p̂ · Ê0 is strictly increasing
with time except when p̂ ‖ Ê0; thus any initial �p reaches
a final state aligned with �E0. Evidently p̂ is the only real
eigenaxis of M�E and its eigenvalue is 0.

The same behavior occurs if a small symmetric part is
added to this M. There is still only one real eigenvalue λ1, but
this λ1 is no longer zero in general. One direction on this axis
is globally stable; any initial �� evolves to this eigendirection
[32]. A body with this property evidently has a preferred

direction of rotation around �E0. It thus shows a clear chirality.
We call such bodies axially aligning. The property of axial
alignment offers a kind of handle allowing a set of such bodies
to be manipulated [5,6].

For almost all M�E matrices one may achieve this axially
aligning behavior by multiplying the antisymmetric part by a
sufficiently large factor [33]. This suggests that among asym-
metrically charged bodies, axial alignment is not uncommon.
Whether axial alignment of charged bodies is appreciable in
practice is an open question. How strong can axial alignment
be? What conditions are necessary to create it?

Axial alignment requires conditions on both the shape and
the charge distribution of the body. As for charge distribution,
the Morrison theorem [30] guarantees that a uniform distri-
bution gives no rotation: M�E = 0 regardless of its shape. As
for shape, it is known [15] that a spherical shape cannot be
axially aligning with a nonzero rotation frequency, regardless
of its charge distribution. However, preferred chirality does
not require a chiral shape, as shown by Long and Ajdari [3].
It is sufficient for the charge distribution to be chiral. Though
the shape need not be chiral, it is not known what departure
from a spherical shape is needed.

V. CHIRAL MOTION FROM LOCALIZED CHARGES

Using the methods of Secs. II and III, we may readily
explore the range of chiral behavior obtained with simple
shapes. In this section we show that strong chirality can occur
even with no special regard for the shape. We consider the
cube shape and the capsule shape of Sec. III. Evidently,5M�E

is the sum of the response matrices from each point on the ob-
ject, i.e., the sum of contributions from each ζi. Accordingly,
we consider objects with isolated points of charge. First we
recall the factors that limit chiral behavior and set its scale.

To estimate the magnitude of chiral rotation, it is natural
to use the typical scales of velocity found in experiments.
These have electric fields of the order of 100 V/cm and
zeta potentials of the order of tens of millivolts. This implies
nominal electrophoretic speeds of order 100 μm/s. Thus a
natural scale for an angular velocity in electrophoresis is such
that the surface velocity is the von Smoluchowski velocity
of Eq. (2) for the system in question. In what follows we
will compare angular velocities in this spirit, in terms of the
von Smoluchowski speed divided by a characteristic body
dimension.

To estimate the effect of nonuniform charge on the overall
scale of the motion, we may compare with the case of a
sphere. Here only the monopole and quadrupole moments
of the zeta potential affect the translational motion and only
the dipole moment affects the angular velocity [15]. For the

5Each point source ζi gives rise to a surface flow field that is
proportional to ζi at Stokeslet i and zero elsewhere. Thus the overall
surface flow field �vs

i is the superposition of the contributions from
each ζi. Finally, the force, torque, and hence the velocity and angular
velocity are linear in the surface flow field. Thus the nonlinear
properties of electrophoresis result from a nonlinear dependence on
the position and drag coefficients of the Stokeslets, not on their
charges.
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FIG. 4. Electrophoresis of the sphere with positive point charge
marked + in a vertical field E0. (a) Forces with charge at the equator
showing upward force on the sphere and equal downward force on
the adjacent screening charge. (b) Sphere after a short time, showing
charge rotated towards the top.

simple case of bodies with a single sign of charge, these
moments are of comparable order, barring special symmetries.
Thus, to simplify comparisons, we may consider bodies with
a single sign of charge and with the same total charge. The M
for an object with both positive and negative charges are then
simply the sum of a term for the positive charges and a second
term for the negative charges.

A. Single point charge

We first consider objects where a positive charge is con-
fined to an arbitrarily small region of the surface so that it
may be treated as a point charge. For this case the structure
of M�E is simplified. The case of a point charge on a sphere
shows the overall behavior. We suppose that �E0 is upward
and that a positive point charge is initially on the horizontal
equator of the sphere. The negative screening ions near the
point charge are pushed vertically downward by the upward
surface field �Es and the adjacent surface is pushed upward
(Fig. 4). This push leads to a rotation of the charge vertically
upward. The force on the rotated charge continues to push it
upward. However, when the charge has reached the top of
the sphere, there is no tangential surface field to push the
screening charge. Accordingly, the motion stops.

