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Dynamics of Magnus-dominated particle clusters, collisions, pinning, and ratchets
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Motivated by the recent work in skyrmions and active chiral matter systems, we examine pairs and small
clusters of repulsively interacting point particles in the limit where the dynamics is dominated by the Magnus
force. We find that particles with the same Magnus force can form stable pairs, triples, and higher ordered clusters
or exhibit chaotic motion. For mixtures of particles with opposite Magnus force, particle pairs can combine
to form translating dipoles. Under an applied drive, particles with the same Magnus force translate; however,
particles with different or opposite Magnus force exhibit a drive-dependent decoupling transition. When the
particles interact with a repulsive obstacle, they can form localized orbits with depinning or unwinding transitions
under an applied drive. We examine the interaction of these particles with clusters or lines of obstacles and find
that the particles can become trapped in orbits that encircle multiple obstacles. Under an ac drive, we observe a
series of ratchet effects, including ratchet reversals, for particles interacting with a line of obstacles due to the
formation of commensurate orbits. Finally, in assemblies of particles with mixed Magnus forces of the same
sign, we find that the particles with the largest Magnus force become localized in the center of the cluster, while
for mixtures with opposite Magnus forces, the motion is dominated by transient local pairs or clusters, where the
translating pairs can be regarded as a form of active matter.

DOI: 10.1103/PhysRevE.101.062602

I. INTRODUCTION

A variety of systems can be described as local clusters of
interacting particles, including colloids [1–3], Coulomb clus-
ters [4,5], vortices in type II superconductors [6,7], dusty plas-
mas [8], Wigner crystals [9], vortices in superfluids [10,11],
skyrmions [12,13], granular matter [14], and active matter as-
semblies [15]. In many of these systems, the cluster formation
arises when the particles experience a local confinement or
self-trapping due to the nature of the pairwise particle-particle
interactions [16,17]. Under various types of driving, these
systems can exhibit interesting dynamical effects, including
self-assembly [18,19], rotating gear behavior [20,21], and
depinning phenomena [22]. In most of these systems, the
dynamics is overdamped; however, some systems also include
nondissipative effects such as inertia or Magnus forces. In
particular, Magnus forces produce a velocity component that
is perpendicular to the net force experienced by a particle,
and such forces arise for vortices in fluids [23–26], active
spinners [27–31], chiral active matter [32], charged particles
in magnetic fields [33], and skyrmions in chiral magnets
[34–36]. One consequence of this is that pairs or clusters
of particles can undergo rotations or spiraling motion when
they enter a confining potential [37–41] or are subjected to
a quench [42]. If damping is present, these spiraling motions
are transient unless there is some form of external driving.
Less is known about how Magnus-dominated particles would
interact with obstacles or pinning sites; however, some studies
indicate that the Magnus force strongly modifies the dynamics
compared to overdamped systems [40–49].

Motived by our previous work on point particle models
of skyrmions interacting with each other and with random
[41,50] or periodic pinning [42], where the particles have both

a Magnus and a damping force, we consider the limits of
zero damping or very low damping and study the Magnus-
dominated dynamics of pairs and small clusters of particles
interacting with each other and with pinning sites. We con-
sider mixtures with identical Magnus forces, dispersion in the
Magnus force, and assemblies with opposite Magnus forces.

The paper is organized as follows. We describe our sim-
ulation model in Sec. II. In Sec. III we consider a pair of
particles with the same sign and strength of the Magnus
force. We find that a bound rotating pair forms despite the
repulsive particle-particle interactions, and in Sec. III A we
show that a pair with equal strength but opposite sign of the
Magnus force forms a dipole which translates in a direction
determined by the initial orientation of the pair, with dipoles
of smaller size translating more rapidly. When we add an
external drive as in Sec. IV, particle pairs with equal Mag-
nus force remain coupled and translate at 90◦ with respect
to the driving direction, while pairs with opposite Magnus
force sign undergo a drive-dependent decoupling transition. In
Sec. IV A, when repulsive obstacles are added to the sys-
tem, individual or clustered particles can form stable bound
circulating orbits around the obstacles and exhibit a depin-
ning transition under an applied drive. If damping is present,
the pinned states are transient and the particle or particles
gradually spiral away from the obstacle. As shown in Sec.
IV B, an asymmetric cluster of defects produces a diode-like
effect for driving in different directions in the overdamped
limit, but in the Magnus-dominated limit this diode effect
disappears and the particles circle around the entire cluster.
A particle driven toward a line of obstacles experiences a
Magnus force-induced deviation in its direction of motion as
it approaches the line until it breaks through the line, and this
deviation is reduced for increased driving force. We also find
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that it is possible to produce a ratchet effect for a particle that
is placed by a line of obstacles when a biharmonic ac drive is
applied. Here the particle can form circular orbits that create
a gearlike motion when combined with the periodicity of the
line of obstacles. Reversals in the ratchet current occur as a
function of ac amplitude and Magnus force. In Sec. IV C,
for clusters of more than two particles we find various types
of stable rotating states, including rotating pairs that encircle
each either. For larger clusters we observe chaotic dynamics
in which the system breaks up into smaller clusters with
some particles jumping from one cluster to another. When
the Magnus force varies strongly among the particles in the
cluster, as in Sec. IV D, the motion is chaotic and the particles
with the largest Magnus forces become localized in the center
of the cluster. Section IV E describes the cluster collisions
that occur when the Magnus forces are of different sign and
strength. Particles can form translating pairs that break apart
and re-form if a collision with an obstacle or other particles
occurs. We argue that assemblies of particles with mixed Mag-
nus force sign represent a new example of an active matter
system. In Sec. V we discuss implications of our system for
skyrmion or meron motion as well as connections to studies
of point vortex models. A summary of the results appears in
Sec. VI.

Our results should be relevant for skyrmions in the absence
of damping or in the low damping limit in the presence
of a drive, for certain models of point vortex dynamics in
superfluids or Bose-Einstein condensates with fluid flows, and
for active spinners and active chiral colloidal systems.

