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Sodium ion self-diffusion in molten NaBr probed over different length scales
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The single-particle dynamics of sodium ions in molten sodium bromide has been investigated with quasielastic
neutron scattering. A detailed and rather extensive data analysis procedure allowed determination of the pure
sodium ion dynamics with increasing wave vector. Two different evaluation procedures agree perfectly on
the resulting diffusion coefficient of sodium ions on long distances. A simple kinetic theory based on binary
collisions of hard spheres is not able to reproduce the sodium diffusion coefficient. The derived reduced
linewidth from modeling with a Lorentzian spectral function decreases with increasing wave vector towards
the first structure factor maximum. That deviation from the hydrodynamic behavior signals the hindrance of
the microscopic diffusion process due to the so-called cage effect when microscopic length scales are probed
in a dense fluid. The observed quadratic wave-number-dependent decrease might be evidence for a coupling to
density fluctuations as the source of the changes in the diffusion process. The results indicate that in the molten
salt NaBr near the melting point the self-diffusion process might be governed by similar processes as already
observed in dense metallic liquids.
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I. INTRODUCTION

Diffusion is a mass transport process occurring in solids,
liquids, and gases. Materials science and life as well rely on
displacements of atoms and molecules due to thermal motion.
According to Fick’s law the driving force for diffusion is a
concentration gradient [1]. This is also the basic principle
for the macroscopic measurements of diffusion coefficients,
where tracer techniques are applied to determine diffusion
coefficients.

On long length scales, in the hydrodynamic regime, self-
diffusion is represented by a partial differential equation for
the tagged particle density n(r, t ) (see, for example, Ref. [2]):

∂n(r, t )

∂t
= D∇2n(r, t ). (1)

Herein the diffusion coefficient D appears, which is as-
sumed to be a constant within this derivation. The solution
of this equation is a Gaussian spatial distribution n(r, t ) =

1
(4πDt )3/2 exp(−r2/4Dt ), which describes the probability to find
a particle after time t in a distance r when the particle was at
t = 0 at the origin. The tagged microscopic particle density
n(r, t ) leads to the self-part of the van Hove self-density
autocorrelation function Gs(r, t ). The Fourier transform of
Gs(r, t ) is the intermediate scattering function: F s(Q, t ) =
〈nQ(t ), n−Q(0)〉. The mean-square displacement evolves lin-
ear with time limt→∞〈[r(t ) − r(0)]2〉 = 〈�r2(t )〉 = 6Dt for
long times. After Fourier transformation the intermediate
scattering function becomes a Lorentzian line shape, where
the half width at half maximum (HWHM) is directly related
to the diffusion coefficient: HWHM = � = h̄DQ2. Herein lies
the simplicity for a QENS measurement to derive a diffusion
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coefficient. That description is correct for long times com-
pared to molecular collisions and describes the random walk
of a particle in the picture of Einstein.

A direct connection of the diffusion coefficient with the
microscopic particle dynamics can be obtained through a
Green-Kubo integral of the velocity autocorrelation function
[2]. It became evident that a large part of the microscopic
dynamics was not well represented in the Langevin equation.
and a generalized Langevin equation was introduced to de-
scribe the dynamics [3]. These investigations emphasized the
coupling to further fluctuations, which contribute in different
strengths to the diffusion process on different length scales.
Hence much effort was invested to understand the self-particle
dynamics on length scales between the hydrodynamic and the
free-streaming length scale to get insight into the microscopic
sources for the diffusion process. Within a neutron scattering
experiment these length scales can be probed and a deeper
analysis through the wave-vector-dependent scattering func-
tions F s(Q, t ) can be performed.

In general, the classical Gaussian distribution function
Gs(r, t ) leads to a Gaussian function in wave vector space
[4] for the intermediate scattering function, known as the
Gaussian approximation. In the wave vector range between
small, hydrodynamic and large, free-particle wave vectors the
Gaussian approximation breaks down [3]. Early MD simula-
tions on a Lennard-Jones liquid demonstrated non-Gaussian
deviations with increasing wave vector [5]. The study showed
a minimum of the reduced halfwidth γ (Q) = �(Q)

DQ2 around the
structure factor peak, where �(Q) denotes the HWHM.