This behavior generalizes to arbitrary shapes and arbitrary
charge locations. As with the sphere treated above, M�E is
proportional to the surface field �Es at the charged site i. This
�Es is in turn proportional to �E0 via a matrix MEsE . These �Es at
i are restricted: They must lie in the two-dimensional tangent
plane at i for any three-dimensional �E0. Thus MEsE cannot be
invertible: It must have at least one null vector, denoted by Ô,
for which MEsE · Ô = 0. (This null direction need not be in
the normal direction n̂i as in the case of the sphere.) Any �E0

in this direction can give no rotation, since there is no surface
field to drive motion. Indeed, no translation can occur for this
�E0 either.

Since �E ‖ Ô can give no rotation, it is necessarily a fixed
point of the dynamics. We have noted that whenever M�E has
a unique real eigenvalue, its eigendirection must be a globally
stable fixed point [32]. The single-point-charge examples
examined below M�E indeed had a unique real eigenvalue
and thus the fixed point was globally stable. Thus, for these

FIG. 5. Electric fields on a cube. The bottom left image is the
perspective view of the cube with upward-pointing external field
vector �E 0. The top right image shows the top view showing contour
lines of electrostatic potential using a commercial software package
[34]. The �r points from the center of the cube to a site near the
right corner of the front edge. The �Es indicates the direction of the
surface field there, perpendicular to the isopotential lines. This �Es

has a component perpendicular to both �r and �E 0.

examples the only field that can produce motion, �Es, vanishes
and all motion must come to a stop. Thus a single charge does
not generically give ongoing chiral motion. In view of this
finding, we are led to consider objects with two point charges.

B. Two point charges

In order to find a final state of steady chiral rotation we
require an �E0 such that �� is along �E0. We first consider
an object with symmetrical shape whose drag tensors are
isotropic, such as a cube. We ask whether it is possible to
place a pair of charges so that there is chiral rotation. Since
the body’s drag tensors are isotropic, �� and the torque �τ must
be parallel. Thus the �E0 must give a torque parallel to �E0.
This torque is necessarily the sum of the torques due to the
two charges. Either of these torques may have components
not parallel to �E0, but these components must be equal and
opposite.

Each of these torques must come from a local force from
each of the charges. In order to create a torque along the �E0

axis, there must be a force perpendicular to �E0 and to the
moment arm �ri from the center of drag to the charge, as shown
in Fig. 5. The direction of this force is dictated by the direction
of the surface field �Es. The needed torque would be consistent
with a surface field component perpendicular to �E0 and to �ri.
As shown in the figure, a cube with �E0 along one axis has
points �ri with this property.
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As noted in Sec. V A, a single charge at such a point need
not give chiral rotation. Instead, it may simply rotate into the
fixed-point direction in which the surface field vanishes. To
avoid this outcome, there must be other torques so that the full
total torque is along �E0. As seen in Fig. 5, two like charges
placed at opposite points near the corners of a face fill the
requirements.

Here we have argued that the needed torques can arise
from the surface fields of a cube. To verify this requires a
calculation following the methods of Sec. II. We describe
examples in the next section.

The above reasoning suggests a prescription for creating
chiral rotators with pairs of like point charges. One chooses
an axis of symmetry as the desired direction of �E0. Then with
�E0 in this direction one identifies points �ri where symmetry
allows the surface field to have a component perpendicular
to both �E0 and �ri. Finally, one places a second point at an
opposite position such that the two surface fields sum to
a vector along �E0. In the next section we implement this
prescription with a capsule shape.

C. Examples

The above examples suggest ways to arrange charge that
rotates about a particular axis in a given chiral sense. The
argument neglects many specifics, such as the precise relation
between the surface field and the torque. Thus they give no
quantitative measure of the effect, nor do they address the
behavior of the object in other orientations. In this section we
explore these questions using two nonchiral shapes: a cube
and a capsule shape, each with one or two point charges.