II. SIMULATION

We consider a two-dimensional system with periodic
boundary conditions in the x and y directions containing N
particles that are initially placed at fixed distances from each
other. Typically we use initial conditions in which the particles
are in one-dimensional lines. The dynamics of particle i are
governed by the following undamped equation of motion:

αi
mẑ × vi = Fpp

i + Fobs + FD, (1)

where vi is the velocity of particle i and αi
m is the coefficient

of the Magnus term, which creates a velocity component
perpendicular to the net applied forces. Each particle can be
assigned a different amplitude or sign of αi

m. The particle-
particle interaction force is given by Fpp

i = ∑N
j=1 K1(ri j )r̂i j ,

where ri j = |ri − r j | is the distance between particles i and
j, r̂i j = (ri − r j )/ri j , and the modified Bessel function K1(r)
falls off exponentially for large r. This form of the interaction
was previously used in particle-based models of skyrmions
in two-dimensional systems [40–42,50]. The driving force
FD = F Dx̂ is applied uniformly to all particles. An individual
particle in the Magnus force-dominated limit moves at 90◦
with respect to the driving force, so that when the drive is
applied in the x direction, the particle moves in the y direction.
The term Fobs = ∑Np

k=1 represents the force from Np obstacles,
which take the form of particles that are permanently fixed
in place. In some cases, we add a damping term αi

d vi to
the equation of motion which aligns the velocities in the
direction of the external forces. Under a drive, a particle
experiencing both Magnus and damping forces moves at an
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FIG. 1. The particle locations (dots) and trajectories (lines) for
pairs of interacting particles. (a) When α1

m = α2
m = 1.0, the particles

form a clockwise rotating bound pair. (b) For α1
m = 2.0 and α2

m =
1.0, the particles form nested orbits where the particle with the higher
Magnus force is closer to the center. (c) A system with α1

m = α2
m =

1.0 in which a finite damping term αd = 0.1 has also been added,
causing the particles to spiral out gradually. (d) The α1

m = α2
m = 1.0

system from (a) with an additional drift force FD = 0.075 applied
in the x direction, causing the pair to translate in the negative y
direction.

angle θ = arctan(αm/αd ). We measure the particle veloci-
ties both parallel, 〈Vx〉 = N−1 ∑N

i vi · x̂, and perpendicular,
〈Vy〉 = N−1 ∑N

i vi · ŷ, to the drive.

III. DYNAMICS OF COUPLED PARTICLES

We first consider particles with the same sign and strength
of the Magnus force. In Fig. 1(a) we show an image of the
trajectories of two particles with α1

m = α2
m = 1.0 initialized

a distance R apart. In an overdamped system, the particles
would move away from each other, but here they form a
pair and rotate around each other in a clockwise manner. The
particles remain confined to the pair due to the Magnus force,
which generates velocities that are perpendicular to the net
forces on each particle. When α1

m �= α2
m, the particles form a

nested pair as illustrated in Fig. 1(b) for α1
m = 1.0 and α2

m =
2.0, with the larger Magnus force particle orbiting closer to
the center. If we add a finite damping term of αd = 0.1 to
the α1

m = α2
m = 1.0 system in Fig. 1(a), the particles gradually

spiral away from each other as shown in Fig. 1(c), and in the
long time limit, the presence of damping eventually causes the
particles to come to a standstill. If only one particle has damp-
ing, the overall motion still damps away since the damped
particle couples to the undamped particle and dissipates its
energy, and so as long as there is some damping in the system
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FIG. 2. The particle locations (dots) and trajectories (lines) for
pairs of interacting particles. (a) When α1

m = 2.0 and α2
m = −2.0, the

particles form a dipole that translates in a fixed direction. (b) When
α1

m = 1.65 and α2
m = −2.0, the dipole moves in a circular orbit.

both particles will eventually come to rest unless an external
drive is applied. In the zero damping limit, when there is an
applied drive the rotating pair remains coupled and its center
of mass translates, as shown in Fig. 1(c) for the α1

m = α2
m =

1.0 system under a drive of FD = 0.075. The x direction drive
causes the pair to translate in the negative y direction, giving
a skyrmion Hall angle of 90◦. Here the intrinsic skyrmion
Hall angle is defined as θ int

sk = arctan(αm/αd ) [41,43,46]. In
the presence of damping, the driven pair in Fig. 1(d) gradually
spiral away from each other and translate separately at a Hall
angle less than 90◦.

A. Systems with opposite Magnus force

When two particles that have Magnus forces which are
equal in strength but opposite in sign are brought together,
they form a bound pair that translates in a fixed direction even
in the absence of an applied drive. The repulsive interaction
between the two particles produces an outwardly directed
force on each particle, and the Magnus term rotates this force
by 90◦ for one particle and by −90◦ for the other, producing
a net translation instead of a rotation. In Fig. 2(a) a pair
of particles with α1

m = 2.0 and α2
m = −2.0 maintain a fixed

distance from each other and translate in a direction that is
determined by the initial placement of the particles. The speed
of the dipole pair increases as the initial distance R between
the particles decreases, since the pairwise interaction force
increases at smaller distances, while the dipole drift velocity
Vd is given by Vd ∝ K1(R)/αm, where αm = |α1

m| = |α2
m|. In

Fig. 3(a) we plot the measured velocity Vd versus αm for the
system in Fig. 2(a) at a fixed initial separation distance of R =
2.0. The solid line indicates 1/αm behavior. In Fig. 3(b) we
show Vd versus R for fixed αm = 1.0 in the same system. The
dipole velocity decreases approximately exponentially with
increasing distance at large R, as expected for the function
K1(R). In Fig. 2(b) we illustrate the dipole trajectory for
a system with Magnus forces of opposite sign but unequal
strength, α1

m = 1.65 and α2 = −2.0, where the dipole curves
into a localized circular orbit. As the difference in strength
of the Magnus forces increases, the circular orbit becomes
tighter.
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FIG. 3. Dots: The measured dipole velocity Vd vs αm for the
system in Fig. 2(a) with α1

m = αm and α2
m = −αm, where the ini-

tial distance between the particles is R = 2.0. The solid blue line
indicates 1/αm behavior. (b) Vd vs R for the same system with fixed
αm = 2.0.

IV. DYNAMICS UNDER A DRIVE

We next consider the effect of applying a driving force in
the positive x direction, which causes isolated particles with
a positive Magnus force to move in the negative y direction.
For a pair of particles with Magnus forces of equal sign and
strength, the pair remains coupled when the drive is applied
and translates perpendicular to the drive, as shown in Fig. 1(d).
If the strengths of the Magnus forces are unequal, there is a
critical driving force above which the pair decouples. In Fig. 4
we plot the velocities V1 and V2 of a pair of particles versus
driving force FD for a system with α1

m = 1.6 and α2
m = 2.0.

