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Run-and-tumble bacteria slowly approaching the diffusive regime
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The run-and-tumble (RT) dynamics followed by bacterial swimmers gives rise first to a ballistic motion due
to their persistence and later, through consecutive tumbles, to a diffusive process. Here we investigate how
long it takes for a dilute swimmer suspension to reach the diffusive regime as well as what is the amplitude
of the deviations from the diffusive dynamics. A linear time dependence of the mean-squared displacement
(MSD) is insufficient to characterize diffusion and thus we also focus on the excess kurtosis of the displacement
distribution. Four swimming strategies are considered: (i) the conventional RT model with complete reorientation
after tumbling; (ii) the case of partial reorientation, characterized by a distribution of tumbling angles; (iii) a
run-and-reverse model with rotational diffusion; and (iv) a RT particle where the tumbling rate depends on the
stochastic concentration of an internal protein. By analyzing the associated kinetic equations for the probability
density function and simulating the models, we find that for models (ii), (iii), and (iv) the relaxation to diffusion
can take much longer than the mean time between tumble events, evidencing the existence of large tails in
the particle displacements. Moreover, the excess kurtosis can assume large positive values. In model (ii) it is
possible for some distributions of tumbling angles that the MSD reaches a linear time dependence but, still, the
dynamics remains non-Gaussian for long times. This is also the case in model (iii) for small rotational diffusivity.
For all models, the long-time diffusion coefficients are also obtained. The theoretical approach, which relies
on eigenvalue and angular Fourier expansions of the van Hove function, is in excellent agreement with the
simulations.
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I. INTRODUCTION

There are billions of different species of bacteria on Earth
[1]. Because of adaption, their life and swimming styles vary
across a multitude of distinct environments and conditions
[2–6]. The vast majority have never been researched and are
thus dubbed microbial dark matter [7]. On the other hand, the
Escherichia coli bacteria continue to be extensively studied.
Their motion is usually modeled as a run-and-tumble (RT)
dynamics. In fact, their flagella can rotate and propel the
cell body in a “run” mode which can suddenly terminate
whenever some of them reverse direction [8]. This leads to
a quick reorientation mode called “tumble”—which is then
followed by another run—with an average tumbling angle of
approximately 70◦ [9]. In the case of marine bacteria, up to
70% of them are thought to have a distribution of tumbling
angles peaked around 180◦ instead [10]. Examples include
Shewanella putrefaciens and Pseudoalteromonas haloplanktis
[11], and thus in this case we can speak of a run-and-reverse
motion.

In his seminal work [12,13], Berg showed that bacteria
and other microswimmers performing run-and-tumble motion
develop, in the long term, a diffusive motion. If V is the
characteristic run velocity and ν0 the tumble rate (or rotational
diffusion coefficient, in the case of mutant swimmers that
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tumble only very rarely), then the diffusion coefficient scales
as D ∼ V 2/ν0, with a prefactor that depends on the tumble
properties. For example, in the case of three-dimensional
Markovian swimmers, i.e., each tumble is uncorrelated from
previous ones and tumble events are distributed as a Poisson
process, D = V 2/[3ν0(1 − 〈cos θs〉)], where θs is the tumbling
(or “scattering”) angle between the pre- and posttumble direc-
tors [12,13]. In the case of E. coli, the data in Ref. [12] gives
〈cos θs〉 � 0.33, ν0 � 1.2 s−1, V � 14.2μ/s, which results
in D � 87μ2/s [14]. The diffusive description of bacterial
spreading is extensively used because of its simplicity, which
allows, for example, to couple this random dynamics with
hydrodynamic flows and with the diffusion of nutrients and
other chemicals or to consider complex geometrical restric-
tions (for recent applications, see Refs. [15–18]). Also, it
is possible to include cell division and death by employing
reaction-diffusion equations, as it is common in chemical
and environmental engineering to describe the spatiotemporal
spreading of bacteria [19–21]. Finally, nonlinear effects as
a density-dependent diffusion coefficient are key to describe
motility-induced phase separation [22,23]. At short times, on
the other hand, the swimmers’ persistent motion gives rise to
a ballistic motion. Naïvely, the crossover time Tcross between
the ballistic and diffusive regimes is expected to be relatively
small and to scale as ν−1

0 . In this article we thoroughly show
that, depending on tumbling strategies and parameters, the
prefactor of this scaling can be quite large and thus the nondif-
fusive regime can persist for long times. This can happen even
if the mean-squared displacement (MSD) reaches a linear
time dependence relatively quickly since having MSD ∼ t is a
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necessary but not sufficient condition for being in the diffusive
regime. Note that, associated with Tcross, there is a spatial scale
Lcross = √

MSD(Tcross) where the diffusive description is not
valid. Simulations of active Brownian particles (ABPs) with
large values of Lcross show that for lengths of this order a
nondiffusive regime indeed arises [16].

Our motivation is to quantitatively study the dispersal
process of bacteria. With that purpose in mind, we consider
several run-and-tumble models which are distinct in swim-
ming strategy and compare how slowly these microswimmers
approach the diffusive regime. We also provide the spreading
dynamics for temporal and spatial scales smaller than Tcross

and Lcross, respectively. The swimming strategies considered
here are different not only in terms of the distribution of
tumbling angles but also in whether or not the tumbling rate
remains constant over time. In particular, we consider the Tu-
Grinstein model [24], where the concentration of a phospho-
rylated internal protein named CheY-P changes stochastically
with time [25], affecting the tumbling rate exponentially.
Previous studies have discussed departures from diffusion
by using the MSD for run-and-tumble swimmers [26] and
through the excess kurtosis of the displacement distribution
for ABPs [27–29]. More recently, Ref. [30] has studied the
non-Gaussian behavior of interacting run-and-tumble parti-
cles in the context of active polymer chains and lattice models,
where the authors considered simpler tumbling processes and
employed analytical methods which are based on solving the
associated Langevin equation. In the case of the present work,
our analysis is done by performing simulations and deriva-
tions of both the MSD and the excess kurtosis for the different
RT models, aiming to appropriately determine how long the
system takes to reach the diffusive regime. Furthermore, the
analytical part is carried out from associated kinetic equations,
with Fokker-Planck terms to describe rotational diffusion and
the evolution of the protein concentration [31] coupled with
a Lorentz term to account for the tumbling [32–34]. The
simulations are essentially numerical implementations of the
stochastic rules of motion, i.e., Langevin dynamics. In all
cases, we will consider two spatial dimensions.