1. Cube

We used the 1542-point Stokeslet unit cube described in
Sec. III. We first gave the cube a single charge at the position
shown in Fig. 6 on the (x, y, 1) face next to the (0, y, 1)
edge. Implementing the needed �vs field produced the Stokeslet
forces indicated. Enforcing the �vs

i = 0 condition away from
the charged site generated strong Stokeslet forces opposing
the one at the charged site. The velocity field away from the
Stokeslet sites varied strongly from site to site, but became
smooth beyond a fraction of the cube length r.

Clearly the net force on the object is more complicated than
the single point force considered in Secs. V A and V B. Still,
the force is localized near this charge. For a point shear force
applied near a flat surface, the drag force falls off as the −3
power of distance [35]. Much of the force at the charge is thus
canceled by nearby forces, creating a strong force dipole. Yet
some of this force must survive for a finite object, since there
is a nonzero electrophoretic velocity. Thus the localized force
picture of Secs. V A and V B is qualitatively consistent with
observations.

Following the procedure of Sec. II, we computed the
translation mobility MV E relative to that of the corresponding
uniformly charged cube,

MV E =
⎛
⎝

0.773 804 −0.312 964 −0.101 27
−0.242 914 1.949 23 −1.143 69
0.001 086 34 −0.662 741 0.420 455

⎞
⎠. (16)

FIG. 6. Stokeslet forces on a singly charged cube. The upward
external field �E 0 in the (0,0,1) direction is indicated. The colored
arrow shows the direction of surface velocity �vs at the charge position
(cf., Fig. 5). Small black arrows show the Stokeslet forces needed to
create the indicated �vs at the charge and 0 elsewhere; these forces are
concentrated near the charge. The basis at the lower right shows the
1̂, 2̂, and 3̂ axes used for the M�E and MV E matrices reported in the
text.

In the same units, the rotation mobility M�E is

M�E =
⎛
⎝

0.413 811 −4.161 62 2.482 41
1.219 99 0.305 149 −0.666 799

−1.419 69 2.930 46 −1.310 55

⎞
⎠. (17)

These matrices are precise for our Stokeslet object approx-
imating a cube; they are found by solution of large matrix
equations with machine precision. In view of the results in
Sec. III, they should be a good approximation of the behavior
of an actual charged cube as well.

As anticipated in Sec. V A, the matrix for this single point
of charge is singular; its determinant vanishes. The quantita-
tive characteristics of M�E are shown graphically in Fig. 7.
For any initial state of the system, the position and orientation
after a short time step 	t are determined by �V and ��. Using
these, we may calculate the position and orientation at the
end of the time step. We may also calculate the new MV E and
M�E by rotating the original MV E and M�E using the rotation
matrix R(	t ) ≡ exp[( ��)×	t] via Eq. (7). Repeated iteration
of this procedure gives the matrices and the orientation after
any number of time steps.

The addition of a second point charge adds persistent
chiral response. We first show the symmetric case treated in
Sec. V B. In Fig. 8 a second point charge is added to the cube
of Fig. 7, at the symmetrically opposite edge, maintaining a
total charge of 1. The M�E for this second charge is found
by rotating the M�E of Eq. (17) by a half turn about the 3̂
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(a) (b)

(c) (d)

FIG. 7. (a) and (c) Characteristic axes of the M�E matrix for the
unit cube with a single unit charge. The position of the charge is
shown as a colored dot. (a) View from the perspective of Fig. 5. The
bold colored bar has unit length and marks the aligning direction. The
arrow shows the dipole vector �p corresponding to the antisymmetric
part of Eq. (17). The two perpendicular axes are the principal axes
of the symmetric part of M�E with lengths equal to the eigenvalues
in the units defined in the text. The third much shorter axis is nearly
parallel to the aligning direction. (c) Front view. (b) and (d) Multiple-
exposure views of cube motion in the right-pointing external electric
field �E 0 indicated by an arrow, calculated as described in the text.
The cube is indicated by an orthogonal basis with the light colored
(red) axis in the aligning direction [cf., (a)]. The length of the axes is
the cube size. One hundred exposures are shown. The time between
adjacent exposures is the time for the cube with unit charge spread
uniformly to travel 0.05 cube lengths. The initial orientation was
slightly displaced from the negative aligning axis, an unstable fixed
point. Motion accelerates away from this fixed point as the cube
rotates towards the stable fixed point and translates to the right.
Exposures collapse on the right as translation and rotation slow to
a stop as explained in Sec. V A. (d) Same motion as in (b) from a
view angle rotated 90◦ about �E 0 relative to (b).