For FD � 0.15, V1 = V2 and the particles are coupled into a
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FD
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FIG. 4. The velocities V1 (blue) and V2 (red) of a pair of particles
vs FD for a system with α1

m = 1.6 and α2
m = 2.0, showing a drive-

induced decoupling transition near FD = 0.15.
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FIG. 5. The particle position (red dot) and trajectory (line) with
the obstacle location (blue dot) for a single particle interacting with
a stationary obstacle in the form of a permanently fixed particle. The
particle has αm = 2.0 and is initialized at a distance R = 1.5 from
the obstacle, and the applied drive is (a) FD = 0.005, (b) FD = 0.015,
(c) FD = 0.0165, and (d) FD = 0.025.

dipole, while for FD > 0.15, the pair decouples as indicated
by the change in the velocities. The critical driving force Fc

at which the decoupling occurs decreases as the difference
|α1

m − α2
m| increases, while Fc increases as the separation R

decreases.
A cluster containing more than two particles that all have

the same αm remains coupled under an applied drive, but when
some of the particles have different values of αm, multiple
decoupling transitions can occur.

A. Dynamics with obstacles and depinning

We next study the effects of driven particles interacting
with a repulsive obstacle. To begin, we consider a single
particle under an applied drive interacting with an obstacle
which is modeled as another particle that is fixed permanently
in place, giving a repulsive force between the particle and
the obstacle. In the overdamped limit, there is no pinning
effect and the particle simply moves away from the obstacle
due to the pairwise repulsion. In Fig. 5(a), a particle with
αm = 2.0 under a driving force of FD = 0.005 initialized at
a distance of R = 1.5 from the obstacle forms a localized
pinned orbit around the obstacle. At FD = 0.015 in the same
system, Fig. 5(b) indicates that the particle is still localized
but the orbit becomes distorted by the drive. In Fig. 5(c) at
FD = 0.165, the particle has depinned and translates in the
y direction, interacting with the obstacle during each pass
through the periodic boundary conditions. At FD = 0.025 in
Fig. 5(d), the interaction with the obstacle is diminished,
and the pinch point in the trajectory near the obstacle has
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FIG. 6. |〈Vy〉|, the absolute value of the average velocity in the y
direction of the particle from the system in Fig. 5, vs FD, showing a
depinning transition at FD = 0.016.

disappeared. Phase portraits of the evolution of trajectories of
this type were previously studied for the case of a point vortex
interacting with a stationary obstacle [51–54]. In Fig. 6(a)
we plot the absolute value of the average particle velocity
in the y direction, |〈Vy〉|, versus FD. We find a clear region
where the particle is pinned, as indicated by |〈Vy〉| = 0, along
with a critical depinning force at Fc = 0.016. In most systems
where depinning occurs, there must be an attractive interac-
tion between the particle and a defect so that the particle can
settle into a potential energy minimum and stop moving. It
is possible in some overdamped systems for the particle to
become trapped behind a repulsive barrier, but even in that
case the particle comes to rest and can be described as jammed
[22]. Here we find a depinning transition in which the particle
is always moving but remains localized below depinning. If
the sign of the Magnus force is reversed, the same dynam-
ics occurs but the particle depins in the opposite direction.
The depinning threshold depends on the strength of αm and
the initial distance R at which the particle is placed from the
obstacle.

If we add some damping to the particle dynamics, the
particle does not remain localized but always escapes via an
unwinding transition. This process is illustrated in Fig. 7(a) for
the system from Fig. 5 with an added damping of αd = 0.01
at a fixed drive of FD = 0.01, which is below the threshold
depinning force found in Fig. 6 for the undamped system.
When damping is present, after each orbit the particle grad-
ually moves away from the obstacle until eventually it depins
and then translates at an angle θsk = arctan(αm/αd ). If the
interaction between the particle and the obstacle is attractive,
when damping is present the particle gradually spirals into the
obstacle, while if a drive is also applied, the particle spirals
inward until it reaches an equilibrium point at which the
driving force balances the attractive force from the obstacle.

A single repulsive obstacle can also capture multiple par-
ticles. An example of this process appears in Fig. 8(a) for
a sample with two particles where α1

m = α2
m = 2.0, R = 1.5,

and FD = 0.005, where the two particles form a pair that
rotates around the obstacle. Due to the applied drive, the tra-
jectories are denser on the left side of the obstacle. When the
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FIG. 7. The particle position (red dot) and trajectory (lines) along
with the obstacle location (blue dot) for the system from Fig. 5 with
αm = 2.0 and R = 1.5 at FD = 0.01 where an additional damping
term of αd = 0.01 has been added to the dynamics. The particle
gradually spirals away from the obstacle.

drive is increased, a depinning transition occurs in which one
particle depins while the other remains localized, as shown in
Fig. 8(b) for the same system at FD = 0.01. Due to the pe-
riodic boundary conditions, the depinned particle returns and
interacts with the obstacle again, passing through a spiraling
orbit before escaping. At a higher drive of FD > 0.015, the
second particle also depins. If the two particles are initially
in a pair away from the obstacle, then when they collide with
the obstacle under a driving force, the obstacle can trap the
pair, only one particle, or neither particle. In Fig. 8(c) we
show the collision of a pair with the obstacle at FD = 0.01,
where one particle becomes trapped and the other escapes.
For FD > 0.015, the pair stays together after encountering the
obstacle, while for FD < 0.05, both particles become trapped.
If the Magnus force is different in a pair of trapped particles,
two orbits form with two different average distances from
the obstacle. Even if the two particles have Magnus forces
of opposite sign, they can still form a pinned state as shown
in Fig. 8(d) for a sample with α1

m = 2.0, α2
m = −2.0, R = 1.5,

and F D = 0.005. Studies of the nonlinear dynamics of a pair
of point vortices interacting with an obstacle, where similar
effects appear, can be found in Refs. [55–57].

B. Interaction with multiple obstacles and ratchet effects

When multiple obstacles are present, a single particle can
move around or encircle a cluster of obstacles to create an
edge current effect. In an overdamped system, when particles
interact with an asymmetric array of defects, it is possible
to create a diode effect in which the depinning threshold is
higher in one direction than the other. In Fig. 9(a) we show
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FIG. 8. The particle positions (blue and orange dots) and tra-
jectories (lines) along with the obstacle position (red dot). (a) Two
particles trapped at an obstacle for α1

m = α2
m = 2.0 at FD = 0.005

and R = 1.5. (b) The same system at FD = 0.01 where only one
particle can be trapped. (c) The same system at FD = 0.01 in which
the two particles are initially in a rotating pair that collides with the
defect, which traps one of the particles. (c) Two particles trapped at
an obstacle for α1

m = 2.0 and α2
m = −2.0 at FD = 0.005 and R = 1.5,

where the Magnus forces of the particles have opposite signs.

seven obstacles that have been arranged into a funnel shape.
When a mobile particle is initially placed near one of the
obstacles, it can encircle a single obstacle or it can encircle
all of the obstacles, as shown in Fig. 9(a) for an αm = 1.0
particle placed at a distance of R = 1.5 from the funnel,
where FD = 0.0. This ability to encircle multiple obstacles
indicates that the Magnus-dominated particle exhibits an edge
current behavior of the type observed in chiral active matter
systems [58,59]. Under application of a drive in the negative x
direction with F D = 0.01, Fig. 9(a) indicates that the particle
moves in the positive y direction and curves around the array
of obstacles. The same drive of F D = 0.01 applied in the
positive x direction causes the particle to move in the negative
y direction, and as shown in Fig. 9(c), the particle skirts
around the funnel tip without getting trapped. Under varied
parameters, we have not found a case in which the funnel
tip is able to trap the particle for driving in any direction.
At higher FD, the particle breaks through the funnel array
rather than moving around it, as illustrated in Fig. 9(d) for
the system from Fig. 9(c) at FD = 0.25. A nonlinear analysis
of the motion of a point vortex through multiple obstacles can
be found in Ref. [60].

