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Otherwise identical particles with differing, fixed speeds demix under time-reversible dynamics
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In recent years situations where elsewise identical particles demix when different degrees of freedom do not
thermalize have become a research focus in nonequilibrium statistical mechanics. The majority of these models
are formulated in the context of active particles, but the phenomenon also occurs for particles without driving. All
the models studied so far share the property that they do not obey microscopic reversibility, and it may be thought
that this is a necessary condition for such demixing to occur. We show here that such a demixing transition also
occurs in a mixture of otherwise identical particles moving at two fixed but different speeds according to a
time-reversible quasi-Newtonian dynamics. The mechanical instability underlying this behavior is generated by
the lack of thermalization between the two subsystems, which is shared by all systems showing this behavior.
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I. INTRODUCTION

Active particles have been a topic of prominence in
nonequilibrium statistical mechanics for quite some time now
[1–4] due to the occurrence of nonequilibrium phase transi-
tions in these systems. One fascinating finding is the exis-
tence of a motility-induced condensation transition [termed
motility-induced phase separation (MIPS)] of identical hard
particles [3]. This has been studied in detail for active Brown-
ian spheres [5–8] and also for active Brownian disks [6,9–14]
but also considered for systems including polar interactions
[15]. Experimentally, it is not easy to access the phase-
separated state [16,17], but the prediction for a precursor of
the phase separation, the cluster phase, where one observes
local phase separation, has been verified [18,19]. Furthermore,
a motility-induced phase separation of a mixture of active and
passive Brownian particles [20] has been identified.

While the motivation for the study of these active sys-
tems often came from complex biological phenomena, much
effort has been devoted to clarify how much of this com-
plex phenomenology can already be understood based on
the nonequilibrium statistical mechanics of idealized physical
models. From this it has been understood that the phase
transitions occur when a particle-based Péclet number (the
ratio of rotational time scale to the time it takes to advectively
traverse a particle diameter) becomes large enough. Advective
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translational motion is much faster than diffusive orientational
motion. When particles collide to form clusters, the desorption
rate from the cluster becomes smaller than the adsorption rate
from the environment until a stationary cluster size is reached,
which can be a completely demixed system. The stationary
behavior is thus interface controlled [21], in contrast to the
equilibrium phase transitions which are controlled by bulk
free energies. The particles in the dense cluster are effectively
slowed down compared to those in the surrounding fluid, so
that their kinetic pressure is smaller than in the surrounding
fluid. Mechanical equilibrium requires this to be compensated
by a higher density of the cluster.

One ingredient shared by all these studies is that systems
of active particles do not obey microscopic reversibility in
their dynamic equations, and one might think that this is
essential for the phenomenology to be observed. In the work
of Klamser et al. [14], the group introduced moves breaking
microscopic reversibility into a Monte Carlo procedure they
had employed before to determine the two-dimensional phase
behavior of passive repulsive disks [22]. They showed that
they could introduce MIPS into their model in this way.

Another model system which also follows a nonreversible
Langevin dynamics was studied by Weber et al. [23]. It con-
sists of a binary mixture of passive particles, which, however,
differ only in their diffusivities, while their size, mass, and
interaction potential are identical. The diffusivities govern
the strength of the stochastic forces in the model. Different
diffusivities can also be interpreted as different kinetic temper-
atures leading to different kinetic pressures. This again leads
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FIG. 1. Schematics of a binary collision. The conservative forces
(blue) obey Newton’s third law; the resulting forces after the projec-
tion on the respective velocities has been subtracted do not.

to a mechanical instability, cluster formation, and, ultimately,
demixing for large enough diffusivity ratio.

Our model is in spirit similar to that of Ref. [23]; how-
ever, we will be looking at a modified Newtonian dynamics
which keeps its time reversibility. We will show that the phe-
nomenology of our model is very similar to what is observed
by Weber et al., so that we can conclude that breaking of mi-
croscopic reversibility is not a necessary ingredient for phase
segregation to occur in systems where only the momentum
space properties of the particles differ.