To describe the linewidth reduction at intermediate wave
vectors a successful approach is to apply sophisticated ap-
proximations to the friction force in a generalized Langevin
equation for the self-scattering function F s(Q, t ). This can
be achieved with inclusion of nonlocal effects in time and
space through a memory function approach with a single
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exponential decay function for the second order memory
function [6]. The incoherent Lovesey model could already
demonstrate the experimentally observed linewidth reduction
with increasing wave vector in a qualitative manner. Further
progress was finally achieved with inclusion of several decay
channels into the memory function [7,8]. These approxi-
mations were able to describe quantitatively the evolution
of the reduced linewidth with increasing wave vector for a
dense liquid. When lowering the temperature this reduction in
mobility is at the heart of the freezing process and eventually
for the glass transition. The most precise tests of these theory
predictions have been made on the self-dynamics of liquid
sodium. The reduction in width and the derived diffusion coef-
ficient were in excellent agreement with the theory prediction
and literature [9–13].

Here we present an investigation of self-diffusion in a
binary molten salt. The chosen NaBr has neutron scattering
properties where mainly the sodium self-dynamics is observed
and methods from the monatomic case can be adopted. The
study of molten alkali halides has a long tradition in the-
ory and experiment as well as simulation as documented in
reviews and textbooks [2,14,15]. From the application side
molten salts are seeing a renaissance. The large heat capacities
and large liquid temperature range make molten salts attrac-
tive as heat storage and transport media, e.g., for heat storage
in modern solar power plants or in next-generation nuclear
reactors [16,17].

Structurally, Coulomb liquids exhibit short-range order due
to the electrical charges, which are alternating in successive
coordination shells around a central ion. The most exciting
prediction concerning the dynamics of binary ionic liquids
was the existence of optic-type modes, which have been
demonstrated in a pioneering MD simulation of a symmetric
molten salt by Hansen and McDonald [18]. Due to these
predictions in the following years significant experimental
effort was put into the study of the collective particle dynamics
of molten salts with neutrons [19–21] and with inelastic x-ray
scattering [22–27].

On the computational side more effort was devoted to
elucidate the microscopic dynamical foundations of transport
parameters. First simulations on molten salts used classical
rigid ion potentials to derive transport coefficients [28] and
are still used nowadays; see, for example, Refs. [29–31]. In
parallel, the inclusion of polarization effects was achieved,
which resulted in an increase of the diffusion coefficient for
the cation [32]. Later, several studies assessed the influence of
polarization on the ion dynamics [33–35], and ab initio meth-
ods also have been applied; see, for example, Refs. [36–38].

Not as many experimental studies exist on the microscopic
dynamics, mostly due to the corrosive nature of the sample
and the necessary high temperatures. Pulsed field gradient nu-
clear magnetic resonance spectroscopy has successfully been
applied to study structure and ion dynamics [39]. Quasielastic
neutron scattering (QENS) is a powerful method to study
single-particle dynamics on a microscopic scale and to derive
a diffusion coefficient without disturbance from convection.
In addition, QENS offers the possibility to study the evolu-
tion of single-particle dynamics over decreasing length scales
and hence the influence of the microscopic structure on the
diffusion process. The determination of a tagged particle

motion needs access to a quantity sensitive to single-particle
movements, and incoherent neutron scattering provides ex-
actly this tool.

One of the few examples in this field is a QENS study on
sodium movements in molten NaI [40]. More recently, the
single-ion dynamics of molten NaBr and NaF was studied in a
combination of experiment with classical and first-principles-
based MD simulations [33,41–43]. These investigations of the
ionic mobility examined the ion self-diffusion coefficients D
and compared the simulated and experimental results with
macroscopic diffusion coefficients obtained through tracer
diffusion. Until now, to our best knowledge no specific anal-
ysis has been undertaken to study the diffusion process with
decreasing length scale as was done for monatomic metallic
liquids.

Here we present a QENS measurement on molten NaBr
just above the melting point with the aim to determine the
single-particle motions of the sodium ion with increasing
wave vector. Due to the neutron scattering properties of the
involved ions the scattered intensity is dominated by the
single-particle motions of the sodium ion.

II. EXPERIMENTAL DETAILS

Inelastic neutron scattering measures the total dynamic
structure factor S(Q, ω) of the density fluctuations. Non-
magnetic neutron scattering interacts with the nuclei through
two cross sections, the incoherent and the coherent one. The
incoherent cross section connects with the self-correlations
of a particle, and the coherent cross section interferes with
correlations between the particles. In general, the double dif-
ferential cross section per particle is a cross-section-weighted
sum of these two contributions [19]:

d2σ

d	dω
= d2σ

d	dω
|coh + d2σ

d	dω
|inc

= k f

ki

∑
i, j

√
cic jbib jSi, j (Q, ω)

+ k f

ki

∑
i

σ inc
i

4π
ciS

s
i (Q, ω). (2)