(a)

(b)

(c)

FIG. 8. Motion of a symmetrical two-charge cube. (a) Cube
showing the charges and the characteristic axes defined in Fig. 7.
(b) and (c) Multiple-exposure view with the conventions of Fig. 7.
The cube shows a strong negative helicity, making about one turn for
one cube length of translation.

(a)

(b)

(c)

FIG. 9. Motion of a symmetrical two-charge cube showing the
effect of unequal charges in a 70:30 ratio. (a) Cube showing the
larger charge near the front edge and the characteristic axes defined
in Fig. 7. The aligning direction and the dipole are no longer
perpendicular to the face. (b) and (c) Multiple-exposure view with
the conventions of Fig. 8. The motion of the center is now helical.

axis. The response of the two-charge object is the sum of the
responses the two singly charged objects, each with charge
1/2.6 Thus, by adding the rotated matrix to its unrotated

6Each point source ζi gives rise to a surface flow field that is
proportional to ζi at Stokeslet i and zero elsewhere. Thus the overall
surface flow field �vs

i is the superposition of the contributions from
each ζi. Finally, the force, torque, and hence the velocity and angular
velocity are linear in the surface flow field. Thus the nonlinear
properties of electrophoresis result from a nonlinear dependence on
the position and drag coefficients of the Stokeslets, not on their
charges.

(a)

(b) (c)
FIG. 10. Motion of a cube with two charges on adjacent edges

of a face. The charge ratio was −1:2. The net charge is the same as
in the previous figures. (a) Cube showing a smaller negative charge
in darker color (blue). The characteristic axes are defined in Fig. 7.
The strong differences from cases above result from the presence
of opposite charges. (b) and (c) Multiple-exposure view with the
conventions of Fig. 8. The initial orientation was arbitrary. Two
orthogonal views are shown, as in the previous figures. The helical
radius is a substantial fraction of the cube length.
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TABLE III. Chiral features of objects with two localized charges.
The units of length are the side length for the cube and diameter
for the capsule. Position symmetry indicates whether the second
charge was placed in a symmetric position so that the rotation axis
could be inferred by symmetry. Here � is in units of speed of
the uniformly charged object per unit length. Positive � indicates
right-hand rotation. Pitch is the number of lengths moved in one
rotation. Radius is the radius of helical path of the middle of the
object.

Charge Position
Object Figure ratio symmetry � Pitch Radius

cube 8 1:1 yes −1.3 2.0 0
cube 9 7:3 yes −1.0 2.1 0.14
cube 10 −1:2 no −1.4 2.3 0.46
capsule 11(b) 1:1 yes +0.16 22 0.02
capsule 11(e) 7:3 yes +0.25 11 0.55

counterpart, we obtain the M�E matrix for the two-charge
system. The translation matrix MV E is found analogously.

Much of the behavior can be anticipated by symmetry. The
alignment axis is evidently in the 3̂ direction, and the velocity
of the cube when oriented in this direction must also be along
3̂. There is a rotation since the two charges produce equal and
nonzero torques about this axis.

The chiral motion seen for this symmetric shape persists
for general objects with asymmetric charge magnitudes and
position, as shown in Figs. 9 and 10. Altering the charge ratio
by a factor of order unity does not strongly degrade the chiral
motion.

2. Capsule shape

The chiral motion reported above generalizes to other
shapes. We chose the spherocylinder or capsule shape men-
tioned in Sec. III to show that the chiral motion occurs for
smooth shapes as well as the sharp-edged cube shape. We
used the strategy suggested in Sec. V B to guess appropriate
charge positions. As with the cube, we chose regions where
the surface field had a component perpendicular to both the
applied field and the displacement from the center for a given
external field. To gauge the effect of spreading the charge, we
distributed the charge on three triangular clusters of Stokeslets
rather than on single Stokeslets. With a single triangle of
charge, the null eigenvalues in MV E and M�E were replaced by
very small ones: 10−2 for MV E and 10−4 for M�E . We attribute
these nonzero values to using a charge with a nonzero spatial
extent. We then placed a second charge at a symmetric point
such that the capsule would have twofold symmetry about the
transverse axis, as shown in Fig. 11(b). In Fig. 11(c) we show
the effect of unequal charges.

