PHYSICAL REVIEW E 101, 062415 (2020)

Towards spectrally selective catastrophic response

V. R. Gabriele,'! A. Shvonski,"> C. S. Hoffman®,* M. Giersig®,*> A. Herczynski®,' M. J. Naughton®,' and K. Kempa®'-*

]Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
4Department of Physics, Freie Universitiit Berlin, 14195 Berlin, Germany

3 International Academy of Optoelectronics at Zhaoging, South China Normal University, 526238 Guangdong, People’s Republic of China

® (Received 26 February 2020; revised manuscript received 22 May 2020; accepted 28 May 2020;
published 18 June 2020)

We study the large-amplitude response of classical molecules to electromagnetic radiation, showing the
universality of the transition from linear to nonlinear response and breakup at sufficiently large amplitudes.
We demonstrate that a range of models, from the simple harmonic oscillator to the successful Peyrard-Bishop-
Dauxois type models of DNA, which include realistic effects of the environment (including damping and
dephasing due to thermal fluctuations), lead to characteristic universal behavior: formation of domains of
dissociation in driving force amplitude-frequency space, characterized by the presence of local boundary minima.
We demonstrate that by simply following the progression of the resonance maxima in this space, while gradually
increasing intensity of the radiation, one must necessarily arrive at one of these minima, i.e., a point where
the ultrahigh spectral selectivity is retained. We show that this universal property, applicable to other oscillatory
systems, is a consequence of the fact that these models belong to the fold catastrophe universality class of Thom’s
catastrophe theory. This in turn implies that for most biostructures, including DNA, high spectral sensitivity near
the onset of the denaturation processes can be expected. Such spectrally selective molecular denaturation could

find important applications in biology and medicine.
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I. INTRODUCTION

It is well known that molecules can be driven to dissoci-
ation by the application of ionizing radiation, photons which
carry energy sufficient to break molecular bonds. In that class,
x rays have long been applied to treat cancer [1]. However,
such therapy has little or no spectral resolution, i.e., regardless
of the x-ray frequency, all irradiated molecules (at the tumor
and/or in the background) are damaged. Resolution therefore
must rely on geometric targeting, and thus the treatment is
effective only if applied to large tumors. Nonionizing radia-
tion, with photon energies in the range well below the covalent
bonding energy, can at sufficient field intensity also cause
dissociation via nonlinear effects, with demonstrated microge-
ometrical resolution. For example, microtargeted dissociation
of cells using laser tweezers was recently demonstrated [2].
In that experiment, 90% of targeted yeast cells were killed
by a low-power (80 mW) near-infrared laser, focused to a
spot of about 1 um diameter. Also, there have been reports
of nonthermal effects caused by nonionizing THz radiation,
yielding partial dissociation of DNA (“bubble” formation) and
affecting gene expression [3,4]. Most importantly, however,
nonionizing radiation could allow for spectral resolution of
the dissociation.

Such a possibility is suggested already in the simplest har-
monic model of a radiation-driven molecule (or its segment),
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considered as a mass m oscillating due to the action of a
spring (of stiffness k) representing the molecular bond, with
y representing the bond length. In this textbook model [5],
the dynamics of the oscillatory motion are readily obtained
using the standard analysis of a damped oscillator, driven by
force F(t) = Fysin(wt), with frequency w and time ¢. The
dissociation of the molecule in this case can be defined as
a state with amplitude of oscillations y exceeding a critical
amplitude yn.x for molecular breakup (dissociation). The
required force amplitude for this to occur is given by