The paper is organized as follows. Section II brings our
review and further development of general theoretical aspects
that will be used throughout the paper. In Sec. III we consider
three distinct swimming strategies with constant tumbling
rate. Section IV brings a thorough analysis of the case with
stochastic tumbling rate. Our conclusions and a discussion
are presented in Sec. V. Finally, the Appendix gives technical
details about the simulations.

II. GENERAL THEORETICAL ASPECTS

We start by presenting commonly used model-independent
expressions which will be essential in the following sections.
From these results we will then derive a general framework
to more clearly extract how slowly the diffusive regime is
approached. Consider a single bacterium, initially located at
the origin with random orientation and internal state. The ob-
ject of study is ρ(r, t ), the bacterial density at vector position
r at time t obtained by averaging over different realizations
and initial states. For this initial condition [ρ(r, 0) = δ(r)]
the bacterial density is called the van Hove function [35]. The

MSD is

〈r2(t )〉 =
∫

dr r2ρ(r, t ). (1)

When at long times the diffusive regime is achieved, the
density obeys

∂ρ

∂t
= D∇2ρ, (2)

where D is the diffusion coefficient, with solution in two
spatial dimensions,

ρ(r, t ) = 1

4πDt
e−r2/4Dt . (3)

Equation (3) implies that 〈r2(t )〉 ∼ t and the diffusion coeffi-
cient is obtained with Einstein’s relation [36],

D = lim
t→∞

〈r2(t )〉
4t

. (4)

Calculations become easier to perform through the defini-
tion of

ρ̃(k, s) ≡
∫ ∞

0
dt e−st

∫
dr e−ik·rρ(r, t ) (5)

as the Laplace-Fourier transform of ρ(r, t ), where k is the
Fourier wave vector and s is the Laplace complex variable.
Similarly to what is derived in Ref. [35], the second spatial
moment (MSD) and the fourth spatial moment in two dimen-
sions (2D) can be calculated, respectively, from

〈r2(t )〉 = L−1

{
−2

∂2

∂k2
ρ̃(k, s)

∣∣∣∣
k=0

}
(6)

and

〈r4(t )〉 = L−1

{
8

3

∂4

∂k4
ρ̃(k, s)

∣∣∣∣
k=0

}
, (7)

where L−1 denotes the inverse Laplace transform operator
used to bring the result back to the time t domain. The corre-
sponding long-time diffusion coefficient D can be expressed
as [35]

D = lim
ω→0

lim
k→0

ω2

k2
Re[ρ̃(k, iω)], (8)

where ω is real, k ≡ |k|, and Re(ρ̃) denotes the real part of ρ̃.
In the diffusive regime, not only the MSD must grow

linearly, but also the displacement distribution must be Gaus-
sian. In order to measure the non-Gaussianity of a particle’s
displacement distribution, i.e., a departure from the diffusive
regime, we will be interested in the excess kurtosis, defined in
2D by

γ (t ) ≡ 〈r4〉
〈r2〉2

− 2. (9)

The excess kurtosis is dimensionless and vanishes for a Gaus-
sian distribution of displacements r. For isotropic distribu-
tions, negative values of γ indicate that the distribution decays
faster than a Gaussian for large displacements, while positive
values implies that the distribution presents heavy tails. Notice
that for one and three dimensions, one would need to subtract
3 and 5/3, respectively, instead of 2 in Eq. (9). At short times,
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when the motion is ballistic, 〈r4〉 equals 〈r2〉2 and, therefore,
γ (t → 0) = −1, as it is verified for all models presented in
the next sections.

At instances where we give explicit expressions for the
second and fourth moments, we will omit similar expressions
for the excess kurtosis since they are lengthy and provide no
further information. Nevertheless, expressions for their limits
as well as their plots will be given and discussed.

A. Extracting the excess kurtosis tail

In general, we will see in the next sections that 〈r2〉 and
〈r4〉 approach their asymptotic regimes with exponential and
subdominant polynomial corrections. As a result, the excess
kurtosis (9) approaches zero as

γ (t ) ∼
∑

n

ant−βn e−μnt , (10)

with particular sets of coefficients an, exponents βn � 0, and
rates μn � 0 that depend on the model under consideration.
We are looking for the slow decay modes to the diffusive
regime, which can appear when μn and βn are small or zero.
From the definition (9), exponential factors can come from
either the second or fourth moment. For example, for the
second moment, we will see in the next sections that

〈r2(t )〉 ∼ 4Dt +
∞∑

n=0

cntλn e−μnt , (11)

which in Laplace space gives, for small s,

〈r̃2(s)〉 ∼ 4D

s2
+

∞∑
n=0

cnλn!

(s + μn)1+λn
(12)

and similarly for 〈r̃4(s)〉. Hence, the exponents μn are recog-
nized as minus the poles of ∂2

k ρ̃(k, s)|k=0 and ∂4
k ρ̃(k, s)|k=0,

and the power exponents λn are associated with pole multi-
plicity. The slowest decaying mode will be identified as the
smallest μn. For the majority of the models considered in
this article, the long-time behavior of excess kurtosis can be
explicitly obtained in real time. However, for the last model,
we will need to extract it from Laplace space, as there is no
closed expression for γ (t ).

