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Skepticism and rumor spreading: The role of spatial correlations
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Critical thinking and skepticism are fundamental mechanisms that one may use to prevent the spreading of
rumors, fake news, and misinformation. We consider a simple model in which agents without previous contact
with the rumor, being skeptically oriented, may convince spreaders to stop their activity or, once exposed to
the rumor, decide not to propagate it as a consequence, for example, of fact checking. We extend a previous,
mean-field analysis of the combined effect of these two mechanisms, active and passive skepticism, to include
spatial correlations. This can be done either analytically, through the pair approximation, or simulating an
agent-based version on diverse networks. Our results show that while in mean field there is no coexistence
between spreaders and susceptibles (although, depending on the parameters, there may be bistability depending
on the initial conditions), when spatial correlations are included, because of the protective effect of the isolation
provided by removed agents, coexistence is possible.
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I. INTRODUCTION

Polarization and fake-news propagation are intertwined
social phenomena that may be amplified by a systemic lack
of critical thinking and skeptical skills among the population
[1–4]. Rumor- or opinion-spreading models [5,6] provide sim-
ple descriptions of how misinformation and gossips diffuse
between networked individuals, in a similar way as contagious
diseases propagate through direct contact [7–10]. In the latter,
where the contamination is usually involuntary and uncon-
scious, a deeper understanding of the process has led to a more
effective protection of susceptible populations through better
designed vaccination [11–17], isolation [18,19], and quar-
antine [20–22] campaigns. The comprehension of the main
underlying mechanisms in the case of rumor propagation,
involving an intentional and directed action from the spreader,
may help to devise efficient strategies to counteract the effects
of anti- and pseudoscience movements. Similar programs
have been proposed, for example, to confront Internet hate
speech [23], organized crime [24], and terrorism [25,26].

Many analogies have been drawn between the processes
of rumor and disease propagation through contact. The sim-
plest models for the above contact processes [27] explore
their similarity and consider three dynamical states: ignorants,
spreaders, and stiflers [28–32] for rumor propagation, and
susceptible, infected, and removed (or recovered) [33] for dis-
eases. While unaware of the rumor or uncontaminated by the
disease, the agent is susceptible (S) to it. After being exposed,
if the agent does not become a spreader (state Z), it turns into
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a stifler (for example, resisting and getting removed from the
propagation pool, state R). More refined models introduced
further states and mechanisms [6,8,34]. For example, there is
an intermediate, exposed state—that is relevant for the model
introduced here—corresponding to a noncontagious period
after the contact with a spreader [35,36], when the agent
hesitates between becoming Z or R.

Fake news, misinformation, hoaxes, and pseudoscience
propagate among the population through least-resistance
paths, getting reinforced by new technologies, and are rarely
completely removed. Several works have tried to measure,
identify, and model their mechanisms and effects [37,38]. An
essential ingredient is the presence of skeptical agents. In
standard disease or rumor propagation, only the susceptible is
affected by its interaction with a spreader. Skepticism may, in-
stead, not only prevent the susceptible to become infected but
also (i) change the spreader, removing it from the propagation
pool, and (ii) prevent an already exposed agent to become a
spreader. While an active skeptical susceptible may convince
its neighbor spreader, the convincing process of an exposed
individual is passive (by consulting the original sources and
the available literature, for example). In a previous work [39],
a simple model introduced the opposing behavior of skep-
tical agents and was studied within the one-site mean-field
approximation. However, the effect of spatial correlations
was not taken into account. Here we extend the analysis of
Ref. [39] and consider results for (i) the pair approximation
that improves on the mean-field analysis and (ii) an agent-
based version on one- and two-dimensional regular lattices
and complex networks (random and scale free). Interestingly,
there is a similarity between the behavior of skeptical agents in
our model [39] and the mechanism introduced in the context
of a zombie outbreak [40–42], whose analogy with real pan-
demics was previously explored for didactic purposes [43,44].
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The paper is organized as follows. Section II describes our
model and its dynamical rules. Section III summarizes the
mean-field results of Ref. [39] and introduces the improved
equations within the pair approximation, along with its nu-
merical solutions in both one and two dimensions. We then
explore, with numerical simulations (and compare with the
results of the previous section), the behavior of the model
when spatial correlations are taken into account, both in
regular (one and two dimensions; Sec. IV A) and complex
networks (random and scale free; Sec. IV B). Finally, the
discussion and conclusions are presented in Sec. V.