In Fig. 10(a) we plot the absolute y-direction velocity |〈Vy〉|
versus FD for the system in Fig. 9 for driving in both the
positive and negative x directions. There is no pinned regime,
and the velocities are almost identical for both directions of
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FIG. 9. The particle position (blue dot) and trajectory (line)
along with the obstacle positions (red dots) for a particle with αm =
1.0 under a drive interacting with an array of obstacles placed in a
funnel configuration. (a) At FD = 0.0, the particle is bound to the
funnel array and follows an orbit that encircles the obstacles in a
counterclockwise direction. (b) For a negative x direction drive of
FD = 0.01, the particle moves in the positive y direction and deviates
around the obstacles. (c) For a drive of FD = 0.01 applied in the
positive x direction, the particle moves in the negative y direction
but does not become trapped by the funnel tip. (d) The same as panel
(c) at FD = 0.250, where the particle passes through the funnel.

driving. The label I indicates the regime in which the particle
moves around the outer edge of the obstacles as shown in
Figs. 9(b) and 9(c), while the label II denotes the regime in
which the particle passes between the outer two obstacles. For
motion in the positive y direction, the next breakthrough point
occurs at FD = 0.1, which appears as a cusp in the velocity,
and is associated with a transition to the motion illustrated in
Fig. 9(d). This breakthrough transition occurs at a drive higher
than the range shown for motion in the negative y direction.

If finite damping is present, we can observe a diode effect
which is the most pronounced in the fully overdamped limit.
In Fig. 10(b) we plot |〈Vy〉| versus FD for the system from
Fig. 10(a) but with αm = 0.0 and αd = 1.0 under both positive
and negative y direction driving. Since the Magnus force is
zero, the particle motion is aligned with the driving force
direction. There is a finite depinning threshold for motion
in the negative y direction, but no threshold for driving in
the positive y direction. In Fig. 11(a) we plot the particle
trajectory in the overdamped limit of the system in Fig. 10
for a drive of F D = 0.04 in the negative y direction, where the
particle becomes trapped by the funnel tip, while in Fig. 11(b)
the same system under driving in the positive y direction has
continuous flow of the particle around the obstacles.

The appearance of a diode effect in the overdamped system
with a funnel array geometry also implies that if an ac drive
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FIG. 10. (a) The absolute velocity |〈Vy〉| vs FD for the system in
Figs. 9(b) and 9(c) for motion in the negative y direction (blue) and
positive y direction (pink). For either direction of drive, in Region
I, the particle moves around the obstacles, and in Region II, the
particle breaks through the funnel between the outer two obstacles.
The dashed line at FD = 0.95 indicates a transition for the positive
y direction motion to the flow illustrated in Fig. 9(d). Changes in
the breakthrough location are associated with small cusps in the
velocity-force curve, and additional breakthrough cusps occur at
higher drives (not shown). (b) |〈Vy〉| vs FD for the same system in
the overdamped limit of αm = 0.0 and αd = 1.0. There is a finite
depinning threshold for motion in the negative y direction (blue) but
not for motion in the positive y direction (pink), creating a diode
effect.

is applied, a ratchet effect will appear in which the particle
translates along the easy flow direction of the funnel during
one portion of the ac cycle. This type of ratchet is known as a
rocking ratchet [61], and it has been observed in overdamped
superconducting vortices interacting with asymmetric pinning
[62–66] and in skyrmion systems where there is a combination
of damping and a Magnus effect [67,68]. In the skyrmion
system there are even cases where a ratchet effect occurs only
when the Magnus force is present [67]. The results in Figs. 9
and 10 suggest that if there is only a Magnus force without
damping, the ratchet effect is absent, indicating that some
damping is necessary for ratcheting to occur; however, we
next show that it is still possible to achieve a ratchet effect in
the Magnus-dominated regime if the symmetry is broken by
a combination of ac driving and the chirality of the Magnus
force.

In Fig. 12(a) we plot the trajectory of a particle moving
in the negative y direction interacting with a line of obstacles
with a period of a = 1.0 for a system with FD = 0.007 and
αm = 2.0. In the absence of obstacles, the particle moves in
a straight line at a constant velocity; however, as the particle
approaches the line of obstacles, it begins to bend away from
the line due to the repulsive force from the particles in the
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FIG. 11. The particle position (blue dot) and trajectory (line)
along with the obstacle positions (red dots) for a particle with
αm = 0.0 and αd = 1.0 at FD = 0.04 in the overdamped limit of
the system in Fig. 10. (a) Motion in the negative y direction where
the particle becomes trapped. (b) Motion in the positive y direction
where the particle moves around the obstacle array and does not
become trapped.

positive y direction. The Magnus force changes this repulsive
force into a positive x direction velocity component of the
moving particle. The particle accelerates as it comes closer
to the obstacles, and eventually it passes through the barrier.
As FD increases, the particle experiences a smaller x direction
deviation of its motion when it approaches the obstacle line,
as shown in Fig. 12(b) for FD = 0.07, while for even higher
values of FD, the deviation in the x direction nearly disappears.
If a particle is placed near the line of obstacles in the absence
of a driving force, the particle moves at a constant velocity
parallel to the line of obstacles due to the Magnus force.