III. CONSTANT TUMBLING RATE

We will now examine three separate limiting cases of the
well-known Markovian run-and-tumble model. Consider a
particle moving in two spatial dimensions, for which tumbling
occurs at a constant rate ν0. That is, the random walker moves
with a constant speed V along a body axis n̂ = (cos θ, sin θ )
that can change abruptly at a tumble event, suddenly decor-
relating its orientation—in the case of E. coli the duration
of the tumble is about ten times smaller than the duration
of the runs [13] and so it is taken as zero here. The new
random orientation is chosen with a kernel W (θ, θ ′) that
sets the probability that the swimmer changes between two
specified orientation angles θ and θ ′ at a tumble. We will
assume that the space is isotropic and, hence, the kernel only
depends on the angle difference, W (θ, θ ′) = w(θs), where w

is an even periodic function and θs ≡ θ ′ − θ is the tumbling

angle. In addition to that, the model’s particle is subject to
thermal rotational diffusion with coefficient Dr . Thus, in the
meantime between two consecutive tumbles the orientation
will change slowly and diffusively. The kinetic equation for
the distribution function f = f (r, θ, t ) is [32–34,37]

∂ f

∂t
+ V n̂ · ∇ f = ν0

∫ 2π

0
w(θ − θ ′) f (r, θ ′, t )dθ ′

− ν0 f + Dr∇2
n̂ f , (13)

where the distribution function is normalized such that
ρ(r, t ) = ∫ 2π

0 f (r, θ, t )dθ . The kernel satisfies
∫

w(θ )dθ =
1, which guarantees that the density ρ is conserved. We notice
that some of the MSD results in this section are already
present in some form in Refs. [8,26,32–34,37], but they will
be developed here either as calibration of our methodology
or to facilitate comparisons against new expressions such as
for the excess kurtosis and with simulations. An entirely new
discussion in which the MSD plays only a limited role is
provided.

A. Conventional run-and-tumble model
with complete reorientation

We start with the limiting case where Dr = 0 and there is
complete reorientation after tumbling, that is, w(θs) = 1/2π ,
the simplest version of the run-and-tumble model. Although
no known microswimmer reorients completely after a tumble
event, this model will serve to calibrate our methodology, as
mentioned. In this case the kinetic equation for the probability
density function f (r, θ, t ) is just

∂ f

∂t
+ V n̂ · ∇ f = ν0

2π

∫ 2π

0
f (r, θ ′, t )dθ ′ − ν0 f . (14)

The initial condition is f (r, θ, 0) = δ(r)/2π , meaning that
the initial orientation is random. With a view to obtaining
ρ̃(k, s) satisfying this kinetic equation, we move to Laplace-
Fourier space. This leads to Eq. (14) being rewritten as

(s + iV k · n̂ + ν0) f̃ = 1

2π
(1 + ν0ρ̃ ), (15)

where we used that

ρ̃(k, s) =
∫ 2π

0
f̃ (k, θ, s)dθ (16)

for the Laplace-Fourier transform f̃ (k, θ, s) of the distribution
function. Therefore by isolating f̃ (k, θ, s) and integrating
over θ we obtain a closed equation for ρ̃, which gives

ρ̃(k, s) = 1√
(s + ν0)2 + V 2k2 − ν0

(17)

= 1

s
− V 2k2

2s2(s + ν0)
+ (3s + 2ν0)V 4k4

8s3(s + ν0)3
+ O(k6), (18)

where in the second line we made a Taylor expansion in k to
easily identify the poles associated to the second and fourth
moments. We can now use the equations in Sec. II to obtain
our desired quantities. The MSD is

〈r2〉 = 2V 2

ν2
0

(ν0t + e−ν0t − 1), (19)
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FIG. 1. Conventional run-and-tumble model with complete re-
orientation (to calibrate our methodology): Theory (solid black line)
and simulation (circles) for the time evolution of the excess kurtosis
γ and, in the inset, of the MSD (log-log scale). The dashed line is
4Dt where the diffusion coefficient D is given by Eq. (20). Units are
chosen such that V = ν0 = 1.

from which one can either use Einstein’s relation (4) or
directly apply Eq. (8) to obtain

D = V 2

2ν0
, (20)

which is a widely known result [38–40]. The fourth spatial
moment reads

〈r4〉 = 4V 4

ν4
0

[
2
(
ν2

0 t2 − 3ν0t + 3
) + e−ν0t

(
ν2

0 t2 − 6
)]

, (21)

allowing one to compute the excess kurtosis directly through
(9). The kurtosis longest-standing exponential goes as
exp(−ν0t ), which does not present any singular behavior.

In Fig. 1 the above expressions for the MSD, the diffusion
coefficient, and the excess kurtosis are tested against our
simulations, which have been performed by directly solving
the associated run-and-tumble motion equations (see the Ap-
pendix for details on the simulation method). The agreement
is excellent as expected since no approximations were made.

B. Partial reorientation

We now generalize the previous analysis to the case of
partial reorientation while keeping Dr = 0. In this case the
kernel is no longer uniformly distributed between 0 and 2π

and it is fully characterized by its cosine Fourier components

σn ≡ 〈cos(nθs)〉 =
∫ π

−π

dθs w(θs) cos(nθs), n � 1, (22)

which, in the previous case, vanish completely. This model
accounts for many flagellated bacteria and unicellular algae
[41]. For the case of E. coli, the kernel has been measured [12],
giving σ1 � 0.33 [14]. It can be shown that the mean-squared
displacement depends on σ1 only [8]. Thus, for the purpose
of computing this quantity, only the average value σ1 matters
and so we do not need to worry about the whole shape of
w. However, we show below that the excess kurtosis and the
crossover time to reach the diffusive regime depend also on
σ2.