II. THE MODEL

Rumor spreading is modeled here with a set of four
possible states (compartments). Some individuals, labeled Z ,
attempt to propagate their opinion by convincing a neighbor
who had no previous contact with the information being
transmitted. The neighbor is thus susceptible, albeit possibly
skeptical (either way, we call it S). There are two possible
outcomes for such pairwise, catalytic interaction between S
and Z , depending on which agent is modified. First, the S
agent may get exposed (E ) to the information carried by Z
with probability β:

SZ
β−→ EZ. (1)

This is similar to the standard susceptible-infected-recovered
(SIR) model with exposed agents (SEIR). Another possible
result of this interaction, which depends on the degree of
(active) skepticism, is the spreader Z , after being convinced
by a skeptical S, gets removed (R) from the population of
propagators with probability κ:

ZS
κ−→ RS. (2)

This latter process, where the rumor propagation can be de-
flected, is not usually possible in disease propagation. Indeed,
in standard SIR models, the spreader does not get modified
by interacting with a susceptible. While in the exposed, latent
state, the agent may get effectively convinced and, sponta-
neously, become a spreader with probability γ :

E
γ−→ Z. (3)

Otherwise, during the E state, the (skeptical) agent may check
the information received and doubt it. As a consequence, it
may get removed without any external interaction (passive
skepticism), with probability 1 − γ :

E
1−γ−→ R. (4)

By pulling itself out of the spreading process, the agent is no
longer capable of changing its state, becoming immune to any
further contact with the rumor but also taking no action against
the spreaders.

The two possible outcomes discussed above, for the SZ
interaction, as a consequence of skeptical and critical think-
ing, justifies the analogy developed in Ref. [39] between
this bidirectional mechanism with the pop-culture concept
of zombies and the related apocalypse. Interestingly, several
mathematical models have been studied considering such
apocalyptic scenarios [40–42]. Our model has an analogous

mathematical structure, albeit its interpretation does not deal
with the living dead but, instead, with the current crisis where
fake news and disinformation may be out of control with
profound consequences. Notice that we choose to consider
rumor as fake news and critical thinking as a beneficial trait.
Nonetheless, it is also possible to have a different interpre-
tation, where the rumor is a correct information and the
skeptical are indeed deniers.

III. MEAN-FIELD AND PAIR APPROXIMATION

The density of each compartment evolves in time, consid-
ering Eqs. (1)–(4), as [39]

ρ̇S = −βρSZ,

ρ̇E = βρSZ − ρE,

ρ̇Z = γ ρE − κρSZ,

ρ̇R = (1 − γ )ρE + κρSZ. (5)

There are two integrals of motion, ρS + ρE + ρZ + ρR = 1
and P ≡ (βγ − κ )ρS + βγρE + βρZ, reducing the number
of independent variables. Within the one-site, mean-field
(MF) approximation that neglects correlations between dif-
ferent sites, ρSZ = ρSρZ, there are two possible steady states
[39], (ρ∗

S , ρ∗
E , ρ∗

Z , ρ∗
R ): either the spreaders are absent in

the population, (ρ∗
S , 0, 0, 1 − ρ∗

S ) ≡ FS, or the susceptibles,
(0, 0, ρ∗

Z , 1 − ρ∗
Z ) ≡ FZ. The stability of these solutions de-

pends on β, γ , and κ , as well as on the initial condition for
the densities, chosen to consist entirely of susceptible and ex-
posed individuals, ρ (0)

S + ρ (0)
E = 1. With this choice, FS is stable

whenever βγ /κ < 1 and ρ (0)
S > βγ /κ . Otherwise, FZ is the

stable solution. Thus, at the MF level, there are no stationary
states where spreaders and susceptibles coexist in a polarized
state. The rumor either spreads over a maximum number of
agents (FZ solution) or vanishes, with part of the population
remaining unexposed (FS solution). However, by including
spatial correlations, even at the level of pair approximation
(PA) [27], this scenario changes, as shown below.