II. MODEL

We are suggesting a minimal model obeying quasi-
Newtonian dynamics. We require the speed (i.e., the modulus
of the velocity) of all particles to be fixed at all times and
thus modify Newton’s’ equation to only contain that part
of the force on the particle which is perpendicular to the
instantaneous velocity of the particle:

�̇ri(t ) = �vi(t )

m�̇vi(t ) = �Fi(t ) − ( �Fi(t ) · êi(t ))êi(t ) . (1)

Here we define �vi(t ) = viêi(t ), so we subtract the projection
onto the velocity direction êi(t ) from the total force on particle
i, �Fi(t ), which we assume to be given by pairwise interactions,
�Fi(t ) = ∑

j �=i
�Fi j (t ). For simplicity, we set all particle masses

equal, mi = m. A binary collision is schematically shown in
Fig. 1.

This modified Newton equation retains the time-reversal
symmetry of the original equation, but each collision violates
energy, momentum, and angular momentum conservation
during the collision duration. The forces also do not obey
Newton’s third law. (Barberis and Peruani mention this fact
for an active model they were using [24]). We choose in the
following a two-dimensional system of particles interacting
through a Weeks-Chandler-Anderson (WCA) potential

U (r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6
]

+ ε, r � 21/6σ

0, r > 21/6σ
. (2)

FIG. 2. Fraction of slow-fast interparticle collisions as a function
of time for different speed ratios and starting from different initial
configurations as indicated in the legend.

Here σ is the diameter of the disks, ε the strength of the
interaction, and we cut off the interaction at the position of
the minimum of the potential and shift it to zero. With this
finite range potential it is easy to see that energy conservation
holds asymptotically in sufficiently dilute systems for each
collision, as then the total energy before and after the collision
is just given by the kinetic energy of the particles which is
fixed by construction. In a dense system, like we will study
here, this is no longer the case. Asymptotic conservation for
each individual collision does not hold for linear and angular
momenta, independent of density. However, due to the time
inversion symmetry of the collisions and the fact that forward
and backward collision occur with the same probability, the
total energy and linear and angular momenta of the system
are conserved on average, also in dense systems. Thus even
though the system is open, it does not gain energy or linear
and angular momentum in its time evolution and does not need
any thermostatization to counteract such an instability.

For the simulation, we choose Lennard-Jones units, which
amounts to setting m, σ , and ε equal to unity in the above
equations and measuring time in units of τ =

√
mσ 2/ε. Using

this model, we study a mixture of N = 1000 particles in a
simulation box with side length L = 40 using periodic bound-
ary conditions and with two different velocities, a fraction of
f N fast particles with vi = v f and (1 − f )N slow particles
with vi = vs. We will show that such a mixture exhibits phase
separation of the slow and fast particles when one decreases
the speed ratio z = vs/v f between them.

We will discuss below that our mixture of particles with
two different fixed velocities is mechanically unstable against
demixing. This instability leads to the development of a
stationary interface size between the cluster(s) of fast and slow
particles, respectively, which gives rise to a stationary number
of collisions between the two types of particles. We observe
how this stationary state is reached from different starting
conditions to determine the equilibration in our system, as
shown in Fig. 2. All statistical analysis is performed only after
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a stationary behavior of the number of slow-fast collisions has
been reached.

III. RESULTS

To understand the phase behavior of the system we analyze
the virial equation for the hydrostatic pressure [9,25,26].
Although the system does not thermalize the slow and the fast
particles and thus it is not obvious whether this pressure can
be defined as the thermodynamic derivative of a free energy
[21], its mechanical definition is still applicable, and any
possible coexisting phases need to exhibit at least mechanical
equilibrium. For an N-particle system in an area A we have

p = 1

A

〈 N∑
i=1

1

2
�v2

i

〉
neq

+ 1

2A

〈 N∑
i=1

�ri · [ �Fi − ( �Fi · êi )êi]

〉
neq

. (3)

The average is taken over an unknown nonequilibrium prob-
ability distribution on the phase space of this system. The
model has no polar interactions between the velocities as
would be typical for flocking models like, e.g., the Vicsek
model, so we can assume the distribution in velocity space
to be uniform on the circle for every particle. With this
assumption we can perform the average over the velocity
distribution in the last term in Eq. (3):

1

2π

∫ 2π

0
〈(�ri �Fi )(êiêi )〉 = 1

2
�ri · Fi . (4)

By using only the component of the force perpendicular to the
velocities, we reduce their contribution to the excess pressure
by a factor of 2 and obtain

p = 1

A

N∑
i=1

1

2
�v2

i + 1

4A

〈 N∑
i=1

�ri · �Fi

〉
neq,�r

, (5)

where the average only has to be performed over the spatial
part of the unknown nonequilibrium distribution. Except for
the change of distribution, this is the virial pressure of a
system of WCA disks at an effective temperature kBTeff =
1/2N

∑
i v

2
i and an interaction reduced by a factor of 2.