The Laplace-Fourier transform of the kinetic equation (13)
for this case is

(s + iV k · n̂ + ν0) f̃ = 1

2π
+ν0

∫ 2π

0
w(θ − θ ′) f̃ (k, θ ′, s)dθ ′,

(23)

where we used the same initial condition as in Sec. III A. To
solve it, we expand the distribution function in Fourier modes,

f̃ (k, θ, s) =
∞∑

n=0

[hn cos(nθ ) + gn sin(nθ )], (24)

where the coefficients hn and gn depend on k and s and are
to be determined by plugging the solution into the kinetic
equation. Taking k = kx̂, it is clear that the sine modes will
vanish identically, and so we can set gn = 0 from now on. The
convolution integral can be expressed as∫ 2π

0
w(θ − θ ′) f̃ (k, θ ′, s)dθ ′ =

∞∑
n=0

σnhn cos(nθ ). (25)

By keeping terms up to n = 2, we truncate the Fourier series,
which allows us to obtain a closed expression for ρ̃(k, s). For
the sake of presentation the long result is expressed as an
expansion up to fourth order in k. This has no implications
as no higher-order derivative in k will be required. We have

ρ̃(k, s) = 1

s
− V 2k2

2s2[ν0(1 − σ1) + s]

+ [3s − 2ν0(σ2 − 1)]V 4k4

8s3[ν0(1 − σ1) + s]2[ν0(1 − σ2) + s]
+ O(k6).

(26)

Using the expressions of Sec. II, the MSD is

〈r2〉 = 2V 2

ν2
0 (1 − σ1)

[
ν0t + e−ν0(1−σ1 )t − 1

(1 − σ1)

]
, (27)

with diffusion coefficient

D = V 2

2ν0(1 − σ1)
, (28)

which is a well-known result [34,37]. The fourth moment is

〈r4〉 = 8V 4

ν4
0

[
ν2

0 t2

(1 − σ1)2
+ e−ν0(1−σ2 )t

(σ1 − σ2)2(1 − σ2)2

− σ 2
1 + 2(σ2 − 2)σ1 − 6σ 2

2 + 10σ2 − 3

(1 − σ1)4(1 − σ2)2

− ν0(3σ1 − 2σ2 − 1)te−ν0(1−σ1 )t

(1 − σ1)3(σ1 − σ2)
+ ν0(σ1 − 4σ2 + 3)t

(1 − σ1)3(σ2 − 1)

−
(
9σ 2

1 −2(7σ2+2)σ1+6σ 2
2 + 2σ2 + 1

)
e−ν0(1−σ1 )t

(1 − σ1)4(σ1 − σ2)2

]
.

(29)

While for the complete-reorientation kernel of Sec. III A
there is a single relaxation time, for a general kernel two
relaxation rates appear: ν1 = ν0(1 − σ1) and ν2 = ν0(1 − σ2).
In this regard, the complete-reorientation case is singular since
the two relaxation times merge, increasing the multiplicity
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of the corresponding pole in (26). This implies that, while
for the complete-reorientation case the excess kurtosis decays
purely exponentially as γ ∼ exp(−ν0t ), here γ is the sum
of two leading terms, exp(−ν1t )/t and exp(−ν2t )/t2, except
for the singular case where both rates are equal, in which
γ ∼ exp(−ν1,2t ).

The approach to a linear time dependence in the MSD is
controlled by the relaxation time T1 = 1/ν1, which diverges
when the average tumbling angle is small. Naturally, in this
case, when swimmers deviate little in each tumble event
the persistence is enhanced, implying a large diffusion co-
efficient. Importantly, also the amplitude of the nondiffusive
term diverges when σ1 ≈ 1, making such a departure from
diffusion more relevant. Figure 2(a) shows this behavior.
To compare with simulations, first we consider the case in

FIG. 2. Run-and-tumble model with partial reorientation.
(a) Theory (solid black lines) and simulation (circles) for (the
negative of) the excess kurtosis as a function of time in log-log
scale. The MSDs are shown in the inset in linear scale to highlight
the departure between the parameters. The values of  are indicated
in degrees: 164◦, 262◦, and, the complete-reorientation limit, 360◦

(green, blue, and red, respectively). (b) MSD in log-log scale for a
kernel uniformly distributed around both 0◦ and 180◦ with  = 20◦

as defined in the main text, giving σ1 = 0 and σ2 � 0.99. Theory
(solid black line), simulation (circles), and the linear part of the
MSD (dashed blue line). Insets: Probability distribution function
of the x displacement at different time instants as from simulations
(solid lines are normalized Gaussian distributions with the same
mean and variance as the corresponding data). The excess kurtosis
(not shown) changes from negative to positive at t � 4.76. Units are
chosen such that V = ν0 = 1.

which the tumbling angles are uniformly distributed in the
range [−/2,/2]. The second relaxation time, T2 = 1/ν2,
appears in the fourth moment given by Eq. (29). Both the
relaxation time and the associated amplitude diverge when
σ2 ≈ 1, implying that for long times the displacement distri-
bution deviates largely from a Gaussian one. Together with
the slow exponential decay, algebraic terms also contribute
to γ with amplitudes that can be quite large as they read
(2T2 − 4T1)/t . It can be seen that the smaller the  the slower
is the excess kurtosis approach to zero. Note that, for this
kernel, the two relaxation timescales as 1/(ν0

2) and are of
a similar order, implying that both conditions for the diffusive
regime to be valid—the linear increase of the MSD and a
small excess kurtosis—are attained in the same timescale.

It is possible, however, that T1 and T2 decouple if σ2 ≈ 1
and, simultaneously, σ1 is far from 1. Then although the MSD
reaches the linear regime rapidly, the excess kurtosis remains
finite and positive for long times, implying that the diffusion
equation is not valid in this period. This situation occurs,
for example, if the tumbling angles distribution is sharply
centered around both 0 and 180◦. Figure 2(b) shows the case
where θs is uniformly distributed in the ranges [−/4,/4]
and [180◦ − /4, 180◦ + /4], that is, any new tumbling
angle θs is randomly drawn out of these two ranges. In this
case, a small  leads indeed to a sharp separation of the
timescales T1 and T2. As a result, we can see in Fig. 2(b)
that the MSD becomes linear in time even if the displacement
distribution is still strongly non-Gaussian, as revealed by the
insets. For this class of kernels, tumbling gives rise for a single
swimmer to a one-dimensional random walk along n̂ and
only slowly, with a rate proportional to the dispersion of tum-
bling angles around 0 and 180◦, i.e., σ2, the process evolves
to a two-dimensional diffusion. For a collection of swim-
mers initially seeded at r = 0, the intermediate dynamics
for T1 < t < T2 will therefore be diffusive only in the radial
direction.