We extend the analysis of Ref. [39] to include correlations
between pairs of sites [27], that are particularly important in
models with catalytic reactions. The time evolution of the
densities of pairs of strategies now depends on the probability
of having triplets:

ρ̇SS = −βρSSZ,

ρ̇EE = −2ρEE + βρESZ,

ρ̇ZZ = 2γ ρEZ − κρSZZ,

ρ̇RR = 2(1 − γ )ρER + κρSZR,

ρ̇SE = −ρSE + β

(
1 − 1

2d

)
(ρSSZ − ρZSE ),

ρ̇SZ = γ ρSE − β + κ

2d
ρSZ −

(
1 − 1

2d

)
(βρZSZ + κρSZS),

ρ̇SR = (1 − γ )ρSE + κ

2d
ρSZ −

(
1 − 1

2d

)
(βρZSR − κρSZS),

ρ̇ZE = γ ρEE − ρEZ + β

2d
ρSZ +

(
1 − 1

2d

)
(βρZSZ − κρSZE ),
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ρ̇ER = (1 − γ )ρEE − ρER +
(

1 − 1

2d

)
(βρZSR + κρSZE ),

ρ̇ZR = γ ρER + (1 − γ )ρEZ + κ

(
1 − 1

2d

)
(ρSZZ − ρSZR ), (6)

where d = 1 or 2 is the dimensionality of the system and
the coefficients account for the different combinations and
orientations of the above triplets (see Refs. [45,46]). The
number of equations can be further reduced by employing
sum rules like ρS = ∑

x ρSx and ρSZ = ∑
x ρSZx. With the pair

approximation, ρxyz � ρxyρyz/ρy, the above equations can be
closed. All stationary solutions have ρSZ = 0 (i.e., no reacting
pairs) and ρEx = 0 because exposed agents eventually decay,
ρE = 0. However, since no condition applies to ρSR and ρZR,
besides the mean-field FS and FZ solutions [39], susceptibles
and spreaders may coexist, but not interact; i.e., their in-
teractions are screened by removed individuals. Differently
from the single-site MF approximation [39], we were not
able to obtain an analytical expression for the densities at
the stationary state. We resort, instead, to numerical methods,
integrating Eqs. (6) with a fourth-order Runge-Kutta method.
Notice that, in the MF approximation, for a given probability
γ of an exposed agent becoming a spreader, an increase in the
exposition probability (β) could be compensated by an equiv-
alent increase in the active skepticism (κ); i.e., the results only
depend on βγ /κ . The PA behavior, on the other hand, does
not depend on such a simple ratio. Thus, we consider three
particular cases, albeit representative of the overall behavior,
in order to compare how spreaders and susceptibles compete.
For β � κ , the population skepticism toward the rumor is
much stronger than the rumor virality, while in the other
extreme, β � κ , it is the opposite and the rumor outcompetes
the skepticism. We also consider the intermediate case, β = κ ,
where both tendencies are similar.

Figure 1 compares the asymptotic fraction of spreaders and
removed individuals as a function of the initial number of
susceptibles, ρ (0)

S , for the PA in one and two dimensions, with
the MF results. We consider a large probability of transform-
ing exposed individuals into spreaders (γ = 0.8), and several
ratios β/κ . For ρ (0)

S = 0, a fraction γ of the all-exposed initial
population turns, spontaneously, into spreaders, ρZ � γ , the
remaining becoming removed, ρR � 1 − γ . For small to mod-
erate values of β/κ , spreaders only prevail when the number
of susceptibles is small [Figs. 1(a) and 1(b)]. As β increases,
facilitating the transition S → E (and, then, to Z), there is
a change in the concavity of the curve ρZ(ρ (0)

S ): the initial
decreasing rate of ρZ becomes very small [Figs. 1(a)–1(c)]
and the overall fraction of spreaders gets larger, in both one
and two dimensions, despite ρZ being always a monotonically
decreasing function of ρ (0)

S .
For β � κ [Fig. 1(c)], the asymptotic fraction of spreaders

may be large even for populations initially dominated by
susceptibles. In this limit, the information is highly viral and
almost no spreader gets removed after being created from
the initially exposed individuals. Indeed, in two dimensions,
almost independently of ρ (0)

S (except, of course, at ρ (0)
S = 1

where ρZ = 0 and it is discontinuous), ρZ � γ and ρR � 1 − γ

(then, ρS � 0). This constant behavior, present only in two
dimensions, is remarkable since the more susceptibles (that
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0.5

0 0.5 1 0.5 1 0.5 1

PA-1D
PA-2D

MF

(a) (b) (c)