We can thus expect the nonequilibrium distribution for this
system to be close to the canonical equilibrium distribution
for a system with this effective temperature. The pure system
then can be assumed to have the same phase behavior as the
standard WCA disks, exhibiting a fluid, a hexatic, and a solid
phase [14]. When we consider a mixture as defined above in
its homogeneous state, we obtain

p = 1

2A

[
Nf v

2
f + Nsv

2
s

] + 1

4A

〈 N∑
i=1

�ri · �Fi

〉
neq,�r

, (6)

the force contribution being equal between the two species.
However, such a system can phase separate into a dense phase
of slow particles and a less dense phase of fast particles,
where the difference in kinetic pressure in the two phases
is balanced by a difference in force contribution due to the
different densities. When the Nf = N f fast particles take up
a fraction xA of the total area and the Ns = N (1 − f ) slow
particles in the area (1 − x)A we have the following condition

for mechanical equilibrium:

f ρv2
f

2x
+ 1

4xA

〈 Nf∑
i=1

�ri · �Fi

〉
neq,�r

= (1 − f )ρv2
s

2(1 − x)
+ 1

4(1 − x)A

〈 Ns∑
i=1

�ri · �Fi

〉
neq,�r

. (7)

The phase separation mechanism thus is similar to the model
in [23] and also to active particles, where in the overdamped
case the difference in the kinetic contribution to the pressure
is created by a density-dependent reduction in the speed
compared to the active driving speed [3,7,9]. Accounting for
the inertia of active particles, it was recently shown that this
leads to liquid-gas coexistence at differing temperatures [27].

Using the close similarity of the homogeneous system to
the standard WCA disks, we can assume the existence of a
virial expansion

p f

ρ f v
2
f

/
2

= 1 + 1

2

∑
n

Bn

(
ρ f

ρ0

)n−1

, (8)

where we kept the prefactor 1/2 in front of the sum, so that
the virial coefficients reduce to the standard ones when we
turn off the force constraints. The virial coefficient will in
general depend on temperature in equilibrium (here on the
chosen speed of the particles). We also normalized the density
by the closed-packed density of hard disks, ρ0 = √

2/3. A
similar relation can be written down for the (1 − f )N slow
particles occupying a fraction (1 − x)A of the total area and, of
course, for the mixed system, also. Inserting this into Eq. (7)
and dividing by the kinetic pressure contribution of the fast
particles we obtain

f

x

[
1 + 1

2

∞∑
n=2

Bn

(
f ρ

xρ0

)n−1
]

= 1 − f

(1 − x)
z2

[
1 + 1

2

∞∑
n=2

Bn

(
(1 − f )ρ

(1 − x)ρ0

)n−1
]
, (9)

with the control parameter z = vs/v f . Local concentration
fluctuations lead to a mechanical instability against demixing
as soon as z < 1. Fixing the control parameter z, this equation
determines the area fractions of slow and fast particles, and
with that their respective densities for every given average
density ρ and fraction of fast particles f . The fact that the
kinetic pressure in the two subsystems never equilibrates
enforces a phase separation into a less dense phase of fast
particles and a denser phase of slow particles to counteract
this pressure difference.

We want to apply this theoretical description to computer
simulations of a mixed system with fraction f = 1/2 at den-
sity ρ = 0.49. We performed molecular dynamics simulations
of Eq. (1) and made sure the system found the same stationary
state from different starting conditions. In Fig. 3 we show
a sequence of configuration snapshots for different values
of z < 1. Obviously, even for z = 0.8 there exists a local
phase separation (cluster phase) between the two species. For
smaller z, the species aggregate into two separated domains.
When the slow domain is large enough to be able to percolate
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FIG. 3. Snapshots of particle configurations at density ρ = 0.49,
mixing ratio f = 0.5, and fast particle speed v f = 0.1. The different
panels are for z = 0.05 (upper left), z = 0.19 (upper right), z = 0.25
(lower left), and z = 0.8 (lower right).