Here ki and k f denote the incoming and scattered wave vectors
and ci are the respective particle concentrations. The coherent
double differential cross section is related to a sum of the
partial dynamic structure factors Si, j (Q, ω) weighted by the
square of the respective neutron scattering lengths, and the in-
coherent one is related to a sum of the self-dynamic structure
factors Ss

i (Q, ω) weighted by their respective incoherent cross
sections. In a binary system, like NaBr, the measured intensity
will consist of five different contributions, and the coherent
and incoherent dynamic structure factors may be written

Scoh(Q, ω) = 1

2

[
b2

NaSNaNa(Q, ω) + 2bNabBrSNaBr(Q, ω)

+ b2
BrSBrBr (Q, ω)

]
, (3)

Ss(Q, ω) = 1

2

[
σ inc

Na

4π
Ss

Na(Q, ω) + σ inc
Br

4π
Ss

Br(Q, ω)

]
. (4)
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TABLE I. Neutron scattering lengths, cross sections, and absorp-
tion cross sections.

b (fm) σ coh
a (barn) σ inc

a (barn) σ abs
a (barn)

Na 3.6 1.66 1.62 0.53
Br 6.795 5.8 0.1 6.9

Table I provides the scattering lengths and the neutron cross
sections of both ions [44]. Na is a nucleus with nearly
equal coherent and incoherent scattering cross section, and
Br scatters the neutrons mainly coherently. Hence the total
incoherent scattering cross section is dominated by the sodium
movements, and the bromine ions contribute only a few per-
cent to the incoherent scattering. The non-negligible coherent
cross section from bromine and sodium ions will contribute
to the measured intensity mainly towards the structure factor
maximum. However, there is also a non-negligible contribu-
tion at smaller Q vectors which will need to be corrected for
to obtain the pure self-dynamics of the molten salt.

A flat niobium can was filled with NaBr powder, which was
then enclosed through electron beam welding. The niobium
wall thickness was 0.5 mm, and the sample thickness 3.8 mm,
which provided a scattering power of about 12%. Niobium
is a nearly perfect coherent scatterer and hence will not
contribute to the elastic line except where Debye-Scherrer
lines appear. The first reflection of niobium is at Q = 2.7 Å−1,
which is outside the wave vector range of the spectrometer
setup. The cell was installed under a 45◦ orientation in a
transmission geometry into a standard furnace with niobium
shields. The flat cell installed under this geometry gives a
high self-absorption at a Q ≈ 1.6 Å−1, which is near the
structure factor maximum of molten NaBr. That momentum
transfer is outside the region of interest for this experiment.
The measured temperature was 1033 K for molten NaBr
(Tmelt = 1000 K). The temperature uncertainty was smaller
than ±1.5 K during all measurements. An identical cell was
used for empty cell runs. The experimental density of molten
NaBr at T = 1033 K is 2.34 g/cm3 [45].

The QENS experiment was performed at the OSIRIS spec-
trometer of the U.K. ISIS Facility [46]. With an end energy
of E f = 1.845 meV the energy resolution deduced from a
vanadium measurement was FWHM = 0.025 meV, and the
covered wave vector range is 0.25 Å−1 < Q < 1.8 Å−1. In
contrast to the previous measurement [33] a beryllium filter
was installed this time on the spectrometer [47] to remove
potential contaminations from second-order reflections of the
pyrolytic graphite analyser. About 36 hr of beam time were
used for the sample and 20 hr for the empty cell measurement
to obtain data of high statistical quality [48].

Figure 1 shows an intensity map of molten NaBr at 1033 K.
Towards small Q vectors a strong increase in the amplitude
can be observed, a sign of quasielastic incoherent scattering.
This shape demonstrates that the measured signal stems from
sodium diffusion within this range of Q vectors. At Q vectors
towards Q ≈ 1.7 Å−1 the dynamic structure factor shows
a smooth continuous increase in intensity due to coherent
scattering.

To determine the small deviations from the hydrody-
namic diffusion behavior a quite sophisticated data analysis
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FIG. 1. An intensity map of the measured molten NaBr signal is
presented. At small Q the typical scattering signal of an incoherent
scattering particle is visible, and towards larger wave vectors a
smooth increase in intensity from the coherent, collective movements
of the particles can be seen.

procedure is in order. The data analysis included monitor
normalization and empty cell subtraction taking into account
absorption of sample and can. Absorption factors have been
calculated according to a procedure from Paalman and Pings
[49].

Figure 2 shows two sample spectra with the respective
empty can measurement. The empty niobium cell clearly
contributes only a small amount to the signal at this wave
vector. Included is also the energy resolution (FWHM =
0.025 meV), which is for most Q vectors much smaller than
the measured spectra from the molten salt. Through compari-
son with a vanadium measurement an absolute normalization
was achieved. Interpolation on the measured grid of energy
momentum transfers enabled the conversion into constant Q
spectra.