(d) (e) (f)

β κ β = κ β κ

ρ(0)
S

ρ
Z

ρ
R

FIG. 1. Asymptotic density of spreaders, ρZ (top row), and re-
moved, ρR (bottom row), as a function of the initial fraction of sus-
ceptibles, ρ (0)

S = 1 − ρ (0)
E . The results allow the comparison between

the different levels of approximation: mean-field approximation (dot-
ted line) and the pair approximation for one (solid line) and two
dimensions (dashed line). The relation between β and κ is indicated
in each column, from left to right: β � κ (β = 10−3 and κ = 0.8),
β = κ = 0.1 and β � κ (β = 0.8 and κ = 10−3). Notice that in
panels (c) and (f), the MF and the PA for two dimensions coincide.
In all cases, γ = 0.8.

may be skeptics) are present in the initial state, the more
resistance is to be expected, helping to prevent the increase
of spreaders, as observed in all other cases. There is, however,
a qualitative difference with the one-dimensional (1D) case
where there is an appreciable reduction in both ρZ and ρR

when ρ (0)
S increases (i.e., ρS > 0). This strong dependence on

the dimension has its origin in the different coordination and
the possibility of having multiple paths connecting two sites
in two dimensions. In one dimension, on the contrary, groups
of susceptible agents may easily become isolated once they
are located between two removed individuals, preventing their
exposition to spreaders and halting any further transformation.
As a consequence, ρS remains finite and increases with ρ (0)

S ,
while ρZ decreases.

Figure 1 also shows (bottom row) the population of re-
moved individuals, ρR, as a consequence of the skepticism
among the population. Their number is relevant when design-
ing a strategy to prevent rumor spreading. Up to the level of
the pair approximation, in spite of the rumor never completely
vanishing, some control over its global spreading can be
obtained by properly tuning either the initial conditions or the
parameters of the model. Specifically, despite our results never
showing an all-removed scenario, there usually is a maximum
value of ρR(ρ (0)

S ) that optimizes the resistance against the ru-
mor [Figs. 1(d) and 1(e)], for β � κ . Nonetheless, for β � κ

[Fig. 1(f)], the maximum ρR always occurs at ρ (0)
S = 0. On the

other hand, as a function of γ (not shown), all cases present a
maximum.

The main observed difference between the pair and mean-
field approximations is related to the possibility of spreaders,
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susceptibles, and removed agents coexisting. Within the PA
this is, in fact, the only solution found, even for the extremes
β � κ and β � κ , where the population of spreaders and sus-
ceptibles, respectively, becomes very small, but does not dis-
appear. Indeed, a more extensive analysis would be necessary
before ruling out solutions like FS or FZ that seem to appear,
rather trivially, for ρ (0)

S = 0 and 1. However, these states also
occur when β = 1, κ = 0 with γ ≈ 0, a particular situation
where the final population is formed only by susceptibles
and removed individuals (FS), or if β = 0, κ = 1 with γ ≈ 1,
when the steady state is FZ. Both cases are independent of the
initial population of susceptibles, ρ (0)

S .

IV. SPATIALLY DISTRIBUTED SYSTEMS

In the previous section we improved on the MF analysis of
Ref. [39] by taking into account correlations on the level of
couples of sites (the PA). These results should be compared
with the simulations on spatial lattices, exploring the effects
of these correlations on the steady state. We consider three
different networks on which N sites are arranged: random,
complex (scale-free), and d-dimensional regular lattices with
side L (N = Ld ) and periodic boundary conditions. In each
site there is a single agent that, initially, is set to be either
E or S. Along the dynamics, a site is chosen at random and
updated accordingly with Eqs. (1)–(4): an E decays into Z
or R with probability γ or 1 − γ , respectively, irrespective
of the neighborhood, while if it is a Z or an S, a neighbor
is also randomly chosen and, if appropriate, either Eq. (1) or
(2) is used with the corresponding probability. The asymptotic
densities are measured for different system sizes and averages
are taken over 100 to 200 samples. When the size is not
explicitly mentioned, the results were extrapolated to L → ∞
using a simple scaling, ρ (∞)

x − ρ (L)
x ∼ L−1, which fits quite

well the numerical data.