Also, our analytical results for the MSD in Eq. (27) and
for the excess kurtosis [from Eq. (9) using (27) and (29)] are
compared against the simulations in Fig. 2. We highlight that
they agree well with simulations (even for small values of ,
not shown) despite the approximation made in truncating the
Fourier series up to n = 2.

C. Run-and-reverse with thermal rotational diffusion

As already mentioned, up to 70% of marine bacteria are be-
lieved to have a distribution of tumbling angles peaked around
180◦ [10]. The soil bacteria Bradyrhizobium diazoefficiens has
also been shown to perform this kind of tumbling [42]. In
the limiting case known as run-and-reverse dynamics, which
we consider now, the particle’s tumble can only lead to the
exactly opposite motion direction. In this limit it becomes
physically unreasonable to neglect thermal diffusion and so
we will take Dr > 0; otherwise, the swimmer will indefi-
nitely perform a one-dimensional random walk. In this model,
w(θs) = δ(θs − π ), and hence the kinetic equation reads

∂ f

∂t
+ V n̂ · ∇ f = ν0 f (r, θ + π, t ) − ν0 f + Dr

∂2 f

∂θ2
, (30)
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where we notice that the indicated instance of f is evaluated at θ + π , while the other ones are evaluated at θ as per usual.
After the Laplace-Fourier transform is applied and using the same initial condition as before, i.e., f (r, θ, 0) = δ(r)/2π , we
obtain

(s + iV k · n̂ + ν0) f̃ − ν0 f̃ (k, θ + π, s) − Dr
∂2 f̃

∂θ2
= 1

2π
. (31)

As in the previous case, we expand f̃ in a Fourier series [Eq. (24)], where again gn = 0 by symmetry. We truncate the series
keeping only the terms n � 2 and solve for the coefficients. Integrating f̃ (k, θ, s) over θ , we obtain

ρ̃(k, s) = 4(4Dr + s)(Dr + 2ν0 + s) + V 2k2

8V 2k2Dr + 20Drs2 + 8ν0s(4Dr + s) + 16sD2
r + 3sV 2k2 + 4s3

. (32)

On using the formulas in Sec. II, we find that the MSD is given by

〈r2〉 = 2V 2

(Dr + 2ν0)2
[(Dr + 2ν0)t + e−(Dr+2ν0 )t − 1], (33)

with diffusion coefficient

D = V 2

2(Dr + 2ν0)
, (34)

while the fourth moment is

〈r4〉 = V 4

2

{
87D2

r − 4ν2
0 − 20ν0Dr

D2
r (Dr + 2ν0)4

+ 16t2

(Dr + 2ν0)2
+ 8ν0t − 60Drt

Dr (Dr + 2ν0)3
+ e−4Drt

D2
r (3Dr − 2ν0)2

− 16e−(Dr+2ν0 )t
[
D2

r (2ν0t + 49) − 4ν0Dr (11ν0t + 19) + 15D3
r t + 12ν2

0 (2ν0t + 3)
]

(3Dr − 2ν0)2(Dr + 2ν0)4

}
. (35)

The MSD can rapidly reach a regime where it grows linearly
with time, but for small rotational diffusion, the process re-
mains non-Gaussian, with large positive values of γ . Similarly
to the previous case, when the scattering angle is narrowly
distributed around 0◦ and 180◦, reversions at rate ν0 induce
a one-dimensional diffusive motion along the director axis,
but an authentic two-dimensional diffusion is only achieved
at a typical time 1/(4Dr ) as the axis changes direction. For
a perfect one-dimensional random walk, i.e., for Dr = 0, the
excess kurtosis equals 1 as γ = 〈x4〉/〈x2〉2 − 2 = 3 − 2. For
small enough rotational diffusion, the excess kurtosis becomes

FIG. 3. Run-and-reverse model with rotational diffusion: Theory
(solid black lines) and simulation (circles) for the excess kurtosis γ

as a function of time (and for the MSD in the inset). The values of Dr

are indicated: 0.01, 0.1, and 1 (green, blue, and red, respectively).
Units are chosen such that V = ν0 = 1. The MSDs are shown in
linear scale to highlight the departure between the parameters.

positive, having a peak that can be quite large (see Fig. 3),
reflecting this quasi-one-dimensional motion. Positive excess
kurtosis with a very slow decay also appear in the similar case
of partial reorientation without rotational diffusion (Sec. III B)
for σ2 ≈ 1, as can be seen directly from Eq. (29).

IV. STOCHASTIC TUMBLING RATE

In bacteria like E. coli, the tumbling process is triggered
by a reversion in the sense of rotation (from counterclock-
wise, CCW, to clockwise, CW) of one or several flagella. As
a result, the flagella bundle dissembles and the propulsion
thrust is lost [43]. By analyzing the biochemistry of the
molecular motor, Tu and Grinstein proposed that the tumbling
process can be described as a two state activated system,
where the free energy barrier to transit from the CCW to
the CW state depends sensibly on the concentration inside
the bacterial body of the so-called CheY-P protein, denoted
by [Y ] [24]. In the Tu-Grinstein model the tumble rate is
ν = ν̄ exp(−G([Y ])/kBT ), where G is the free energy barrier
and ν̄ a constant. Expanding G around the average value [Y0],
they propose