3. Summary

The above examples indicate that strongly chiral motion is
readily attainable with a wide range of simple configurations.
We summarize the quantitative features of the chiral motion
in Table III. These objects generally rotate about their stable
axis at a rate of order unity when scaled by the von Smolu-
chowski speed of the object and the object’s size. We could

(a)

(b) (c)

(d)

(e) (f)

(g)

FIG. 11. Motion of capsule shapes with aspect ratio 2:1, bearing
two localized charges totaling 1. (a) Stokeslet representation of
the object showing the two charged regions as six light-colored
dots. (b) Characteristic axes of the electrophoretic mobility using
the conventions of Fig. 7. The short black arrow is equal to the
asymptotic velocity. (c) and (d) Two orthogonal views of the motion
using the conventions as in Fig. 7. Basis vectors have unit length,
equal to the cylinder diameter. The duration of the trajectory was the
time for the uniformly charged cylinder to move 18 diameters. After
a rapid reorientation the capsule rotates slowly about its symmetry
axis. (e)–(g) Same as (b)–(d) but with a charge ratio of 7:3.

change the placement and relative magnitudes over significant
ranges without strongly degrading the chiral motion. The
constraints on shapes needed for chiral motion were modest.
Even the high-order anisotropy of a cube is sufficient. Thus
many colloidal particles encountered in nature should show
a distinctive and observable chiral signature. We discuss this
prospect in the next section.

VI. DISCUSSION

Our goal in this study was to provide convincing evidence
of experimentally accessible chiral signatures in colloidal
particles. To this end, we developed a concrete numerical
method capable of giving reliable estimates of the rate of
chiral rotation for given shapes. The chiral effects were of
order unity on the scale of conventional electrophoretic mo-
tion. Electrophoresis experiments are not generally designed
to observe the chiral motions described here. Still, apparatus
that can track conventional electrophoretic phenomena should
be able to track these motions.

Here we discuss limitations of our results for predicting
measurements. We discuss how our point-charge results can
be used to estimate more realistic cases of distributed charge.
We note how this chiral response can be used to organize a
suspension of like bodies. We comment on the hydrodynamic
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interactions expected between such bodies. Finally, we survey
the implications of our findings beyond electrophoresis.

A. Limitations

At first sight our Stokeslet-object representation appears as
a major limitation in accuracy, particularly when contrasted
with boundary element methods such as that in [18]. The
boundary element method views the body as a polyhedron
and generates the flow by matching hydrodynamic boundary
conditions at the center of each face. In contrast, we represent
the body as a dilute set of Stokes spheres distributed over the
body surface. There is no explicit representation of boundary
conditions on a solid surface. Thus flow on the outside can
penetrate into the interior. Nevertheless, these Stokeslets give
a good representation of flow around a solid body, due to
hydrodynamic screening, as discussed in Appendix B. Well-
established boundary element methods such as that in [18]
are likely better for representing specific hard surface shapes.
However, the colloidal objects of greatest interest often have
ill-known shapes and ill-characterized diffuse interfaces. Here
there is no incentive for a precise calculation. It is in this
context that our Stokeslet object representation is most appro-
priate. Here our method gains simplicity at the cost of a minor
loss of precision in the velocity fields.

As seen above, the limited resolution of our mesh limits the
precision of our predictions to the 5–10 % level. The worst
discrepancies appear to result from sharp features like the
cube edges. Increasing the number of Stokeslets improves the
agreement, as with Ref. [14]. The calculations reported here
were feasible on a personal computer. However, the computa-
tion time increases rapidly with the number of Stokeslets, so
this method would be inefficient for precise computation.

Beyond this, the assumptions used in our calculations set
further limits on experimental predictability. Most notably,
our theory is confined to linear responses to the external field
E0. Thus it takes no account of effects like dielectrophore-
sis (quadratic in E0) or the dependence of the screening
charge distribution on E0. This restriction and experimental
limitations limit experimental values of E0 to the order of
100 V/cm. Further, the realities of ionic equilibrium in typical
solutions limit the attainable zeta potentials to tens of milli-
volts or less.