A. Regular lattices

1. One-dimensional case

We consider linear systems with periodic boundary con-
ditions and sizes ranging from L = 105 to 106. The behavior
of ρZ, shown in Fig. 2 for several values of the parameters,
is qualitatively similar to the PA. Spreaders and susceptibles
coexist by forming isolated islands where the intermediate
removed individuals prevent any interaction. There are, how-
ever, some differences between both cases. In spatial systems,
spreaders are the prevalent species in a slightly smaller region
of the (ρ (0)

S , γ ) plane. Moreover, as can be seen in Fig. 3(a), the
PA usually underestimates ρZ (see, for example, the curves for
β � κ and β = κ). However, for β � κ , ρZ develops a small
plateau (observed only in the spatial 1D case), before which
the pair approximation gives a larger estimate for ρZ. Although
there is a reasonable quantitative agreement between the
simulation and the PA for ρZ, the comparison with ρR is not as
good, as can be seen in Fig. 3(c). Another interesting feature is
that usually the partition between spreaders and susceptibles
is asymmetric, even for β = κ , with the maximum symmetry
(measured, for example, by the product ρZρS) occurring for
β � κ in a domain where γ ≈ 1 and ρ (0)

S ≈ 1.

0
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0.5

0 0.5 1 0.5 1 0.5 1
 0

 0.2

 0.4

 0.6

 0.8

 1

(a) (b) (c)

(d) (e) (f)

β κ β = κ β κ

ρ(0)
S

γ

FIG. 2. Asymptotic density of spreaders ρZ for spatial systems
in one dimension (L = 5 × 105, top row) and two dimensions (L =
500, bottom row). As indicated on the top of each column, from left
to right: β � κ , β = κ , and β � κ .

2. Two-dimensional case

In two dimensions, we consider square lattices with L2

sites (L = 102–103) and periodic boundary conditions along
both directions. Differently from the 1D case, the agreement
between the simulation and the PA is excellent, suggesting
that the reactions induce strong pair correlations that dominate
the stationary state. This short-range coupling is related to the
compact clusters of spreaders or susceptibles, whose interac-
tions are inhibited by intermediate removed individuals. These
R agents, since they no longer interact, prevent any further
evolution of the system. Models that are similar, but that do

0

0.5

1

0

0.3

0.6

0 0.5 1 0.5 1

(a) (b)

(c) (d)

1D 2D

β κ
β = κ
β κ

ρ(0)
S

ρ
Z

ρ
R

FIG. 3. Asymptotic density of spreaders, ρZ (top), and removed
(bottom) as a function of ρ (0)

S for both one dimension (left) and
two dimensions (right). The solid lines are the results from the PA
with γ = 0.8, while the points are extrapolations, for L → ∞, of
the corresponding simulations. Notice the excellent agreement in the
two-dimensional (2D) case.
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FIG. 4. Asymptotic fraction of spreaders (ρZ, top panel) and
removed agents (ρR, bottom panel) as a function of γ with N = 104

for regular, random, and scale-free networks, along with the mean-
field result (straight line). We consider β � κ and ρ (0)

S = 0.99.

not sustain an equilibrium coexistence of three species, do not
show such agreement between the PA and simulations.

The density of removed individuals measured in the sim-
ulation agrees well with the pair approximation predictions
[Fig. 3(d)], although some deviation can be observed for
β = κ and large ρ (0)

S . Relevant information may be also ob-
tained from the position and height of the peak of ρR which
are, respectively, an increasing and decreasing function of γ

(not shown). Thus, for a given virality, there is an optimal
fraction of susceptibles/skeptical agents that, if present in
the beginning of the propagation process, will counteract
by producing the largest fraction of removed individuals.
When γ is large, exposed individuals are easily converted into
spreaders and, because this maximum value increases with γ ,
the initial concentration of susceptibles has to be large enough
to enforce a maximum removal due to skepticism. Notice that
even in the limit γ → 1 (high virality), the amount of these
removed agents is still large (not shown). Nonetheless, the
effectiveness, i.e., the actual fraction of removed agents at the
maximum, decreases with γ .

B. Scale-free and random networks

Social networks are neither fully connected nor regular,
being indeed better described by complex networks. We thus
extend the previous analysis to include random and scale-free
networks, both built using the Krapivsky-Redner algorithm
[47]. Figure 4 presents the behavior of ρZ and ρR, as a
function of γ , in the region β � κ for the regular, random,
and scale-free networks, along with the MF approximation
results (straight lines). In this regime of high rumor virality, all
densities are much more sensitive to γ than to ρ (0)

S . Except for
large γ where MF nicely agrees with the simulations (and all
three networks behave the same), both spreaders (top panel)
and removed (bottom panel) are overestimated in the MF
approximation while susceptibles are underestimated.