ν(X ) = ν0eαX , (36)

where X (t ) = ([Y ](t ) − [Y0])/σY corresponds to the fluctua-
tions in concentration normalized to σY , the standard deviation
of [Y ]. Finally, ν0 absorbs all the prefactors. Note that ν0 has
been used in the previous sections to denote the tumbling rate
of models without stochasticity, that is, where the tumbling
rate is constant over time. Here we use it with exactly the
same meaning: In the limit where α → 0 the tumbling rate
is ν(X ) → ν0. The parameter α is positive [44] and quantifies
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the sensitivity of the system to changes in the protein concen-
tration. This phosphorylated protein has a small production
rate, with a long memory time T , and consequently X is well
described by the Ornstein-Uhlenbeck process

dX

dt
= −X

T
+

√
2

T
ξ (t ), (37)

where ξ is an additive zero-mean Gaussian white noise with
correlation 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). By tracking several indi-
vidual E. coli bacteria it has been possible to fit the model
parameters to T = 19.0 s, ν0 = 0.65 s−1, and α = 1.62 [45].
The same experiments gave for the rotational diffusivity Dr =
0.025 s−1 and for the tumbling σ1 = 0.112. Considering that
Dr � ν0 and that σ1 ≈ 0, we will consider complete reorien-
tation after tumbling and neglect the rotational diffusion. This
approximation also helps to highlight the new phenomenology
that appears from considering the internal variable X .

With X as a new variable of the distribution function, the
kinetic equation for f = f (r, θ, X, t ) reads

∂ f

∂t
+ V n̂ · ∇ f = 1

T

[
∂2 f

∂X 2
+ ∂ (X f )

∂X

]
+ ν(X )

2π

×
∫ 2π

0
f (r, θ ′, X, t )dθ ′ − ν(X ) f , (38)

where the distribution function is normalized such that
ρ(r, t ) = ∫

f (r, θ, X, t )dθdX .
Once again, we change to the Laplace-Fourier space and so

Eq. (38) becomes

s f̃ − 1

(2π )3/2
e−X 2/2 + iV k · n̂ f̃

= 1

T

[
∂2 f̃

∂X 2
+ ∂ (X f̃ )

∂X

]
+ ν(X )

[
g̃(k, X, s)

2π
− f̃

]
, (39)

where f̃ stands for f̃ (k, θ, X, s), and we have made use of the
definition

g̃(k, X, s) ≡
∫ 2π

0
f̃ (k, θ ′, X, s)dθ ′ (40)

and the initial condition

f (r, θ, X, t = 0) = 1

(2π )3/2
e−X 2/2δ(r), (41)

which indicates that the internal variable X is in equilibrium.
We propose the solution

f̃ (k, θ, X, s) =
∞∑

n=0

Gn(X ) f̃n(k, θ, s), (42)

where the coefficients f̃n(k, θ, s) do not depend on X and

Gn(X ) ≡ e−X 2/2Hn(X/
√

2), (43)

in which Hn is the Hermite polynomial of order n [such
that H0(x) = 1, H1(x) = 2x, ...] [46]. Using the eigenvalue
equation for the Hermite polynomials allows us to write

1

T

{
∂2 f̃ (k, θ, X, s)

∂X 2
+ ∂[X f̃ (k, θ, X, s)]

∂X

}

= − 1

T

∞∑
n=0

ne−X 2/2Hn(X/
√

2) f̃n(k, θ, s). (44)

Since our goal is to find the Laplace-Fourier transform of
ρ(r, t ), i.e., ρ̃(k, s), which does not depend on θ , it is helpful
to define g̃n(k, s) = ∫ 2π

0 f̃n(k, θ, s)dθ .
At this point we proceed by plugging the above equations

into Eq. (39), then multiplying by Hm(X/
√

2), and finally
integrating over X . One obtains

∞∑
n=0

Amn(k, θ, s) f̃n(k, θ, s) = cm +
∞∑

n=0

Bmng̃n(k, s), (45)

where

Amn(k, θ, s) ≡ 2nn!
√

πδmn

(
s + iV k·n̂ + n

T

)
+ ν0Jmn,

(46)

Bmn ≡ ν0

2π
Jmn, cm ≡ 1

2π
√

2
δm0, (47)

where the δi j are Kronecker deltas and

Jmn ≡
∫ ∞

−∞
e−y2

e
√

2αyHn(y)Hm(y)dy. (48)

The linear Eqs. (45) can be solved for f̃n in terms of g̃n.
Integrating over θ gives now a closed linear set of equations
for g̃n, which can be directly solved. Noting that ρ̃ = g̃0

(which can be seen through the orthogonality between H0 and
Hn), one obtains

ρ̃(k, s) =
∫ 2π

0

[
1

2
√

π
(A−1)00(k, θ, s) +

√
2π

×
∞∑

m,n=0

(A−1)0m(k, θ, s)Bmng̃n(k, s)

]
dθ. (49)

To obtain explicit expressions, Eq. (49) is truncated at a
certain order n = m = Nmax. The greater the Nmax the higher
is the order of a polynomial in α that appears in Jmn. Hence,
increasing Nmax one increases the range in α over which the
theory is valid. However, the greater the Nmax the more com-
plicated are the elements of the inverse of A, which eventually
need to be integrated in θ . Therefore Nmax also affects how
complicated it is the ρ̃(k, s) over which one needs to apply
the inverse Laplace transform as well as to compute limits. As
it turns out, those complications grow rapidly with Nmax, with
the case Nmax = 0 being the only one that we have treated fully
analytically. The ρ̃(k, s) obtained by expanding up to this
order is identical to the conventional RT case (17), provided
that one considers the tumbling rate to be ν0 exp (α2/2), which
corresponds to the average of Eq. (36) over X . See Sec. IV A
for the related analysis of the limits T → 0 and T → ∞.