(z = 0.19) in the finite size system, we observe a strip geom-
etry (influenced by finite size effects). For still smaller z the
slow domain becomes circular and reaches sufficiently high
density to exhibit hexagonal order (z = 0.05).

To quantify the demixing instability predicted by Eq. (7),
one can use a Voronoi tessellation of the system (shown
exemplary in the inset of Fig. 4) and determine the combined
areas of the Voronoi cells of each species. For a homoge-
neously mixed system of equal composition, these equal half
the system size and both species have the same areal density.

FIG. 4. Density of the slow component ρs = Ns/(1 − x)A with
the area given by the combined areas of the individual Voronoi cells
(see inset for z = 0.05). Data points are from the simulation, the
curve is from a theoretical prediction discussed in the text.

FIG. 5. Sub-block analysis of the local density distribution for a
linear block size b = 5. At larger z the distribution is unimodal with a
peak at the average density; at smaller z a coexistence between high-
density boxes (slow particles) and low-density boxes (fast particles)
develops.

In Fig. 4 the areal density as a function of the velocity ratio
z is shown by the symbols. To get a qualitative prediction for
the increase of the density of clusters of slow particles upon
reduction of z, we use a phenomenological formulation of the
equation of state (EOS) of hard disks presented by Woodcock
[28] and based on the virial coefficients determined in [29].
For the fast particles this reads

p f

ρ f v
2
f /2

= 1 + 1

2

11∑
n=2

Bn

(
ρ f

ρ0

)n−1

+ ρ

ρ0

[
4.262

1 − ρ/ρ0
− 0.1125

(1 − ρ/ρ0)2

]
, (10)

and for slow particles the corresponding equation holds. In-
serting the EOS Eq. (10) into the requirement of mechanical
equilibrium Eq. (9) and assuming the hard disk virial coeffi-
cients of [28] to be a reasonable approximation of the EOS of
the pure systems of slow and fast WCA disks, respectively, we
can solve for a prediction of the areal density of slow particles,
which is shown as the continuous line in Fig. 4. As stated
before, the system is mechanically unstable against demixing
as soon as z < 1, which is shown both by the simulation
and the theory. This qualitative feature agrees between theory
and simulation; however, quantitatively, the use of the hard
disk virial coefficients is, of course, an oversimplification.
The theoretical curve thus increases much faster than the
simulation result.

While the system is unstable against demixing as soon as
z < 1, there is a threshold for macroscopic demixing into a
compact phase of slow particles at higher density than the
average one, embedded into a phase of fast particles at a
reduced density. To locate this transition we use the sub-block
analysis [30] exhibited for the local density in Fig. 5, which
shows the density distribution observed in sub-blocks of size
b = 5 for different choices of z. Clearly, at small z a bimodal
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FIG. 6. Fourth-order cumulant of the block molar concentration
of the fast particles for different block sizes indicated in the legend.

distribution develops indicative of the demixing into a dense
phase of slow particles and a dilute phase of fast particles.

For the density, however, we basically have the equiv-
alent of a field-driven phase separation, as the mechanical
instability shows, so we have to look for a different order
parameter. We find the clearest signature of a phase transition
when we look at the fourth order cumulant of the local molar
concentration of the fast particles cb = Nf ,b/(Nf ,b + Ns,b) =
ρ f ,b/(ρ f ,b + ρs,b) shown in Fig. 6. There is a low tempera-
ture intersection point of the cumulants at around z � 0.19;
however, the minimum occurring in these cumulants is in-
dicative for a first order phase transition. The location of
this thermodynamic transition is obtained by extrapolating
the positions of the minima to infinite block size, as done in
Fig. 7. It is noteworthy that the positions of the minima do not
scale with the square of the inverse block length (the inverse
volume predicted by the scaling theory for first order phase
transitions) but with its first power. We think this is due to
the fact that in the molar concentration both the numerator
and denominator are fluctuating quantities. The extrapolation

FIG. 7. Extrapolation of the positions of the minima in Fig. 6
to infinite sub-block size. The scaling is linear in the inverse of the
sub-block size b.

converges to zc = 0.145 for the macroscopic demixing of
the two species. Below this value the system thus exhibits
macroscopic demixing into a liquid phase of slow particles
and a gas phase of fast particles. The liquid phase gets further
compressed upon reduction of z, bringing it into the realm of
the two-dimensional liquid-hexatic transition (see Fig. 4).