2 271/2
Fo=ﬁ[(ﬂ) +(1)} , (1)
w( w(

where y < wp 1is the damping index, Aw=w —
wy, (JAw| K wy, wWith wyg = +/k/m), and B = 2ymax ma)(z).
Figure 1(a) shows the amplitude-frequency space (AFS)
plot for this model, i.e.,Fy vs w, as in Eq. (1). Clearly, the
domain of dissociation has a quasiparabolic boundary, with
a well-defined minimum at @ = wy. This result, obtained
under the simplifying assumption of /inear response, implies
excellent spectral sensitivity of the dissociation transition,
since at F/ B = y /wy, the structure is stable for any w # wy,
and dissociates only for w = wy. Also, it is important to note
that in the stable domain of AFS, y has a single maximum at
the resonance frequency, which in this very simple model, and
for all driving amplitudes, is just wy. Thus, the corresponding
“trace” of these maxima in AFS is simply a vertical line at
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FIG. 1. (a) AFS for the simple harmonic model of a molecule, with y /@, = 0.1. (b) Normalized total equilibrium potentials vs y, from the
fold catastrophe universality class: red-dotted line [Eq. (2)], bold-solid line [Eq. (4), modified Morse], dashed-blue line [Eq. (4) with G,, = 0,
Morse]. Inset shows a model of the DNA fragment. (c) 3D map of the amplitude-frequency-displacement response of the DNA (poly-AT BP at
T = 1K), simulated using the modified Morse potential [Eq. (4)]. (d) 3D map of the amplitude-frequency-displacement response of the DNA,
simulated using the Morse potential [Eq. (4) with G, = 0] at T = 1K. In both (c) and (d), y /27 = 1 ps~'. (e) Dissociation boundaries near
Jfmin for increasing y. (f) Fy at the boundary minimum for increasing y: red dots represent calculations, and the blue straight line is a guide to

the eye.

® = wy, terminating at the bottom of the dissociation domain
[red line in Fig. 1(a)].

In the present work, we demonstrate that these main
features of dissociation dynamics of the simple harmonic
model remain valid in the response of real (in general, non-
linear) large molecules. We do not address the details of the
chaotic dynamics that develops near the dissociation domain
boundary, but instead focus on the universality of dissociation
conditions. This includes the fact that the trace of a resonance
in the stable domain of AFS connects to the minimum of the
corresponding dissociation domain boundary, which implies
high spectral resolution of the dissociation near this minimum,
a fact of potential importance for applications.

II. GENERAL CONSIDERATIONS OF
MOLECULAR DISSOCIATION

We begin with the most general aspects of molecular disso-
ciation. Consider a molecule large enough so that its dynamics
are classical, subject to an interaction potential U (y), where
y can be understood as a generalized molecule size (e.g.,
molecular bond length). We assume this potential to have the
following properties: (i) it has a single minimum at y = ypp,
(ii) for decreasing y < ymin it monotonically increases, and
(iii) it has a single maximum at y = Ymax > Ymin. All potentials
shown in Fig. 1(b) satisfy these conditions. Consider now the
response of this molecule to an oscillatory force as before:
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F(t) = Fysin(wt ). Based on general physical expectation of
stronger response to stronger driving (valid in the nonchaotic
regime), we make the following key assumption: the maxi-
mum (or properly defined time average) of y,y = R(w; Fp) is
a monotonically increasing function of Fy. We show further
that this assumption is valid for all models shown in Fig. 1(b).
Consequently, the dissociation condition defined by ¥ > ypax
corresponds to a distinct dissociation domain in the AFS.

As for the simple harmonic oscillator model, we note
that ¥ = R(w; Fp) must have a maximum due to resonance
conditions of the oscillatory motion for y < yn,x for any value
of the parameter Fy. Its location follows a specific line in
the AFS (the trace) from the simple harmonic resonance at
® = wy, corresponding to the necessarily parabolic form of
U (y) near the minimum y = yp,,, to the crossing point into
the corresponding dissociation domain at w = wg;s. Moreover,
if one defines the dissociation domain boundary in the AFS
as Fy = R~ (w, 7 = ymax) [6], the point on this boundary
at Fy = R~ (wgis, ¥ = Ymax) i8 necessarily its minimum. This
follows immediately from the fact that at the crossing point
of the trace with the boundary, the frequency along the
boundary departs from the resonance condition, implying that
the corresponding amplitude ' < ypax. This would mean it
returns to the oscillatory motion condition (back to the stable
domain). In order to stay on the dissociation domain boundary,
Fo must necessarily increase, leading to a larger maximum
displacement § > j', such that again y = yn.. Thus, Fy =
R (wagis, ¥ = Ymax) Must be a minimum in the AFS. As will
be shown further below, these features are fully confirmed not
only by the introductory simple harmonic model, but also by
all of the model potentials of Fig. 1(b), including extensions to
finite temperatures, multiple potential minima, and molecule-
molecule interactions.