For the model we consider here, the overall qualitative
behavior observed on these three structures is similar. Quan-
titatively, although the difference between the random and
the scale-free networks is small in the whole interval, they
strongly differ from the square lattice where the amount of

removed agents is much smaller. This robustness regarding
the topology of connections seems to have a common origin
on the strong pair correlations, as indicated by the good agree-
ment with the pair-approximation results. Moreover, it is re-
lated to the permanent screening role of the removed, prevent-
ing further interactions between susceptibles and spreaders
and, consequently, halting the dynamics (exposed agents have
a similar, albeit transient role). In order to be effective, any
strategy cluster must be surrounded by removed individuals.
This is the case of the square lattice since the nearest-neighbor
groups with either S or Z agents are more compact and,
because of that, need a smaller number of removed to fully
cover their surface. Once long-range connections are present,
as in the random and scale-free networks, such a surface
becomes larger and more diffuse, and a larger number of
removed individuals is necessary to cover it. In the MF limit,
where the network is fully connected, it is no longer possible
to prevent the interactions between spreaders and susceptibles
and they cannot coexist. Indeed, the asymptotic state becomes
a mixture of removed and either susceptibles (FS) or spreaders
(FZ).

These results hint to a robust effect, where the sole nature
of the interactions, either short or long range, determines
whether the fraction of removed agents is enough to stabi-
lize the coexistence state. While long-range interactions can
initially lead to a wider spreading of the rumor, at the same
time the SZ interactions produce a larger fraction of removed
individuals in the final state. This is observed (Fig. 4) both in
random and complex networks, where despite the distribution
of connectivity being different, the results are much alike. The
local pattern of connections in these lattices differs from the
square lattice, making the protective effect of removed agents
less efficient. Indeed, on a square lattice, because connected
susceptibles form a compact group whose surface is much
smaller, fewer removed individuals are necessary to cover
such a surface, protecting the susceptibles. The more long-
range interactions are present, the more difficult it becomes
to completely surround the group. Because of this, random
and complex networks are more easily invaded by spreaders,
leading to a larger number of removed agents. The fully
connected limit corresponding to MF is an extreme case where
such protection is impossible, preventing any coexistence
between spreaders and susceptibles. On the square lattice,
because the number of removed and spreaders is smaller than
in complex networks, there are more susceptibles. This is a
general feature, observed on most of the parameter space.

There are, in this model, two possible ways to control
the propagation of a rumor and, consequently, have a small
asymptotic fraction of spreaders, ρZ → 0. A direct mechanism
occurs when the passive skepticism within the population is
large (γ is small and almost no exposed individual becomes
a spreader). Nonetheless, typical populations do not have a
small γ . Usual, intermediate values of γ allow an indirect
mechanism with a larger number of removed agents that
protect the population of susceptibles, isolating them from the
spreaders and allowing a stable coexistence between the two
populations.

Figure 5 provides a geometric perspective on the time
evolution for the square lattice in the region β � κ and three
different values of γ around the peak at γ � 0.6 (see Fig. 4).
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FIG. 5. Snapshots for the square lattice with γ = 0.4, 0.6, and
0.9 (from top to bottom, corresponding to the region before, at, and
after the peak of ρR at γ � 0.6 in Fig. 4) at three different times
(increasing from left to right). The color code is black (S), white (E ),
red (Z), and green (R). Notice that, in the third row, the final snapshot
is not the asymptotic state of the population (spreaders will dominate
and only a few susceptibles survive, isolated by removed agents).

The screening effect of the removed agents strongly changes
the evolution of the system. For a value of γ to the left of the
peak (top row), spreaders remain confined in small groups,
despite the large virality (β � κ), with removed individuals
on the surface. In this case, the number of removed agents nec-
essary to cover the total surface is small. On the other hand,
to the right of the peak (larger γ , bottom row), the number of
removed is small and, as a consequence, not enough to prevent
spreaders from invading the whole population. The infection
rate is so high that there are almost no susceptibles in the final
state. For intermediate values of γ , close to the peak (middle
row) the number of removed individuals in the central panel is
not enough to constrain the whole population of spreaders and
a small fraction keeps infecting and removing agents from the
population. We now further explore the conditions that induce
a large fraction ρR in the parameter space.