If we place the particle near the line of obstacles and
subject it to an ac driving force given by F AC = A cos(ωt )x̂ +
B sin(ωt )ŷ, we observe not only directed motion but a reversal
in the direction of motion as a function of the ac drive
amplitude, Magnus force, and dissipation. This occurs due to
the fact that the ac drive induces a rotation of the particle that
interacts like a gear mechanism with the periodicity of the line
of obstacles. In Fig. 13(a) we plot the trajectory of a particle
with αm = 2.0, A = B = 0.05, and ω = 0.00005 which is

x(a)

y

x(b)

y

FIG. 12. The particle position (blue dot) and trajectory (line)
along with the obstacle positions (red dots) for a particle with αm =
2.0 moving toward a line of repulsive obstacles. (a) At FD = 0.007,
the particle trajectory deviates into the positive x direction as it
approaches the line of obstacles. (b) At FD = 0.07, the x-direction
deviation is smaller.
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y
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FIG. 13. The particle position (blue dot) and trajectory (line)
along with the obstacle positions (red dots) for a particle interacting
with a line of obstacles while subjected to an ac drive in the x and
y directions. (a) A particle with A = B = 0.05, ω = 0.00005, and
αm = 2.0 placed at R = 12a, where there is no directed motion.
(b) The same as panel (a) but with the particle placed at R = 2a,
where now directed motion occurs in the positive x direction. (c) The
same as panel (b) but with A = B = 0.1, where the directed motion
is in the negative x direction. (d) The same as panel (b) but with
αm = 10, where the directed motion is in the positive x direction.

placed at distance of R = 12a from the line of obstacles. This
is sufficiently far away that there is no interaction between
the particle and the obstacles, and the particle executes a
circular counterclockwise orbit with no directed motion. In
Fig. 13(b) we keep everything the same but place the particle
a distance R = 2.0a from the line of obstacles. The particle
now translates in the positive x direction and passes an integer
number of obstacles during each ac drive cycle. In Fig. 13(c)
the same system with A = B = 0.1 has a larger particle orbit
and the particle translates in the negative x direction, indicat-
ing a reversal of the current. The effectiveness of the reversed
ratchet effect is much lower, with the particle translating at
1/4 the speed of its motion in the positive x direction in
Fig. 13(b). In Fig. 13(d) we show the system from Fig. 13(b)
with a much larger value of αm = 10. The particle translates
in the positive x direction but at a much smaller velocity.

In Fig. 14(a) we plot 〈Vx〉 versus A for the system in
Figs. 13(b) and 13(c) with B = A. There is a reversal in the
current from positive to negative at A = 0.7, while at higher A,
〈Vx〉 goes to zero. As A approaches zero, the particle moves in
a straight line along the x direction at fixed 〈Vx〉 = 0.056 due
to the Magnus force created by the repulsion from the line of
obstacles. Figure 14(b) shows 〈Vx〉 versus αm for the system in
Fig. 13(b) at fixed A = 0.05. For αm < 1.5, the particle moves
in the negative x direction, while the motion is in the positive
x direction when αm � 1.5. The efficiency of the ratchet as
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FIG. 14. (a) 〈Vx〉 vs A for the system in Fig. 13(b,c) showing a
current reversal. (b) 〈Vx〉 vs αm for the system in Fig. 13(b) with A =
0.05, showing a current reversal.

measured by the magnitude of 〈Vx〉 reaches a maximum near
αm = 3.0 and then gradually decreases with increasing αm.
The step near αm = 2.5 is produced by a change in the nature
of the translating orbit. In Fig. 15(a) we plot the trajectory of
a particle moving in the negative x direction for the system
in Fig. 14(b) at αm = 1.0. For smaller αm, the orbit increases
in extent and the particle encircles up to three obstacles per
ac drive cycle. The magnitude and direction of the rectified
current depend on the starting position of the particle relative
to the line of obstacles, and there can also be translating orbits
that do not encircle any obstacles in which the particle skips
along the edge of the line of obstacles, as shown in Figs. 15(b)
and 15(c) for a particle with A = B = 0.025 initially placed
either above or below the line of obstacles, respectively.
The ratchet can also occur as function of only a single ac
drive. When the ac driving force is applied only along the
x direction, we find a series of ratchet effects as illustrated
in Fig. 15(d) for the same system as in Fig. 13(b) but with
A = 0.05 and B = 0.0. Here the particle is ratcheting in the
positive direction with 〈Vx〉 = 0.009, which is about half the
velocity found for a ratchet effect with simultaneous x and y
ac driving, A = B = 0.05.

The ratchet effect is strongly affected by the damping.
A finite damping term causes a particle placed near a line
of obstacles to move away from the obstacles gradually;
however, the ac driving can maintain the ratcheting motion.
In Fig. 16(a) we plot Vx versus time in simulation time steps
for a particle with αm = 2.0 and R = 4a at two different
values of the damping, αd = 0.005 and αd = 0.001. For the
larger damping, the particle gradually moves in the positive
y direction away from the line of defects since the damping
term aligns the particle velocity with the direction of the
repulsive force from the defect line. In this case, as the particle
moves farther away from the obstacles, the ratcheting effect
is reduced. For the smaller damping, the particle oscillates
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x(c)

y

x(d)

y

FIG. 15. The particle position (blue dot) and trajectory (line)
along with the obstacle positions (red dots) for a particle interacting
with a line of obstacles under an ac drive with A = B and ω =
0.00005. (a) The system in Fig. 14(b) with A = B = 0.05 at αm = 1.0
showing translation in the negative x direction. (b) A translating
orbit with A = B = 0.025 where the particle does not encircle any
obstacles. (c) The same as in (b) but with the particle initially
placed below the line of obstacles, which produces translation in
the negative x direction. (d) The system from Fig. 13(b) with only
one direction of ac drive, achieved by setting A = 0.05 and B =
0.0. The ratchet effect operates at only half the velocity found for
simultaneous x and y driving with A = B = 0.05.
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FIG. 16. (a) Vx vs time in simulation time steps for a particle with
αm = 2.0 interacting with a line of obstacles at an initial distance
of R = 4a with αd = 0.005 (black) and αd = 0.001 (red). (b) Vx vs
time for the same system with αm = 2.0 and αd = 0.005 for particles
initialized at R = a (black), 2a (red), 4a (green), and 6a (blue).
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across the line of obstacles until it ends up below the line of
obstacles and then gradually gets pushed farther away from
the obstacles in the negative y direction, causing a reduction in
the ratchet effect. In this case, there is also a window of time
during which the particle becomes localized on an obstacle,
giving a ratchet velocity of zero, while when the particle
begins to spend most of its time below the line of obstacles,
it begins to ratchet in the negative x direction. There are also
several points at which discrete jumps occur in the velocity
due to the jumping of the particle between different orbits that
are commensurate with the periodicity of the obstacle line.