In a scattering experiment there exists a finite probability
that the once scattered neutron is scattered a second time

FIG. 2. Two noncorrected measured spectra for two different
wave vectors are plotted. Included are the respective empty cell
measurements and the measured energy resolution from a vanadium
measurement.
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FIG. 3. The single-scattering input signal and the twice-scattered
signal are plotted from the multiple-scattering correction calculation.
Included (stars) is the measured neutron spectrum at Q = 0.475 Å−1.

or even more often. The multiple-scattered neutron signal
can be calculated from a convolution of the single-scattering
function. This convolution process results in much less struc-
tured spectra. These unwanted additional scattering events
need to be corrected from the measured spectra to extract the
single-scattering function. To this end a multiple-scattering
correction has been performed. This was achieved by simula-
tion of the twice-scattered neutrons given a suitable scattering
function as input and subtracting the twice-scattered neutron
intensity from the measured signal [50].

For the calculation of the multiple-scattered signal inco-
herent and coherent dynamic structure factors are needed as
input. As an approximation the dynamic structure factors were
used derived from a single exponential decaying memory
function ansatz [2]. That model delivers a dynamic scattering
function for the collective and for the self-dynamics of a liq-
uid. This so-called viscoelastic model describes the collective
dynamics reasonably well, which was recently demonstrated
in a data analysis of the collective dynamics of molten RbBr
[21]. Also the incoherent model was successfully applied in
the description of self-dynamics in monatomic liquids [6]. An
important input parameter for the calculation of the dynamic
structure factor is the Einstein frequency, which can be es-
timated from the Debye temperature, which is θD = 224 K
for NaBr [51]. An estimate for ωE can then be calculated
with ωE = 3

4ωD, from which we finally obtain ωE = 23 ×
1012 s−1.

After proper normalization with the experimental abso-
lute normalized data the twice-scattered contribution was
subtracted from the data. In Fig. 3 the input scattering
function and the simulated twice-scattered contribution are
plotted compared with the measured data for a Q vector
of Q = 0.475 Å−1. The line shape is well described by the
viscoelastic model, and the integrated contribution from the
twice-scattered neutrons is around 7% at this wave vector in
comparison to the single-scattered neutron signal.

A further step is necessary to obtain the pure self-
dynamics, the non-negligible contribution from the collec-
tive motions has to be subtracted. To achieve this a MD-
simulated spectrum for the collective motions Scoh(Q, ω) has

FIG. 4. A measured spectrum at Q = 0.85 Å−1 is plotted with
MD-simulated spectra for the incoherent, the coherent, and the total
S(Q, ω).

been subtracted from the experimental spectra. A good ab-
solute calibration of the data is mandatory for a successful
application of this correction. In Fig. 4 the neutron spectrum
at Q = 0.85 Å−1 is plotted after multiple-scattering correction
and absolute calibration. Included are the results from the
MD simulation [41] for Q = 0.82 Å−1 depicting the total, the
incoherent, and the coherent contribution.

In this wave vector range the coherent amplitude at the
elastic line is only 20% of the incoherent one. The coherent
spectrum is wider and demonstrates a sizable amount to the to-
tal signal for energy transfers beyond 0.7 meV. There is a very
good agreement on an absolute intensity scale, which gives
confidence in subtracting the simulated coherent signal from
the neutron data. For the smooth Q dependence of Scoh(Q, ω)
the line shape of the simulated spectrum at Q = 0.82 Å−1 has
been normalized with the simulated total structure factor data,
obtained from the partial structure factors [41]. To extract the
linewidth �(Q) a Lorentzian convoluted with the measured
resolution function was fitted to the spectra, even though only
at the smallest momentum transfer would the convolution
make a small difference. No additional background was in-
cluded in the fit procedure. All details from the MD simulation
have been published before and are for the sake of brevity not
repeated here [33,41].

III. RESULTS AND DISCUSSION

A. Diffusion on long length scales

First we will describe the line shape with two different
methods to derive the sodium diffusion coefficient before we
embark on discussing the changes of D with increasing wave
number. A formal framework to describe the dynamics of time
correlation functions is given by the Zwanzig-Mori memory
function formalism. Within a generalized Langevin equation
all processes contributing to the time development of the cor-
relation function are buried in the space- and time-dependent
memory function. A solution to this integro-differential equa-
tion can be obtained through a Laplace transform into a
continued fraction.
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FIG. 5. Fully corrected spectra for three wave vectors are plotted
in panel (a) together with their respective Lorentzian line-shape
fit. In panel (b) a comparison is made between the simulated and
experimental spectra for two wave vectors.