For Nmax = 1 new physics is found. Although involved, it
is possible to obtain an explicit expression for ρ̃(k, s) from
where the diffusion coefficient is obtained using Eq. (8),

D = V 2

2ν0eα2/2

(
1 + α2ν0T

1 + ν0T

)
. (50)

It is not possible, however, to analytically perform the inverse
transforms of the second and fourth moments. Instead, they
are calculated by applying a seminumerical inverse Laplace
transform method for comparison with simulations. As one
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FIG. 4. Run-and-tumble model with stochastic tumbling rate.
(a) Excess kurtosis as a function of time for ν0T = 12.3 and different
values of α. The case α = 1.62, which corresponds to the experi-
mentally fitted value for E. coli is shown in the inset as it falls out
of scale. The circles are the simulation results while the solid lines
are the small-α theoretical prediction (only for α = 0 and α = 0.35).
(b) Diffusion coefficient D scaled by the interpolating expression
(56) as a function of τ = (ν0T − 1)/(ν0T + 1) for different values of
α. The points at τ = ±1 are not obtained from simulations but rather
from the asymptotic expressions for the zero- and infinite-memory
limits. Units are chosen such that V = ν0 = 1.

can see in Fig. 4, the analytical results in this case agree very
well with simulations up to a significant value of α. The higher
the α, the higher the peak in the excess kurtosis.

Despite the aforementioned complications in obtaining an
expression for ρ̃(k, s), we can still use the method in Sec. II A
to extract the late-time exponential decay of the excess kur-
tosis. The second and fourth moments share poles, and on
reversing their sign we obtain

ν1 = ν0[1 + α2(1/2 − T ν0) + O(α4)], (51)

ν2 = ν0[1 + 1/(T ν0) + α2(3/2 + T ν0) + O(α4)]. (52)

While the second rate remains finite for all values of the
parameters, ν1 decays linearly with T . Therefore the greater
the protein memory the longer it will take for diffusion to be

achieved. But the behavior for varying α depends on where in
the memory T range we are: If T ν0 > 1/2, then ν1 also decays
with α, meaning a slower approach to diffusion, and if T ν0 is
smaller than that, then increasing α speeds up the approach.
To evaluate the importance of this eventual slow approach to
diffusion, we compute the multiplicity and amplitude of the
associated pole, obtaining

〈r̃4(s)〉 ∼ 8V 4[1 + ν0T (1 + 2ν0T )α2/2 + O(α4)]

ν2
0 (s + ν1)3

. (53)

This implies that at long times the excess kurtosis exponential
decay is γ ∼ exp(−ν1t ), with an amplitude that grows with
α, in agreement with the results shown in Fig. 4.

Zero- and infinite-memory limits

In the limiting case of very small memory time T , X
fluctuates rapidly and the tumble rate is effectively an av-
erage of (36) over all possible values of X , that is, 〈ν〉 =
ν0 exp (α2/2). This result can be achieved more formally by
expanding the distribution function f̃ for small T as f̃ =
f̃0 + T f̃1 + O(T 2) and g̃ = g̃0 + T g̃1 + O(T 2) and replacing
these into the Laplace-Fourier-transformed kinetic equation
(39). For O(1/T ) we obtain a simple differential equation in
X for f̃0 whose solution can be cast as f̃0 = e−X 2/2a(k, θ, s),
where a(k, θ, s) is some coefficient function independent of
X . At O(T ) the equation reads

iV k·n̂ e−X 2/2 a + s e−X 2/2 a + ν0e−X 2/2+αX a

− ν0e−X 2/2+αX b√
2π

− e−X 2/2

(2π )3/2
= ∂2 f̃1

∂X 2
+ ∂ (X f̃1)

∂X
, (54)

where b(k, s) ≡ ∫ 2π

0 a(k, θ, s)dθ . The right-hand side can
be viewed as a differential operator D acting on f̃1, where
the kernel of the adjoint operator D† is 1. Thus, on
using the Fredholm alternative theorem, setting the X integral
of the left-hand side to zero, one gets the conventional RT
equation (14) with tumbling rate 〈ν〉. Therefore, DT →0 =
V 2/[2ν0 exp (α2/2)], as previously anticipated.

The T → ∞ limit is also interesting and roughly corre-
sponds to the experimentally fitted values for the E. coli, for
which ν0T � 12.3. In this case a particle starts with a certain
protein concentration (and hence a certain tumbling rate) as
determined by X , which is then kept fixed at all times. The
system is therefore equivalent to considering a “polydisperse
dilute fluid,” that is, a set of noninteracting particles, where
each one has a fixed tumbling rate νi drawn from a continuous
distribution. Thus the averaged diffusion coefficient is

DT →∞ =
〈

V 2

2νi

〉
= V 2

2ν0

∫ ∞

−∞
e−(αX+X 2/2) dX = V 2eα2/2

2ν0
, (55)

where we notice the opposite sign in the exponential argument
in comparison to the T → 0 limit.

The two limits for T and the small-α expansion (50) can be
interpolated in a compact expression

Di = V 2

2ν0
exp

[
α2(ν0T − 1)

2(ν0T + 1)

]
. (56)
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By changing T between its two limits we change
τ ≡ (ν0T − 1)/(ν0T + 1) in such a way that τ ∈ [−1, 1] and
hence we have the bounds DT →0 � D � DT →∞. Simulations
with different values of α and T show that this interpolating
expression is good for small α across distinct orders of T [see
Fig. 4(b)].

V. CONCLUSIONS

Here we reviewed and extended general theoretical meth-
ods as well as performed simulations to investigate the ap-
proach to diffusion of run-and-tumble bacteria within four
models: Conventional run-and-tumble, partial reorientation,
run-and-reverse with rotational diffusion, and stochastic tum-
bling rate. By focusing on the mean-squared displacement
and on the excess kurtosis both analytically and computa-
tionally, we have extracted the effects of basic model pa-
rameters on how slowly diffusion is reached. The methods
have been presented in a way that makes them easy to
be translated into other models of particle dispersal. Al-
though we have worked in 2D for the sake of simplic-
ity, 3D generalizations should be straightforward to perform
[8]. Furthermore, since many tracking experiments are per-
formed in quasi-2D geometries [40], our results are directly
applicable.