The generality of our analysis stems from the fact that
U (y) as defined above belongs to the class of potentials with
“escape,” that lead to the fold catastrophes of the catastrophe
theory of Thom [7]. Thus, all potentials shown in Fig. 1(b)
also belong to this universality class, and consequently share
the quasitopological properties of the AFS discussed above.
The generic potential functional form in this universality class
is given parametrically as [8]

3
Uy) =B(—y? +Ay>. ?)

This universal potential, shown as a thin dashed line in
Fig. 1(b), can describe catastrophic dynamics of an entire class
of physical systems, ranging from a ship subject to rolling
motion, which can capsize if it leans too much away from its
vertical position [8], to an oscillating molecule, which breaks
apart when its bond is stretched beyond a critical length.
It was demonstrated in Ref. [8] that y at the dissociation
domain boundaries in this class of potentials develops chaotic
dynamics, leading to its fingerlike roughness. This effect
increases with increasing ymax, and in the special case of the
Morse potential [shown as blue-dashed line in Fig. 1(b), and
for which y,,,, — o0], the resulting dissociation domain in
the AFS has a boundary with multiple minima, connecting to
multiple stable modes due to nonlinearities. Detailed analyses
of all these models are given below.

III. DISSOCIATION DYNAMICS OF REALISTIC MODELS:
MODELING OF DNA

In this section, we confirm by simulations that the analysis
of general features of the dissociation dynamics in the AFS
remain valid in realistic models of large molecules, with
potentials from the fold catastrophe class. There is a family
of successful, realistic models of DNA, based on the Peyrard-
Bishop-Dauxois (PBD) model [9-18]. Here we chose a PBD
model from this family, proposed by Tapia-Rojo, er al. [18].
The model describes forces between DNA base pairs (BPs)
using a ladderlike geometry [see the inset in Fig. 1(b)]. The
dynamics are parametrized by the coordinate y,, which is
defined as the normalized separation between nucleotides in
the nth BP. These coordinates are normalized relative to their
equilibrium position (at 7 = 0), which is y, = 0 in a center
of mass frame of the BP. The equation of motion (Newton’s
second law) is

my, = _U/(yn) - W/(ym Yn41) — W/()’m Yn-1)
—myy, —n(t) — F(1), (3)

b R 92 .
3> ¥n = 35 Yu, and the primed terms are
defined by ¢’ = %q&. The external driving force is again
F(t) = Fysin(wt). Thermal fluctuations are realistically ac-
counted for (in real time) using the Langevin forcing term
n(t), which represents a random force drawn from a thermal
Gaussian distribution with variance 2my kgT [18]. These ther-
mal fluctuations, as well as the homogeneous damping due
to the environment (the velocity term, scaled by parameter
y) are important, and their inclusion is crucial in achieving
agreement with experiment. The interaction within the nth BP
is governed by a modified Morse intrabase pair potential given
by
U(yn) = Dn[exp (_anyn) - 1]2 + GneXP[—()’n - dn)z/bn]~
“)
Figure 1(b) shows plots of scaled U(y,), in a shifted
reference frame, for the case of nonzero G, (bold black
line), and for G,, = 0 (Morse potential, dashed blue line). The

outer phosphate backbone provides an effective interbase pair
potential W (y,,, y,+1), the so-called ’stacking” potential:

where y, =

k
W(ym ynil) == 5{1 + PeXP[—fS()’n +ynil)](yn _ynil)z}-

&)

To solve Eq. (3), we used a Verlet-type algorithm [19]
for a sequence of N = 64 BPs, with periodic boundary
conditions. The parameters D,, «,, G,, d,, and b, are
BP specific; all others are independent of BP type, and
were taken from Ref. [18]. Specific values of all pa-
rameters employed are D,[AT] = 0.05185eV, «,[AT]=
4A-", D,[GC] = 1.5D,[AT], o,[GC] = 1.50,[AT], G, =
3Dy, dy =2/Xn, b, =1/(2 3), k=0.03 eVA2, p=
3, §=0.8A"", y/2nr = 1ps~', and m = 300 amu.