From hydrodynamics a Lorentzian line shape is predicted,
and that is the standard fit model to extract the diffusive
motions in liquids. In a formal description the Lorentzian line
shape can be derived from a memory function approximation
with an instantaneously decaying first-order memory function
K (Q, t ) = 2�δ(t ) [4]. The Laplace transformed Langevin
equation for the self-density autocorrelation function is then

F s(Q, z = iω) = 1

z + K (Q)
. (5)

The real part of F s(Q, z) is related to the single-particle
scattering function through Ss(Q, ω) = 1

π
Re(F s(Q, z), which

is in this case a Lorentzian.
After performing all the necessary data evaluation steps

we obtain the pure Ss(Q, ω), which is mostly related to the
sodium movements. Figure 5(a) depicts three spectra with
different Q vectors and their respective fit of a Lorentzian.
The larger Q vector is described perfectly by a one-Lorentzian
fit. However, at Q values smaller than Q < 0.575 Å−1 the
amplitude is not perfectly fitted by a single Lorentzian func-
tion. Figure 5(b) shows two neutron spectra compared with
the MD-simulated spectra. There is an excellent agreement

FIG. 6. The widths from the experimental and MD-simulated
data are plotted against Q2. The line depicts a DQ2 fit to the neutron
data for a wave vector range with Q2 < 0.3 Å−2.

on line shape and intensity scale, except that at the smaller
wave vector the experiment shows a larger amplitude. Reasons
for the enhanced amplitude could be a not well subtracted
empty cell or an additional slow process. At larger Q vectors
the empty cell subtraction worked quite well, and the small
amount from the empty cell (see Fig. 2) does not change
very much with increasing wave vector. On the other side
the enhanced intensity could be seen as an additional slow
process which appears on top of the salt dynamics. There
is a small incoherent contribution from the larger bromine
ions. However, the MD simulation predicted a 25% reduc-
tion in the diffusion coefficient compared to DNa [33]. A fit
with two Lorentzians indicated a factor 2 smaller width for
the additional slower contribution. Hence it seems difficult
to explain this additional intensity with the bromine self-
movements. Also the simulated spectrum in Fig. 5(b) contains
the contributions from sodium and bromine ions and does not
describe this additional intensity. Another explanation could
be that the self-diffusion process is a more complex process
than only a single exponentially decaying intermediate self-
scattering function.

The derived widths �(Q) from the fit procedure are plotted
in Fig. 6. For comparison the widths from the MD-simulation
spectra are included, which have been obtained from the
Fourier transformed total self-intermediate scattering func-
tion F s(Q, t ) [33]. At small wave vectors there is a good
agreement, whereas at larger Q vectors the experimental data
lie slightly below the simulated results. With a fit of the
hydrodynamic diffusion law � = h̄DQ2 in the small wave
vector range up to Q2 = 0.3 Å−2 a diffusion coefficient was
extracted from both data sets. The line in the plot indicates
the DQ2 fit to the neutron data, which was then extrapolated
to larger Q values. It clearly indicates that at larger wave
vectors the linewidth is reduced compared to the hydrody-
namically expected value. A similar behavior could be shown
for the MD-simulated results. From the fit we obtain DNa =
7.6 ± 0.15 × 10−5 cm2/s and from the MD simulation DNa =
8.4 × 10−5 cm2/s. Compared to the previous analysis [33]
the experimental derived diffusion coefficient is smaller. This
is expected due to the more detailed analysis where further
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contributions to the measured signal have been subtracted
to obtain the pure incoherent signal. The analysis here then
suggests that the simulation slightly overestimates the mobil-
ity of the ions, which might be related to an overestimated
polarization contribution in the potential description of the
bromine ion.

A more sophisticated model to describe the line shape of a
tagged particle scattering function was proposed by Lovesey
for a monatomic liquid [6]. Within a memory function ap-
proach the influence of density fluctuations of the surrounding
particles on the tagged particle movements is taken into
account by using a second-order memory function [2,4]:

F s(Q, z = iω) = 1

z + ω2
s (Q)

z+M(Q,z)

. (6)

Here ω2
s = kBT

m Q2 is the second frequency moment of the
scattering function, kB is the Boltzmann constant, T is the
temperature, and m is the particle mass. Due to the size of
the neutron cross sections the main part of the incoherent
scattered intensity stems from the sodium ion movements.
Hence, we adopt the single-particle scattering function for
the binary molten alkali halide. For the memory function
an exponentially decaying function is applied: M(Q, t ) =
M(Q, 0) exp[−t/τ (Q)]. The resulting single-particle scatter-
ing function Ss(Q, ω) can then be written as