For the conventional RT model with complete reorientation
we obtained that the excess kurtosis approaches zero exponen-
tially with a rate equal to the tumbling rate ν0. However, for
the other models, new timescales appear, which can make the
approach to the diffusive regime much slower. For the case
of partial reorientation, the new timescales depend on the av-
erages σ1 = 〈cos θs〉 and σ2 = 〈cos 2θs〉 of the tumbling angle
θs, and diverge when either of them approaches one. This hap-
pens when the θs distribution is sharply peaked around both 0
and 180◦. For the run-and-reverse model the new timescale is
given by the inverse of the rotational diffusivity, Dr . When
Dr � ν0, swimmers remain performing a one-dimensional
random walk for a long time and transit slowly to the full
diffusive motion. Finally, the stochastic tumbling rate model,
which describes the dynamics of E. coli, is characterized by
two parameters: The sensitivity α of the tumbling rate to
the concentration fluctuations of a relevant protein and the
memory time T of this concentration fluctuations. Analytical
results are obtained as an expansion for small α, in which case
long relaxation times, eventually diverging, are obtained for
long memory times. Simulations are in excellent agreement.
In this model we also compute the long-time diffusion coef-
ficient, finding an expression valid for small α and any value
of T .

Concomitantly, when the relaxation times grow, the same
happens with the amplitude of the excess kurtosis, implying
that the swimmer dispersion remains largely non-Gaussian for
long times, even though the MSD can already increase linearly
with time. The emergence of large relaxation times to reach
the vanishing of the excess kurtosis implies that diffusion
or reaction-diffusion equations cannot be used to describe
bacterial dispersion at intermediate times and distances. In-
stead, kinetic theory or discrete element method simulations
could be used. This becomes relevant in the design of micro-
robots for bioengineering applications [47] which include, for

example, killing pathogenous bacteria [48] or removing toxic
heavy metals from contaminated water [49].

By simulating with the experimentally obtained E. coli
values for the partial reorientation model, ν0 = 1.0 s−1 and
〈cos θs〉 ≈ 0.33 [9], we estimate that the time to reach an
excess kurtosis γ (t ) such that |γ (t )| = 0.05 is t ≈ 71.2s, a
value that is independent of the swim speed V , as expected.
A similar analysis can be done for the model with stochastic
tumbling rate by using the previously mentioned values T =
19.0 s, ν0 = 0.65 s−1, and α = 1.62, and by setting Dr = 0
and σ1 = 0 [45]. This gives |γ (t )| = 0.05 at t ≈ 143.7 s.

For the intermediate time and length scales where the bac-
terial dispersion is not described by a diffusion equation, the
computed expressions for the van Hove function [Eqs. (17),
(26), (32), and (49)] should be used as the Green function
for the density evolution. Alternatively, moment equations
derived from kinetic equations can be used (see Refs. [50–52]
for examples of moment equations).

In future work we will use the methods employed here to
compare how several types of interacting [30,53] swimmers
approach diffusion. In particular, because of the richness im-
parted by polydispersity [54–57], fluid mixtures of interacting
run-and-tumble particles with different swimming strategies
will be studied. One might also want to tackle circularly
propelled active particles and investigate similar associated
phenomena including those dependent on the so-called re-
verse rotations of driven rigid bodies [58,59].
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APPENDIX: SIMULATIONS

The four models considered in this paper have been simu-
lated in 2D in the following direct way. First, units are chosen
such that V = ν0 = 1. Each particle starts at the origin r = 0
at t = 0. In the time step t = 0.001 the bacterium moves to
a new position as determined by its fixed speed V and varying
orientation θ , whose initial value is uniformly distributed
between 0 and 2π . After each time step a new orientation is
chosen if, and only if, a newly drawn random number between
0 and 1 is smaller than νt , where ν is the tumbling rate. The
way the new θ is chosen as well as the values of ν depend on
each model as follows.

For the first three models (Sec. III), a constant ν = ν0

is taken. In the case of complete reorientation, any new θ

is drawn randomly between 0 and 2π , just like the initial
orientation. In the partial reorientation model, a new θ is
determined from a tumbling angle θs that is drawn from one
of two distributions: In the first case the tumbling angle is
uniformly distributed in the range [−/2,/2], whereas in
the second case the tumbling angle θs is uniformly distributed
in the ranges [−/4,/4] and [180◦ − /4, 180◦ + /4].
The third model is that of a run-and-reverse particle with ro-
tational diffusion. In this case the “reverse” part of the model
represents a change in the value of θ by an amount of π at each
tumble. Besides, as in any simple implementation of rotational
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diffusion, θ changes further at each time step (that is, not only
at each tumble) by the amount

√
2Drtη, where η is a nor-

mally distributed stochastic variable of mean 0 and variance 1.
In the last model (Sec. IV) we remind that, although each

new orientation is chosen between 0 and 2π as in the complete
reorientation model, the tumbling rate ν is no longer constant
but rather it follows ν(X ) = ν0eαX . The initial value of the
stochastic variable X is also normally distributed with mean
0 and variance 1. It then evolves at each time step follow-
ing a simple Euler-like scheme appropriate to its stochastic
differential equation (37), i.e., at each step X changes by the

amount −Xt/T + √
2t/T ξ , with ξ normally distributed

with mean 0 and variance 1, again. A large number of time
steps is then performed for each bacterium until a chosen total
physical time t is reached. This whole time series is repeated
2 × 105 times in order to provide the averaged behavior of
the bacteria. In the case of the log-log scale data presented
in Fig. 2(a) the simulations were repeated 2 × 106, instead.
For the numerical values of the diffusion coefficients, the total
simulated time was t = 1000, but virtually identical results
can be obtained with t = 200, which confirms that the MSD
decays much more quickly than the excess kurtosis.
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