The examples above show chiral motions of point-charged
bodies comparable to uniformly charged bodies with the same
total charge. However, this comparison can be misleading. A
given attainable zeta potential confined to a small fraction of
the surface necessarily means a small von Smoluchowski ve-
locity, proportional to the relative area of the charged region.
Thus the point charges discussed here constitute an impracti-
cal limit. Instead, one must inevitably consider charge spread
over some minimal fraction of the surface. This spreading of
the charge over a finite area necessarily diminishes the chiral
effects. Indeed, if the charge is spread uniformly over the
surface, all chiral effects must cease: Only the scalar response
dictated by the Morrison theorem [30] is possible. Thus, as
one expands from zero the region on the body where the
zeta potential is nonzero, the chiral effects (such as �) first
increase in proportion to the total charge, but then decrease as
the charged area becomes comparable to the total area.

There are also practical limitations on the range of body
sizes that can show significant chiral motion. For a given
fixed zeta potential distribution and a fixed von Smoluchowski
speed, � varies inversely with the size of the body. Small
bodies rotate faster, but they also undergo faster rotational dif-
fusion. For the typical conditions envisaged above, rotational
diffusion swamps chiral rotation for bodies smaller than the
scale of 100 nm. The maximum size is set by experimental
convenience. The von Smoluchowski speeds are typically on
the order of 1 mm/s or slower, so � becomes inconveniently
small for particles much larger than 1 mm.

Not all charge distributions are expected to give the kind
of alignment to a unique axis shown here. For example, there
is no simple aligning axis if eigenvalues of M�E are all real
[32], as shown in Fig. 3(b). While this sort of motion is less
predictable and reliable than the aligning cases shown above,
the richness of possible behaviors is greater. Such motion,
especially in time-dependent external fields, potentially gives
further means for organizing colloidal dispersions along the
lines discussed below.

B. Uses

Conventional electrophoresis is widely used to separate
and characterize objects of molecular or colloidal scale ac-
cording to size and charge [2]. The bodies studied here have a
richer response: Their motion depends on the 18 parameters
of the MV E and M�E tensors. These can all be measured
in principle by varying the field direction and observing the
resulting motion. This gives a means of distinguishing many
aspects of the shape and the charge distribution of a body
such as a cell or virus. Each element of MV E and M�E

determines a particular moment of the zeta potential over the
surface. For spheres, these are combinations of conventional
monopole, dipole, and quadrupole moments [15]. For general
shapes the moment functions corresponding to the MV E and
M�E elements are specific to the shape, as found by Teubner
[25]. Thus measuring the tensorial response, both chiral and
nonchiral, can in principle provide substantial insight into the
charge distribution over a body. Since this distribution often
depends on conditions such as pH, a ready means of observing
these changes is certainly desirable, and electrophoresis offers
such a means.

Even when the shape of the body and the corresponding
Teubner moments are known, the utility of the electrophoretic
measurement in constraining the charge distribution hinges on
the distinguishability of these moments. Thus knowing these
moments for a given shape is important. The method of Sec. II
gives partial information by predicting the motion expected
from an assumed charge distribution. In a recent work we
showed how to extend these methods to obtain the Teubner
moments explicitly for a given Stokeslet object [24], thus
providing a direct transform from the charge distribution to
the corresponding MV E and M�E .

A further use of tensorial electrophoresis is to drive co-
ordinated motion using time-dependent fields. In conven-
tional electrophoresis, the motion simply follows the instan-
taneous field. However, the objects studied above undergo a
well-defined transient motion whenever E0 is changed. This
transient response provides a handle for manipulating the
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orientation of the object. When applied to a dispersion of
many like objects in random orientations, a uniform time-
dependent �E0 can bring them all into the same orientation
and synchronous rotation. Such orientation and synchronous
rotation were demonstrated numerically in the context of
sedimentation [4,6].

C. Interactions

The treatment above considers a single body in isolation;
however, most of the uses contemplated above involve sus-
pensions of many particles in a common fluid. Thus the flow
caused by one body’s motion must influence nearby bodies.
These hydrodynamic interactions produce strong collective
effects when the flow is caused by external body forces, as
in gravitational sedimentation. Then the far-field velocity is
a force monopole with a 1/r dependence on separation r.
When the sedimenting bodies are asymmetric, they perturb
each other’s orientation and collective motion substantially
[36–38]. Generally, these interactions arise from the gradient
of the velocity caused by the driven particle. In electrophoresis
with no net force on the body, the asymptotic field falls off
at least as fast as 1/r2, a force dipole.7 Its gradient thus falls
off as 1/r3, so that hydrodynamic interaction is predominantly
local.8 Still, the short-range interactions due to electrophoretic
driving are a potential source of collective effects, especially
collective chiral effects [9,39].