Ss(Q, ω) = 1

π

τ (Q)ω2
s

(
2ω2

s − ω2
E

)
ω2τ (Q)2

(
ω2 − 3ω2

s − ω2
E

)2 + (
ω2 − ω2

s

)2

(7)
with ωE as the Einstein frequency of the liquid. For the
relaxation time τ (Q) of the memory function a recipe was
proposed which fulfills the low-Q hydrodynamic limit [6]:

1

τ (Q)
= DmωE

kBT

√
2ω2

s + ω2
E . (8)

With the Einstein frequency of ωE = 23 × 1012 s−1 as in-
put parameter and all the other parameters given, a wave-
vector-dependent diffusion coefficient D(Q) can be obtained.
Figure 7 shows examples for the measured spectra and the
respective fit with Eq. (7). The inset shows the spectra on
a linear scale and still demonstrates a small missing part
at the smallest Q vector, similar to the observation with
the Lorentzian curve fit. From the fit over all Q vectors
we obtain wave-vector-dependent diffusion coefficients D(Q).
Figure 8 depicts the obtained D(Q) values from the curve
fitting with the Lorentz line shape and the Lovesey model.
The values from the Lorentz fit deviate with increasing wave
vector from the hydrodynamic expected value, as expected
from the width plot in Fig. 6. However, the fit with the
Lovesey model delivers D(Q) values nearly independent of
the wave vector. Clearly this model takes some feedback of
the surrounding particles through the time-dependent memory
function into account. Included in the figure are fits to the
diffusion coefficients D(Q). A quadratic decay for D(Q) in
the case of the Lorentzian curve fit and a constant D value
for the Lovesey curve fits was applied to the D(Q) values in
Fig. 8. The motivation for the quadratic fit will be presented
below.

FIG. 7. Spectra for three different Q vectors are presented on a
logarithmic scale. The lines depict fits with the incoherent Lovesey
model. The inset shows the spectra on a linear scale to emphasize the
difference between fit and data at the smallest wave vector.

The hydrodynamic limit Q → 0 defines the diffu-
sion coefficient. The quadratic fit delivers DNa = 7.78 ±
0.23 10−5 cm2/s and the Q constant fit DNa = 7.78 ±
0.1 10−5 cm2/s. That perfect agreement might be by chance
or be evidence for the consistent data analysis procedure.
Within error bars these values agree with the value derived
from the �(Q) fit. The slightly different value for the diffusion
coefficient obtained through the Q2 fit can then be understood
as reasoned by the deviation from Fick’s diffusion law with
increasing wave vector. Herein lies also a possible source for
observed deviations in reported diffusion coefficients, because
the actual value of D depends on the fitting range of available
wave vectors. We conclude from the analysis based on two
different analysis methods that the experimental value for the
sodium ion diffusion coefficient in molten NaBr is DNa =
7.8 ± 0.2 × 10−5 cm2/s.

FIG. 8. The wave-vector-dependent diffusion coefficients D(Q)
are presented, derived from the two analysis procedures using a
Lorentzian spectral shape (stars) and a fit with the Lovesey model
(circles). Included are fits with a quadratic Q behavior (dashed line)
and a constant D fit (line) through the respective data sets.

062603-6



SODIUM ION SELF-DIFFUSION IN MOLTEN NaBr … PHYSICAL REVIEW E 101, 062603 (2020)

Now we aim to describe the obtained diffusion coefficient
with a simple theoretical model based on collisions of hard
spheres. Kinetic theory has been used to describe transport
coefficients of dense fluids. Originally Enskog proposed a
generalization of the Boltzmann equation for a gas of hard
spheres by taking into account the local density and only bi-
nary collisions. Later the Enskog theory was further developed
to be applied for binary mixtures of hard spheres; see, for
example, [52–54]. An Enskog expression for the self-diffusion
coefficient DE of binary and multicomponent mixtures of hard
spheres was given previously [55,56]:

DE ,1 = 3kBT

16π

{
σ 2

1 n1g11(σ1)

√
kBT m1

4π

+ σ 2
12n2g12(σ12)

√
kBT m1m2

2π (m1 + m2)

}−1

. (9)

Here T denotes the temperature, m1 and m2 are the masses
of the particles, and n1,2 are the particle densities of the two
ions. The hard-sphere diameters for the ions σNa = 1.9 Å
and σBr = 3.9 Å are taken from Ref. [45]. For the unlike
particle interaction σ12 = (σ1 + σ2)/2 is applied. The remain-
ing parameters to be determined are the pair distribution
functions at contact gi j (σi j ). For mixtures of hard spheres
a solution for the Percus-Yevick equation was given by
Lebowitz [57]:

g11(σ1) =
(
1 + 1

2ζ
) + 3

2η2σ
2
2 (σ1 − σ2)