While MF predicts that ρR = 1 − γ , for the three structured
topologies considered here, the number of removed individu-
als presents a nonlinear behavior as a function of γ : there is a
minimum value of ρ (0)

S above which there is a peak in ρR when
β � κ . As shown in Fig. 6, for decreasing values of ρ (0)

S , the
peak moves to the left, widens, and increases in height, even-
tually arriving at γ = 0 for a finite ρ (0)

S . Obviously, if ρ (0)
S = 0,

the exposed individuals in the initial state become removed
with probability 1 − γ , the same result as in the MF approach
(the upper bound, straight line in Fig. 6). Notice that all curves
merge with this MF result for large γ . Even if ρ (0)

S > 0, most
of the exposed agents become spreaders that, in turn (in the
limit considered here, of large γ and β � κ), help remove the
remaining susceptibles. Eventually, removed and spreaders
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FIG. 6. Asymptotic fraction of removed agents ρR as a func-
tion of γ for several values of ρ (0)

S in the scale-free network with
β � κ . The straight line is the MF result ρR = 1 − γ . Inset: The
corresponding asymptotic fraction of secondary removed individuals
after discounting the contribution from the initial state, ρ ′

R = ρR −
ρ (0)

E (1 − γ ).

seem to be the only agents remaining (whether susceptibles
actually disappear or a very small fraction remains depends
on further, more detailed simulations). In our model, there are
two main mechanisms that remove agents: the reaction ZS →
RS with a rate κ , and the spontaneous decay E → R with
rate 1 − γ . At the ρR peak there are contributions from both
processes. The effect of the leading mechanism in each side
of the peak can be seen in the snapshots of Fig. 5. Thus, the
peak separates the regimes where spreaders still have contact
with susceptibles, and the point where most of the latter only
survive inside isolated islands surrounded by removed. To
quantify the removed individuals that do not originate from
the exposed agents already present in the initial state, we
show ρ ′

R = ρR − ρ (0)
E (1 − γ ) in the inset of Fig. 6 as a function

of γ . Notice that the role played by ρ (0)
S is reversed when

considering only the agents whose removal was inherent to
the population dynamics, not those in the initial state: a larger
peak is observed when more susceptibles are present in the
initial state. Indeed, in the main panel of Fig. 6, the case with
the smaller peak becomes the largest in the inset. Moreover,
ρ ′

R presents a peak for all values of ρ (0)
S , even those for which

ρR is monotonic. After the peak, the linear behavior of ρ ′
R is

a direct consequence of the collapsed behavior seen in the
corresponding region of Fig. 4: in that region, ρR � 1 − γ and
ρ ′

R � 1 − γ − ρ (0)
E (1 − γ ) = ρ (0)

S (1 − γ ). Indeed, by plotting
ρ ′

R/ρ
(0)
S , a similar collapse is obtained (not shown). This can be

seen as a decoupling of the effect of γ on the final population
of ρR; i.e., the secondary removed individuals will depend on
γ but not in a simple way.

V. CONCLUSIONS

We considered a simple rumor-spreading model that in-
cludes agent-level skepticism [39]. An individual that had
contact with a rumor may become removed (disinterested)
from the propagation process following two different routes,
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both driven by skeptical inquiry. The first, if it is a spreader,
is by getting in contact with a skeptical susceptible. This is a
direct, active mechanism based on persuasive argumentation.
The second, if it has only been exposed but not yet turned
into a spreader, is by discarding the rumor (passive mech-
anism) due, for instance, to fact checking. Prior work [39]
studied this model within the mean-field (MF) approxima-
tion. Here we extend those results by including correlations
among neighboring pairs of agents (pair approximation), and
compare with agent-based simulations in different geometries
(one- and two-dimensional lattices and random and scale-
free networks), showing that the two-site approximation well
describes the simulation results. Neighborhood, in this case,
refers to social contacts as spatially close individuals do not
always exchange information.