D. Generalization

Electrophoresis generates motion without injecting mo-
mentum into the host fluid. This distinctive feature is shared
by many forms of phoresis. Further, many of these phoresis
effects arise from a thin shear layer resulting from the phoretic
driving, for example, from chemical or thermal nonequilib-
rium. In these respects, they may be treated in parallel with
electrophoresis [16]. As with electrophoresis, these motions
are proportional to an externally imposed gradient. Both the
difficulties and the interest of studying asymmetrical shapes
and nonuniform local shear are parallel to the electrophoretic
case. Thus most of the methodology used here and many of the
phenomena predicted should also have parallels for general
forms of phoresis. In particular, the flexibility of the Stokeslet
object approach is equally advantageous for studying these
phenomena.

Beyond these generalized forms of phoresis, the Stokeslet-
object representation is potentially useful for understanding
the effect of particle asymmetry in many forms of driven

7This force dipole flow occurs, for example, when a charged sphere
drags a neutral sphere tethered to it.

8An additional form of interaction is electrostatic. The �Es of one
body is a response to the local �E01 at that body. This local �E01 is
the external field �E0 plus the field induced on the second body, �Ep.
At a long distance r from the second body, �Ep is a dipole field, of
order E0/r3. Thus the first body experiences an external field altered
by a factor of order Ep/E0 ∼ 1/r3. This electrostatic effect falls off
comparably to the hydrodynamic effect treated in the text. We note
that this effect is independent of any explicit charge on the bodies, so
it must dominate if the explicit charge is very weak.

colloids, where the driving imposes a velocity field at the
surface. In active swimmers [1,40,41] the velocity at a given
point depends only on its position on the surface, not on an
external field. Thus there is no counterpart of the response
matrices M used here. The velocity and angular velocity
simply rotate rigidly with the body as it moves. Section II B
shows how to solve this problem, step 3 in our procedure.

VII. CONCLUSION

Experimental study of tensorial electrophoresis has been
meager up to now, despite its fundamental nature and its in-
triguing consequences. Above we provided a general scheme
for predicting these consequences from well-defined proper-
ties of the moving body. The scheme is suitable for anticipat-
ing the motion given the body’s properties without the restric-
tions of previous methods. These electrophoretic properties
are just one example of how driven or active colloidal particles
can create much richer behavior when they have asymmetric
shapes. In all these phenomena, one needs to know how
particles of a given asymmetry will move. The Stokeslet-
object approach developed here offers a means to this end.
We hope this approach will stimulate more experiments on
asymmetric driven colloids.
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APPENDIX A: DETERMINATION OF THE SURFACE
FIELD �Es

In this and the following Appendixes we give the specific
formulas needed to determine the electrophoretic mobility for
a Stokeslet object.

The determinating �Es is a standard problem in numerical
electrostatics, and many software packages exist to solve it
[34]. We use the method below for the sake of consistent
methodology.

The surface field �Es
i is the sum of the imposed field �E0

and the induced field at i caused by polarization charges Qj

at each mesh point j. This surface charge is present because
the current density Js and hence Es must have no normal
component on this insulating body. The contribution �Ei j at
point i due to charge j �= i is given by Coulomb’s law

�Ei j = Qj

4πε0

�ri − �r j

|�ri − �r j |3 . (A1)
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There is also a contribution to �Es
i due to Qi itself. Here

the approximation of a point charge is inadequate; thus we
represent Qi as a uniform disk of charge whose area is the
Voronoi area Ai of the mesh point i. The induced field at i due
to Qi is then Qin̂i/ε0Ai. The net field �Es

i at point i is then

�Es
i = �E0 +

∑
j �=i

Q j

4πε0

�ri − �r j

|�ri − �r j |3 + Qin̂i

ε0Ai
. (A2)

We now require that the normal component �Es
i · n̂i vanish for

every i. There is one such requirement for each of the charges
Qi. Thus Eq. (A2) determines the Qi for any given imposed
field �E0. Using these Qi in Eq. (A2) gives the resulting
tangential �Es

i field. We determine these �Es
i for each of three

orthogonal directions of �E0. This allows us to infer the �Es
i for

any �E0 by superposition.