In Fig. 16(b) we plot Vx versus time in simulation time steps
for the system in Fig. 16(a) with αm = 2.0 and αd = 0.005 for
a particle placed above the line of obstacles at a distance of
R = 1a, 2a, 4a, and 6a. In this case, a particle initially placed
at R = a ends up below the line of obstacles and is gradually
pushed farther in the negative y direction while Vx approaches
zero. For R = 2a, the particle gradually moves away in the
positive y direction but the system passes through a series of
different types of orbits that ratchet in the positive x direction,
as indicated by the oscillations in Vx, and there is even a peak
in the velocity before it dies away to zero. For R = 4a, the
particle enters a single orbit and gradually moves away from
the line of obstacles. If we place the particle even farther away,
we observe the same behavior as for the R = 4a sample but
with even lower values of Vx, as shown for R = 6a.

We note that ratchet effects with biharmonic drives have
been studied for skyrmions, where a Magnus effect can
come into play; however, in these studies there was still a
damping term, and the internal modes of the skyrmion were
also important [69,70]. The ratchet effect we observe here
is more closely related to ratchet effects found in colloids
undergoing circular orbits while interacting with a magnetic
bubble lattice, where the asymmetry necessary to produce
the ratchet arises from the ac drive and the transport occurs
due to a commensuration effect with the underlying substrate
[69,71,72].

C. Dynamics of clusters

We next consider the case of three or more particles. In
Fig. 17 we show some representative examples of possible
multiparticle orbits. For N = 3 particles with α1

m = α2
m =

α3
m = 1.0 that are initially placed in a row along the x direction

spaced 2a apart, Fig. 17(a) shows the formation of a spiraling
pattern, which rotates due to precession of the orbits. The
particular type of orbit that appears for N = 3 equivalent
particles depends on the initial particle placement, but in
general we find nonchaotic stable orbits. In Fig. 17(b) we plot
the trajectories for N = 3 with α1

m = α3
m = 2.0 and α2

m = 1.0,
where the two αm = 2 particles form a pair that orbits in the
center of the cluster while the αm = 1.0 particle follows an
orbit with a larger radius. An N = 3 sample in which all
of the particles are different, with α1

m = 1.0, α2
m = 3.0, and

α3
m = 2.0, appears in Fig. 17(c). Here a layering effect occurs

in which particles with larger Magnus force spend more time
closer to the center of the cluster. Figure 17(d) shows the same
system with α1

m = 1.0, α2
m = 7.0, and α3

m = 2.0, where three
clear spatial layers appear and the αm = 7.0 particle is nearest
to the center. This system has some similarities to the ordering
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FIG. 17. The particle positions (dots) and trajectories (lines) for
multiparticle systems with no drive. (a) N = 3, α1

m = α2
m = α3

m = 1.0
(blue). (b) N = 3, α1

m = α3
m = 2.0 (blue), and α2

m = 1.0 (purple).
(c) N = 3, α1

m = 1.0 (blue), α2
m = 3.0 (light purple), and α3

m = 2.0
(dark purple). (d) N = 3, α1

m = 1.0 (blue), α2
m = 7.0 (light blue),

and α3
m = 2.0 (purple). (e) N = 4, α1

m = 1.0 (dark blue), α2
m = 2.0

(dark purple), α3
m = 3.0 (medium purple), and α4

m = 4.0 (light blue).
(f) N = 4, α1

m = α2
m = α3

m = α4
m = 2.0 (blue).

of small clusters of colloids in a trap; however, in this case the
particles are continuously undergoing motion and there is no
external confining trap. In Fig. 17(e) we plot the trajectories
for an N = 4 system with varied Magnus forces of α1

m = 1.0,
α2

m = 2.0, α3
m = 3.0, and α4

m = 4.0, which forms a chaotic
cluster. We note that if the variations in the Magnus forces
are larger, ordered states can appear with ringlike structures,
which we describe in the next subsection. Studies of the
nonlinear dynamics of various configurations of four point
vortices can be found in Refs. [24,73]. In Fig. 17(f) we show
an N = 4 sample with α1

m = α2
m = α3

m = α4
m = 2.0. In this

case, the particles form two rotating pairs which rotate around
each other. For N > 3, most orbits are chaotic, but for special
initial placement conditions, it is possible to stabilize different
types of rotating states. In larger clusters where the particles
all have the same Magnus force, the chaotic states typically

062602-9



C. REICHHARDT AND C. J. O. REICHHARDT PHYSICAL REVIEW E 101, 062602 (2020)

x(a)

y

x(b)

y

x(c)

y

x(d)

y

FIG. 18. The particle positions (dots) and trajectories (lines)
showing ringlike structures in multiparticle systems with strong
variations in the Magnus forces. (a) N = 4, α1

m = 7.0 (light blue),
α2

m = α3
m = 2 (purple), and α4

m = 1 (dark blue). (b) N = 4, α1
m = 10

(light blue), α2
m = 1.5 (dark purple), and α3

m = α4
m = 2 (light purple).

(c) N = 4, α1
m = α2

m = 10 (light blue), and α3
m = α4

m = 3 (light pur-
ple), showing a dumbbell structure. (d) N = 4, α1

m = α2
m = α3

m = 7
(light blue), and α4 = 2 (purple).

involve a transient state of two- or three-particle subclusters
that break up and re-form over time.

D. Clusters with strong variation in
Magnus force strength and ring formation

For particles with Magnus forces that are of the same sign
but that have sufficiently different strengths, clusters appear
that have well defined spacings between the particle orbits,
with the particles that have the highest Magnus force localized
at the center of the cluster. In Fig. 18(a) we plot the trajectories
in an N = 4 system with α1

m = 7.0, α2
m = α3

m = 2.0, and
α4

m = 1.0. The αm = 7.0 particle becomes localized at the
center of the cluster and is surrounded by a ring containing
the αm = 2.0 particles, while the αm = 1.0 particle jumps
between the αm = 2.0 ring and a partially formed outer ring.
A similar structure appears in Fig. 18(b) for an N = 4 system
with α1

m = 10.0, α2
m = 1.5, and α3

m = α4
m = 2.0. Other cluster

shapes can form for N = 4, such as the α1
m = α2

m = 10.0
and α3

m = α4
m = 3.0 system shown in Fig. 18(c) where the

two inner particles with αm = 10.0 are orbited by the αm =
3.0 particles to form a dumbbell shape. Strongly segregated
ring structures can also occur when N = 4, as illustrated in
Fig. 18(d) for a sample with α1

m = α2
m = α3

m = 7 and α4
m = 2,

where the inner particles have the higher Magnus force. If
the difference between the Magnus forces of the particles is
reduced, the ring structures are lost.
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FIG. 19. (a, b) The particle positions (dots) and trajectories
(lines) for two particles initialized at opposite ends of the sample
under a driving force of FD = 0.075. (a) The first portion of the
collision for α1

m = 2.0 and α2
m = −2.0. (b) Continuation of the

motion in (a) after the particles have passed one another. (c) Collision
for α1

m = −2.0 and α2
m = 1.85. (d) Collision for α1

m = 2.0 and α2
m =

−1.0.