(1 − ζ )2
g12(σ12)

= σ2g11(σ1) + σ1g22(σ2)

2σ12
. (10)

The packing fraction for the binary mixture is given by ζ =
η1σ

3
1 + η2σ

3
2 with ηi = π

6 ni. We obtain ζ = 0.47 for molten
NaBr, which is near the solidification packing fraction of a
dense hard-sphere liquid. For this Enskog approximation we
obtain the following self-diffusion coefficients: DE ,Na = 18 ×
10−5 cm2/s and DE ,Br = 5.6 × 10−5 cm2/s. The Enskog dif-
fusion coefficient for the sodium ions is about a factor 2
larger than the measured and simulated one, whereas the
bromine diffusion coefficient is about the simulated one,
DBr = 5.8 × 10−5 cm2/s [33]. The sodium ions are a factor
2 smaller in diameter and a factor 4 lighter than the bromine
particles, which explains the large difference in the hard-
sphere Enskog calculation for the diffusion coefficient. The
small hard-sphere particles are surrounded by a mixture of
small and large particles and can more easily find a free
space to move randomly around than the large particles.
On the other side the large bromine spheres are hindered
in their movements only by their own species, which might
explain the good agreement between the hard-sphere Enskog
result for DBr with the simulated diffusion coefficient. An
experimental determination of the bromine diffusion coeffi-
cient based on a hard-sphere theory was able to predict DBr

quite well [41]. The difference with the Enskog diffusion
constant obtained there might be related to two different
implementations for structural influences into the kinetic
theory. In summary, there is a mixed success to predict
diffusion coefficients for molten salts applying hard-sphere
kinetic theories.

FIG. 9. The reduced widths are plotted for the neutron data
(stars) and the MD-simulation data (circles). Included as a line is
a fit with a quadratic wave vector dependence of the reduced width.

For liquid alkali metals it was shown that diffusion coeffi-
cients, taking into account only binary collisions, are about
50% larger than the experimental or simulated ones [9].
Within that context the large value for DNa, based on only
binary collisions of hard spheres, might be partly explained by
the neglect of slow decay processes of the memory function.

B. Diffusion with increasing wave vector

Near the melting point the diffusion process in the dense
liquid is hindered by density fluctuations, and it appears that
this principle also applies for the binary ionic liquid. Whether
the coupling to density fluctuations is the dominating variable
behind the changes to the self-diffusion coefficient in a molten
salt will now be examined in more detail by means of the
wave-vector-dependent diffusion.

Formally it is necessary to extend the space and time
dependence in the memory function M(Q, t ) beyond the
phenomenological ansatz in the Lovesey model. That can
be achieved by splitting the memory function into a fast-
decaying and a slow-decaying part M(Q, t ) = Mfast (Q, t ) +
Mslow(Q, t ) [4]. The latter contribution is related to density
and current fluctuations of the system, which is the reason for
the term mode coupling approach. Then the dynamic equation
for the correlation function can be solved in a self-consistent
way under the assumption for a specific set of modes within
the memory function. For the incoherent scattering function
of a classical liquid such an approach was undertaken using
density and current fluctuations [7]. In the dense liquid a
quadratic decrease at small wave vectors was predicted by
theory [7] and was later confirmed in pioneering experiments
on liquid sodium [11,12]:

γ (Q) = 1 − c Q2. (11)

The constant c is related to the memory function of the kinetic
equation for the tagged particle phase-space correlation func-
tion [7]. In particular, the constant depends on the long time
development of the memory function.

In Fig. 9 the reduced widths γ (Q) = �(Q)
h̄DQ2 for the neutron

data and the MD-simulation data are plotted, using the respec-

062603-7



F. DEMMEL PHYSICAL REVIEW E 101, 062603 (2020)

tive diffusion coefficients. Beyond a wave vector of about
Q ≈ 0.5 Å−1 the reduced width deviates from the expected
hydrodynamic value towards smaller values. D(Q) decreases
with increasing wave vector when the diffusing particle senses
the atomic structure. The neutron data show a larger degree of
statistics, but, nevertheless, they also demonstrate the decrease
in the reduced width in reasonable agreement with the MD
simulation. MD-simulation data are available beyond the first
structure factor maximum at Q = 1.7 Å−1. The simulation
results indicate a minimum for γ (Q) with an increase beyond
the structure factor maximum. Theory predicted a so-called
cutoff wave vector Q∗ = ωE

2
√

kBT/m
when the minimum occurs

for γ (Q) [8]. Here we calculate for the sodium ions a Q∗ =
1.88 Å−1, which agrees quite well with the minimum in the
simulation data. That Q dependence agrees with the behavior
in monatomic liquids [13], where the minimum is interpreted
that the particle is trapped inside the cage of next neighbors.
At even shorter distances or larger wave vectors the particle
does not feel the influence of the surrounding neighbors.
Theory and simulations have shown that beyond about twice
the structure factor maximum there is a dramatic change of the
reduced width toward the free particle behavior [8,13]. That
wave vector range has not been reached in the MD simulation.