APPENDIX B: DETERMINING SEDIMENTATION
DRAG COEFFICIENTS

We consider the Stokeslets to be moving as a rigid body
with velocity �V and angular velocity �� about some given
origin. Thus Stokeslet i moves at a velocity �ui given by

�ui = V + �� × �ri. (B1)

The fluid at i has a velocity vi arising from the drag forces
on the other Stokeslets, denoted by �g j . Each Stokeslet j
contributes a velocity at i denoted by �vi j and given by the
Oseen tensor of Eq. (3),

�vs
i j = 1

8πη

�g j + (�g j · r̂)r̂

|r| , (B2)

In general, the fluid velocity �vi is not equal to the Stokeslet’s
imposed velocity �ui; this difference in velocity entails a drag
force �gi on the fluid given by �gi = γ (�ui − �vi ). Using Eq. (B1)
for �ui and

∑
j �vs

i j for �vi gives a closed set of linear equations

for the forces �gi. The total force �F on the fluid is then
∑

i �gi;
the total torque �τ is

∑
i �ri × �gi. This force is proportional to

the imposed �V and to ��. The proportionality of �F to �V defines
the translational resistance matrix K of Happel and Brenner
[19] (see Chap. 5 therein). In general, the proportionalities of
�F and �τ to �V and �� define the full set of four resistance matri-
ces. In combination, these give the ( �F , �τ ) for given ( �V , ��) via
the 6 × 6 resistance tensor R such that ( �F , �τ ) = R( �V , ��). For
use below, we invert this R matrix to find the proportionality
of �V to �F and �τ . This defines the Stokes mobility matrices
MV F and MV τ . The matrices giving the proportionality of ��
to �F and �τ are defined similarly:

�V = MV F · �F + MV τ · �τ , (B3)

�� = M�F · �F + M�τ · �τ . (B4)

These mobility matrices accurately reflect the drag of the
Stokeslet object insofar as Eq. (B2) accurately represents
the velocities imposed on a Stokeslet by its neighbors. It
is accurate at separations between Stokeslets that are much
larger than their radii a = γ /6πη. That is, the Stokeslets
making up the Stokeslet object must be sufficiently dilute.

To represent the flow around a solid sedimenting object,
there must be no relative motion between the Stokeslets
and their adjacent fluid. Thus the interior must move with
the Stokeslets: It must be screened from the exterior fluid.
The Oseen flow from the Stokeslets readily provides this
screening, as demonstrated in Ref. [14]. Briefly, in an exterior
flow at speed v0, an N-Stokeslet object of size R produces an
opposing flow speed of order v0Na/R, where a is the Stokeslet
radius. Any N � R/a thus produces significant screening, so
the exterior flow penetrates only a distance λ 	 R into the
interior. The number of Stokeslets required is readily compat-
ible with the requirement of diluteness stated in the preceding
paragraph. We verified that the test objects of Sec. III also
show the necessary strong screening.

APPENDIX C: DETERMINING ELECTROPHORETIC
FORCES �fi

The imposed velocities �vs
i are linearly related to the �fi using

Eq. (3):

�vs
i =

∑
j

�vs
i j = 1

8πη

∑
j

�f j + ( �f j · r̂)r̂

|r| . (C1)

As with the surface fields �Es
i , the term �vs

ii, i.e., the velocity
at i due to the Stokeslet at i itself, requires special treatment.
A point Stokeslet at i would give a divergent velocity at i. To
remove this unphysical divergence, we replace the point with
uniformly distributed force distributed over a disk with the
Voronoi area Ai. The resulting �vs

ii is the integral of this force at
the center of the disk. Combining the contribution from �r with
that at −�r, we see that only the first term in Eq. (3) contributes,
so �vs

ii points along �fi. Specifically,

�vs
ii = | fi|

8η
√

πAi
[3 f̂i − (n̂i · f̂i )n̂i]. (C2)

APPENDIX D: CHOICE OF STOKESLET POSITIONS

In the examples reported above, we used ad hoc methods
aimed at achieving uniformity of the Stokeslets on the surface.
There is no doubt much scope for improvement in this po-
sitioning using the extensive literature on mesh optimization
[27].
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