E. Clusters and collisions for particles with
opposite Magnus forces

As noted earlier, if two particles with equal and opposite
Magnus forces come together, they can form a dipole that
translates in a straight line. If the strength of the Magnus
forces are different, an arching orbit appears instead. In
Figs. 19(a) and 19(b) we show the trajectories of two particles
with α1

m = 2.0 and α2
m = −2.0 under an external driving force

of FD = 0.0075. The particles are initially placed at the same
x position but are widely separated in y. Under the influence
of the drive, the particles initially move in opposite directions,
but as they approach one another, they form a pair that trans-
lates in the positive x direction, as shown in Fig. 19(a). The
driving force causes the particles to move closer together and
eventually pass each other as shown in Fig. 19(b). Figure 19(c)
shows two particles with α1

m = 2.0 and α2
m = −1.5 that form

a dipole which moves in an arch shape before the particles
decouple again. In Fig. 19(d) a system with α1

m = 2.0 and
α2

m = −1.0 undergoes multiple collisions due to the periodic
boundary conditions, and the orbit performed during each
collision has a small radius due to the large difference in the
strengths of the Magnus forces. If the particles are separated
in y but also have a small offset in x, they do not collide
head on, which creates spiraling orbits similar to that shown
in Fig. 19(b) but with asymmetric loops.

For a system of three particles in which the sign of the
Magnus term of one particle is opposite from that of the
other two particles, we generally observe closed periodic
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FIG. 20. The particle positions (dots) and trajectories (lines) in
systems with mixed Magnus force sign and no drive. (a) A closed or-
bit at N = 3, α1

m = 1.0 (purple), α2
m = −1.1 (orange), and α3

m = 0.85
(blue). (b) A translating dipole at N = 5, α1

m = α2
m = α3

m = α4
m = 2.0

(blue), and α5
m = −2.0 (red). The two particles that are paired into

the dipole are at the bottom and top of the image due to the periodic
boundary conditions. (c) At N = 5, α1

m = α3
m = α5

m = 2.0 (blue), and
α2

m = α4
m = −2.0 (red), there are two intermittently forming pairs of

dipoles. (d) Circular dipole motion at N = 5, α1
m = α2

m = α5
m = 2.0

(blue), and α3
m = α4

m = −1.5 (red).

orbits; however, depending on the initial placement of the
particles, it is also possible to have a pair of particles with
opposite signs of Magnus force break off and move away as
a dipole. In a system with mixed Magnus force amplitudes
where one particle has a positive Magnus force and the other
two have negative Magnus forces, a translating dipole can
form that then rotates around the third particle. For example,
in Fig. 20(a) a system with α1

m = 1.0, α2
m = −1.1, and α3

m =
0.85 has a translating dipole moving in an orbit that gradually
precesses counterclockwise while the third particle follows a
tighter precessing orbit. For five or more particles with mixed
Magnus force signs, in general we do not observe long-lived
localized structures but instead find that pairs of particles with
opposite sign form a gas of translating dipoles that are either
broken up or deflected when a collision with another particle
or dipole occurs. In Fig. 20(b) we show the trajectories of a
system with five particles where α1

m = α2
m = α3

m = α4
m = 2.0

and α5
m = −2.0. One translating dipole appears, while the

other particles of the same sign form rotating clusters. When
the dipole encounters a rotating cluster, it typically scatters
off in a new direction after partially encircling the cluster, but
there can also be an exchange of one of the dipole particles
with one of the cluster particles. In Fig. 20(c) an N = 5 system
with α1

m = α3
m = α5

m = 2.0 and α2
m = α4

m = −2.0 has similar
dynamics, but there are now two translating dipoles which

undergo two types of collisions. The first is the scattering of a
dipole by an isolated particle, as shown in the upper left-hand
portion of the figure. The dipole can either exchange one of
its particles with the isolated particle or simply be deflected.
The second collision is a dipole-dipole scattering in which the
dipoles can exchange particles and/or change their directions
of motion. The N = 5 sample with α1

m = α2
m = α5

m = 2.0 and
α3

m = α4
m = −1.5 in Fig. 20(d) also contains two translating

dipoles, but since the Magnus forces in the dipoles are not of
equal strength, the dipole pairs move in circular paths and can
break up or be deflected when they collide with each other or
with the remaining stationary particle. For N = 6 and higher,
we observe only translating and chaotic orbits. When N = 4,
it is possible for the system to form a larger-scale translat-
ing cluster instead of a dipole, as shown in Fig. 21(a) for
α1

m = α3
m = 2 and α2

m = α4
m = −2. The cluster is composed

of particles that continuously switch between forming pairs of
the same sign that rotate and forming pairs of the opposite
sign that translate. For this combination of Magnus forces,
we always observe translating clusters, but the direction and
velocity of the translation depend on the initial placement of
the particles. If the Magnus forces are unequal, as in Fig. 21(b)
where α1

m = 1, α2
m = α4

m = −2, and α3 = 2, similar dynamics
occur but the cluster moves in a circle. Studies of the nonlinear
dynamics of N = 4 systems composed of pairs of interacting
point vortex pairs appear in Refs. [73–75].

A collection of particles with opposite Magnus force signs
can be considered an example of an active matter system.
In active matter, the particles are self-propelled and can be
described as undergoing driven Brownian diffusion or run-
and-tumble dynamics. Typically, active particles show short
time ballistic behavior and long time diffusive behavior due to
collisions [76,77]. In the case of the Magnus-dominated sys-
tem, mixtures of opposite Magnus force signs form translating
dipoles that act like active Brownian particles in the limit of
zero orientational diffusion or like run-and-tumble particles
with an infinite run time. When there are other particles in the
system, collisions can cause the dipoles to change directions
or to break up before reforming again. To highlight this effect,
in Fig. 22 we plot a time series of the x-direction velocity
Vx for a single particle from the system in Fig. 20(c), where
regions of constant velocity are interspersed with regions
of zero velocity. The constant velocity regions correspond
to periods in which the particle forms half of a translating
dipole, while the zero velocity regions are periods in which
the particle is no longer paired into a dipole and is therefore
stationary. There can also be intervals in which the particle is
part of a rotating pair composed of two particles with the same
Magnus force sign. In future studies, it would be interesting
to examine the velocity distributions in large collections of
mixtures of Magnus-dominated particles to see whether this
system exhibits further similarities to active matter.