Removed sites have an important function acting as bar-
riers for rumor spreading when spatial effects are taken into
account. In the asymptotic, stationary state, these removed
agents may coexist with susceptibles and spreaders. The
mean-field approach, being equivalent to a fully connected
system, does not provide such possibility, and either S or
Z get extinct (preliminary results show that when including
diffusion, as the effective range of interactions increase, the
lattice results approach those of the MF approach). Notice
also that although these MF solutions were not observed in
the simulations, more extensive simulations should be per-
formed in order to completely rule this possibility out. In
order to be stable, the coexisting susceptibles and spreaders
must be spatially isolated, their interactions hindered by the
surrounding removed individuals. Square lattices may present
a larger fraction of susceptible individuals as compared to
complex networks for a given set of parameters. The latter
has, instead, more removed agents (a relevant parameter as it
corresponds to those that lost interest in spreading the rumor).
The reason is that susceptibles form more compact groups in
regular lattices, thus needing a smaller number of protective
removed agents on their surface. The long-range interactions
present in the complex networks increase the probability of
SZ encounters, and a correspondent larger number of removed
individuals. This indeed is the mechanism allowing social
networks to easily spread information. Interestingly, collec-
tive, long-ranged conveyors of information like magazines,
radio, and television, present before the advent of the Internet,
did not have such capability because of the traditional fact
checking that most of the media enforces. When individuals
start to propagate their own beliefs and opinions, because
skeptical inquiry and critical thinking are not, yet, widely held
capabilities, rumor contention becomes a very difficult task to
which, presently, there is no efficient solution available.

Some spatial contention may be obtained by attaining a
sufficient degree of herd immunity. A similar result, for dis-
ease spreading, is traditionally obtained through vaccination
programs. Although not all individuals may have their skepti-
cal immunological system fully developed, pseudoscience and
fake-news propagation may be halted by protecting vulnerable
groups through a large and well-distributed population of suf-
ficiently educated people. It is important to stress again that,
in the stationary state, spreaders and removed individuals may
coexist. As indicated by experimental observations, while new

conspiracy theories and pseudoscience are constantly invented
and disseminated, they rarely replace entirely the previous
ones, not even when actively targeted by skeptical individuals.
In these situations, while completely eliminating fake-news
spreaders may not be feasible, achieving the optimal fraction
of individuals not interested in rumors, i.e., removing then
from the propagation process, can be a more realistic goal. We
observe that intermediate values of γ (the rate of spontaneous
transitions between exposed and spreader) seem to generate
a larger fraction of removed individuals when the rumor is
highly viral (β � κ). Interestingly, after correcting the final
fraction of removed to exclude the initially exposed individ-
uals that will unavoidably be removed, we observe that this
effect is even more pronounced when the initial number of
exposed individuals is small.

From the perspective of fake-news spreading, this can
be understood as a protective effect that an initial exposure
can cause in a (sufficiently) skeptical population. If there
are no passively skeptical individuals (high γ ), the rumor
will, evidently, dominate the population, with a high final
ρZ. But if the passive skepticism is too high (low γ ), the
rumor will be quickly trapped inside a small island of re-
moved (disinterested) individuals. While this can create a
large final fraction of susceptible agents, it also means that
most individuals never had contact with the rumor, leaving
the final population still susceptible to future rumors. Finally,
an intermediate value of γ near this point can make the rumor
spread through the population in a controlled way, creating
more removed individuals than any other case. While this is
not a perfect scenario, a population with the highest number
of disinterested individuals will be more resilient to rumor
spreading.

Reference [39] emphasized that the mechanism used by
skeptical agents to individually counteract the propagation of
rumors is similar to the pop-culture scenarios for a zombie
outbreak (both rumors and zombies may be directly elimi-
nated by susceptibles agents). Such a picture has been pre-
viously used to communicate the science of real epidemics
and the advantages of preparedness [43], while also moti-
vating some theoretical studies [40–42]. On a global level,
the current dissemination of pseudoscience and disinforma-
tion, along with the widespread phenomenon of authorities
discrediting scientists (e.g., the recent climate emergency and
coronavirus epidemic), everything facilitated by our technol-
ogy, is the equivalent of a zombie apocalypse. Thus, this class
of models remains interesting as we may get insight on how
skeptics should act to stop rumor spreading. In particular,
a better understanding of how rumor propagates and how
effective can be an effort to resist or even to convince people
may help to devise intervention strategies focused on specific
individuals in a similar way as crime and Internet hate control.
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