To test these predictions a linear and a quadratic fit to
the experimental data were performed, and the quadratic fit
shows a smaller χ2. Applying the quadratic fit of Eq. (11) to
the neutron data we obtain c = 0.12 ± 0.015 Å2 and for the
MD data c = 0.06 ± 0.004 Å2 is derived. For liquid sodium
near the melting point c = 0.074 Å2 was obtained [58]. An
estimate for the constant c can be derived using the incoherent
Lovesey model [see Eq. (7)]. For small Q the reduced width
for the incoherent Lovesey model was given in Ref. [4], which
can be expanded to demonstrate a Q2 dependence:

γ (Q) =
[

1 + 2kBT

mω2
E

Q2

]−1/2

≈ 1 −
[

kBT

mω2
E

]
Q2. (12)

Using the above estimated Einstein frequency ωE = 23 ×
1012 s−1 we obtain c = 0.07 Å2. A more elaborate derivation
for the small Q dependence of the reduced width, which
was successfully applied in the case of liquid sodium, was
presented in Ref. [58]:

γ (Q) = 1 −
[

2kBT

mω2
E

− D2m

kBT

]
Q2. (13)

That approximation delivers a c = 0.12 Å2 in our case, in
excellent agreement with the experimental result. The good
agreement between calculated curvature and fitted value sug-
gests that the same processes are at work in the molten salt as
in the monatomic liquid metal sodium. In liquid sodium the
quadratic dependence was linked to the coupling to density
fluctuations [11]. Therefore the quadratic decrease in molten
NaBr near the melting point is evidence for a coupling to
density fluctuations, which are hindering the diffusion process
with decreasing length scale.

It seems conceivable that at higher temperature and con-
comitant lower density the cage effect dies away and the cou-
pling to transverse currents takes over. Consequently changes
in the Q dependence of the reduced width and to the diffusion

coefficient could be expected in a molten salt, as demonstrated
for liquid sodium [11,12,59].

IV. CONCLUSIONS

A quasielastic neutron scattering experiment on molten
NaBr just above the melting point was conducted. A quite
detailed data analysis was performed to reveal the pure self-
dynamics of the molten salt. To this end a multiple-scattering
correction was undertaken, and the simulated coherent scatter-
ing contribution was subtracted from the absolute calibrated
data. A good agreement with simulated data was achieved
concerning the obtained spectra and their linewidths. Two
methods have been applied to determine the hydrodynamic
diffusion coefficient, and both approaches demonstrate a re-
markable agreement for the long length scale movements.
A simple calculation for the diffusion coefficient based on
binary collisions of hard spheres fails to describe the sodium
diffusion coefficient. However, the larger and heavier bromine
seems to be described quite well.

The resulting reduced width demonstrates a quadratic
decrease with increasing Q vector in the experimental and
simulated data at small wave vectors. The decrease in D(Q)
with decreasing length scale is caused by the influence of the
microscopic structure of the dense liquid. As a consequence
the cage from the surrounding particles hinders the particle’s
diffusion movements. This Q dependent behavior might be
interpreted as a coupling of the diffusion process to density
fluctuations. In monatomic liquid metals such an explanation
could be demonstrated quantitatively with mode coupling
theory calculations. The presented results suggest a similar
mechanism in molten NaBr.

However, some questions remain. Towards small Q vectors
the experimental spectra demonstrate an additional slow pro-
cess, which is not seen in the simulation. Further experimental
and MD-simulation studies are necessary to confirm or refute
the existence of an additional slow relaxation process. To
access the minimum in the reduced width experimentally a
possibility would be to perform a QENS experiment with
polarization analysis. Also it would be interesting to watch the
evolution of the reduced width with increasing wave vector in
simulation and experiment towards the free particle limit. A
much more demanding challenge for the experiment would
be to follow the diffusion process towards lower density and
to reveal the changes in the coupling to decay channels of the
memory function. Certainly a simulation could achieve these
thermodynamic conditions more easily under the condition
that a reliable interaction potential with the changing density
is available. And finally from the theoretical point of view,
a calculation of the Q-dependent γ (Q) decrease for a binary
Coulomb liquid could give new impulses to the field.
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