V. DISCUSSION

In Table I we provide a summary of the characteristic
features associated with the different conditions considered in
this work. A number of the results we observe are similar to
behavior found in point vortex models. In these models, vor-
tices in fluids are represented as nondissipative point particles
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FIG. 21. The particle positions (dots) and trajectories (lines) in
systems with mixed Magnus force sign and no drive. (a) For N = 4,
α1

m = α3
m = 2.0 (blue), and α2

m = α4
m = −4.0 (red), the particles form

a translating cluster. (b) For N = 4, α1
m = 1.0 (blue), α2

m = α4
m = −2

(red), and α3
m = 2 (purple), the cluster moves in a circle.

with a logarithmic long-range interaction and nondissipative
dynamics that are controlled by a Coriolis or Magnus term
[23–26]. A pair of point vortices with the same vorticity
rotate around one another, while a pair with opposite vorticity
translate. Additionally, the point vortex literature shows that
clusters of four or more particles generally form chaotic
states. Other work has shown that point vortex particles can
effectively be trapped in orbits around defects such as a fixed
point vortex [56,78], or they can scatter off defects. In our
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FIG. 22. The velocity component Vx vs time in simulation time
steps for one of the particles in Fig. 20(c) showing jumps between
zero velocity when the particle is not part of a dipole and finite
velocity when the particle is part of a translating dipole.

case, the interactions are shorter range than the point vortex
interactions; however, the smooth behavior of the Bessel func-
tion potential causes much of the dynamics of the Magnus-
dominated particles to be fairly similar to the point vortices.
In our work we considered scattering off multiple objects,
ratchet effects, and particles with mixed Magnus force values.
In most of the point vortex literature, the Magnus force is of
the same strength, and in general, there is no driving force and
dissipative effects are neglected.

Due to the dynamical nature of the states we observe, it
is possible to imagine that for periodic obstacle geometries or
arrangements of a large assembly of particles localized around
an obstacle, some sort of dynamical but repeatable crystal
could form which would be an example of a classical time
crystal [79–82]. In a real system, some form of dissipation
would likely arise that would eventually destroy the crystal,
but it may be possible to create long-lived transient Magnus
time crystals.

Experimentally, our system most closely resembles
skyrmion or meron motion with no or low dissipation where
the Magnus force dominates the dynamics, which should
be achievable under certain conditions. Skyrmions can also be
set into motion readily under a drive, so it should be possible
to maintain the transient Magnus force dynamics in a low-
dissipation system indefinitely by applying ac or dc driving. It
is also possible to have dispersion in the Magnus force compo-
nent of a skyrmion system as well as skyrmions with opposite
signs. Additional internal modes can arise in skyrmions that
are not taken into account in our model; however, there have
already been some studies of skyrmion dynamics in the zero-
dissipation limit with both Thiele equation and continuum
modeling approaches [49].

Our results could also be relevant to spinning charged
colloids levitated acoustically or dusty plasmas in magnetic
fields, where Magnus effects arise and dissipation effects are
weak. Many active spinner systems include strong dissipation
or have only short-range contact interaction forces, so that
two particles or a particle and an obstacle would interact
only when they touch. Finally, our results for decoupling and
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TABLE I. Summary of characteristic features that appear under the conditions considered in this work.

Name Characteristic features

Two particles, no drive:
Magnus force of same sign and strength Stable rotating state
Magnus force of opposite sign and same strength Stable translation in absence of drive

Two particles, with drive:
Magnus force of same sign and strength Stable translating state
Magnus force of same sign and different strength Decoupling transition

With drive and obstacle:
Low drive Localized pinned orbit
Higher drive Depinning transition to translating state
Multiple particles Multiple trapping and depinning transitions possible

Multiple obstacles, funnel arrangement:
No damping Edge current behavior
Finite damping Diode effect

Multiple obstacles, line arrangement:
dc drive perpendicular to line Deviation of motion parallel to line
Circular ac drive Ratchet effects and ratchet reversals

Three or more particles, no drive:
Three particles Stable nonchaotic orbits
More than three particles Most orbits chaotic
Strong Magnus force variation Strongly segregated ring structures

Clusters with mixed Magnus force sign and strength:
Equal strength, opposite sign pairs Arching orbits
Mixed strength, mixed sign triples Formation of translating dipole
Five or more particles Gas of colliding translating dipoles

depinning should also be applicable to vortices and point
vortex models in the presence of some form of flow field.

VI. SUMMARY

We have examined the dynamics of individual pairs and
small clusters of repulsive pairwise interacting particles in
which the dynamics is dominated by a Magnus term. In the
overdamped limit, clusters of such particles exhibit transient
motion and settle into a stationary state. For particles without
dissipation, when the Magnus terms have the same strength
and sign, a pair of repulsively interacting particles rotate
around each other at fixed distance. Similar rotating clusters
appear up to sizes of N = 4, but for larger clusters the dynam-
ics become chaotic. A pair of particles with opposite Magnus
force sign forms a translating dipole. Under an applied drive,
an individual particle moves at 90◦ with respect to the drive
direction, a rotating pair with the same Magnus force trans-
lates, and a pair with different Magnus force strengths have
a decoupling driving force threshold. A particle interacting
with repulsive obstacles forms a bound state with a critical
driving threshold for the decoupling of the particle from the
obstacle, while if the particle dynamics include damping, the
particle gradually spirals away from the obstacle. A single
obstacle can bind multiple particles simultaneously. When a
rotating pair encounters a obstacle, one or both particles in
the pair can become trapped. For particles interacting with
clusters of obstacles, we find that it is possible for a particle
to become bound to the cluster and form a circulating current
around the outside of the cluster. In the overdamped limit, a

particle interacting with obstacles arranged in a funnel shape
exhibits a diode effect, but when there is only a Magnus
force and no damping, the diode effect disappears. A line of
obstacles causes a deviation in the direction of the trajectory
of the driven particle, which eventually passes through the
obstacle line. Under an ac drive, we show that it is possi-
ble to observe a ratchet effect for a particle placed near a
line of obstacles due to a gearlike mechanism in which the
particle orbit becomes commensurate with the periodicity of
the obstacle line. The ratchet effect shows a reversal as a
function of ac drive, Magnus force, and distance from the
obstacle line. For large clusters of particles, we find that if
the dispersion in the Magnus force is sufficiently large, the
particles with the largest Magnus force become localized in
the center of the cluster. In mixtures of particles with opposite
signs, we find the intermittent formation of dipoles that can
translate over some distance before breaking up or deflecting
upon encountering other particles, and we show that these
dipoles have certain similarities to active matter systems. Our
results could applied to skyrmion systems in the absence of
dissipation or in the low-dissipation limit, or to chiral active
matter in which there is low damping or continuous driving.
Our results could also be useful for understanding transient
dynamics in systems with Magnus-dominated dynamics and
weak damping.
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