Recently Hajibabaei and Kim [31] examined the melting
scenario of two-dimensional WCA liquids in detail, paying
special attention to the influence of temperature on the phase
behavior. Temperature is part of the EOS of the system, so the
virial coefficients we use in Eq. (10) are temperature depen-
dent. Hajibabaei and Kim show that the Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) melting scenario is ob-
served for temperatures T > 1.1 in Lennard-Jones units, but
below T = 0.7 there is a first order transition between a
liquid and a hexagonally ordered solid with long-range ori-
entational and positional correlations. When we translate the
fixed kinetic energy of our slow particles into an equivalent
temperature, we are working in the regime T < 10−3. We
extrapolated the limiting liquid density at the liquid-solid
coexistence of Ref. [31] to this temperature range (the data
allow for a simple linear extrapolation) and obtained a liquid
density at coexistence of ρliq = 0.742, indicated in Fig. 4
by a dashed line. From this we would expect the segregated
slow particles to develop hexagonal order at small z, which
is exhibited by visual inspection by the configuration for
z = 0.05 in Fig. 3.

Local hexatic orientational order is measured by the
parameter

ψi = 1

ni

ni∑
j=1

ei6θi j , (11)

where the sum runs over the ni neighbors of particle i, and
θi j is the angle between �r j − �ri and the x axis. The spatial

FIG. 8. Spatial correlation function of the orientational order
parameter for different choices of z indicated in the legend. The lines
are fits to power law decays obeyed at small z, indicating long-range
orientational order. The exponents of the fits given in the legend are
in the expected range [31].
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FIG. 9. Static structure factor for slow and fast particles sepa-
rately as a function of the speed ratio z. Individual curves are shifted
for clarity. The peak positions in the left plot follow the ratios for
a hexagonal structure. The legend on the left plot is valid for both
parts.

correlation function of this order parameter,

	6(r) =
〈

1

N

∑
i, j

ψiψ
∗
j δ(r − |�r j − �ri|)

〉
, (12)

decays exponentially in the liquid phase but with a power
law in the hexatic phase. In Fig. 8 we show the behavior
of the orientational correlation function for different choices
of z. While this function is exponential at larger z, the de-
cay clearly is compatible with a power law behavior at the
three smallest values of z shown. In parallel to the develop-
ment of orientational order, the system also develops trans-
lational order, as evidenced by the structure factor shown in
Fig. 9.

Clearly, the coherent structure factor for the slow particles
develops Bragg peaks upon reduction of the speed ratio (i.e.,
further compression of the disk of slow particles). The posi-
tions of these peaks obey ratios characteristic for a hexatic
structure. In contrast, the structure factor for the fast particles
remains fluidlike for all parameters. This is in line with the
structures one observes at low z in Fig. 3. Taken together,
Figs. 8 and 9 give a clear proof of an hexatic phase occurring
below z = 0.1.

IV. CONCLUSIONS

We have shown here that a mixture of particles constrained
to move at two fixed and distinct velocities but otherwise
identical is unstable against demixing. We have shown that
this occurs even if the underlying dynamics is time reversible.
This generalizes the findings from a recent study [23], where
the particles differed in their diffusivity. In the stochastic
model by Weber et al., the velocity distribution of the particles
is a Gaussian with a width that differs between the two particle
types. In our model, it is a two-dimensional δ distribution
with support on circles with different radii. In both cases,
the difference in the momentum space distribution result in
an enforced imbalance of the kinetic pressure contributions
between the two components. If this imbalance is to be
counteracted by the excess pressure contributions, identical
particles have to demix into subsystems of different density.
For our system this happens first locally and then globally.
In passive systems, the lack of equilibration in momentum
space is an externally imposed property of binary models.
In contrast, single-species active systems self-generate this
dynamically.

The dense phase of slow particles, finally, can be consid-
ered as an equilibrium system of two-dimensional repulsive
disks, and we showed that it undergoes the expected liquid-
to-solid transition developing hexagonal orientational and
translational order. Our observations for the latter transition
agree well with a recent study of the ordering transition in
equilibrium two-dimensional repulsive disks.
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