For F(t) =0 and after achieving equilibration at T =
290K, the results for a homogeneous sequence of AT base
pairs were fully consistent with those reported in Ref. [20].
In particular, random “bubbles” [local DNA unzippinglike
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dissociation (denaturation)] appeared in a temperature range
just below the melting temperature of 7T = 314 K, and above
this temperature a complete denaturation of DNA, i.e., full
separation of the strands, followed. For Fy # 0, the behavior
of the DNA model for different driving amplitudes Fy and
frequencies w = 2 f was simulated to determine regions of
dissociation (denaturation), and the traces of the correspond-
ing resonances in the AFS. Figures 1(c) and 1(d) show 3D
maps of the amplitude-frequency-displacement response of
the DNA at a very low temperature of 7 = 1 K, and using
the modified Morse potential [using full Eq. (4)] and the
Morse potential of Eq. (4) with G,, = 0 (no Gaussian barrier),
respectively. We begin with this very low temperature in
order to suppress thermal fluctuations, and thus to assess their
relative importance as compared to homogeneous damping.
As expected, in this low-T case, homogeneous damping is
dominant: the oscillations spectrum is well defined (coherent)
but strongly damped, since the experimentally determined
damping parameter is large: ¥ /2w = 1 ps~'. This results in
a very small quality factor of Q = wy/y =~ 1 for the main
resonance. Displacement of the nth BP is defined here as
Fn = /(y2), where { ) symbolizes a simple time average over
one driving force period.

The AFS is simply given by a cross-sectional cut through
a given map, with a horizontal plane at corresponding y, =
Ymax- Lhe dissociation domain boundary is marked with a
red line, and the trace of the resonances as yellow dots. It
is clear from Fig. 1 that the topology of the AFS for the
DNA-models is the same as for the simple harmonic model
[Fig. 1(a)]. In all cases, there is a well-defined minimum of the
single dissociation domain boundary at fi,, at the crossing
point with the resonance trace, which implies sharp spec-
tral selectivity. Specifically, for the modified Morse model
[Eq. (4), with nonzero G,], the boundary of the dissociation
domain is quasiparabolic, and the resonance trace is initially
slightly redshifted, but then blueshifts for Fy > 50 pN, until
it arrives at the frequency fuin = 1.52 THz. For the pure
Morse model [G,, = 0 in Eq. (4)], the shape of the dissociation
domain is irregular and asymmetric (in full agreement with
an earlier study of chaotic behavior of the model [21]), and
the frequency trace is redshifted throughout the range (as
required [22]), reaching the still well-defined local minimum
of the dissociation domain boundary at f,;, = 0.8 THz. Note
that at low temperatures [i.e., when n(z) — 0], the stacking
potential W (y,,, y,+1) given by Eq. (4) can be assumed zero,
since the driving force is long wavelengths (depends only on
frequency), which immediately implies that y; =y, = ... =
Yo = ...¥N, leading to W(y,, y,+1) = O, for all n. We have
confirmed this by simulations: for T = 1K the traces indeed
remain essentially unchanged by setting W (y,, y,+1) = O,
except very close to (and of course in) the dissociation do-
mains. We have also shown that in almost the entire trace
range j, = /(y2) & B(y,), where B > 0 is a scaling constant.
This shows that it is the confining potential asymmetry which
is the dominant part of the nonlinear behavior that controls
the trace dynamics at low temperatures. Note that for a com-
pletely symmetric potential (linear or not), the time average
(yn) = 0. We have also confirmed that the topology of AFS
survives much larger damping. Figure 1(e) shows dissociation
boundaries near f, for various y, well defined even for

y/2m =5ps~! (Q <« 1). The main effect of increasing y is
the upward shift of the dissociation domain. This is expected,
since larger driving amplitudes are needed to overcome the
increased damping. Figure 1(f) shows that Fy at the boundary
minima is proportional to y, exactly as the simple harmonic
model predicts [see Eq. (1), for (i—g’) — 0].

The topology of the DNA models also survives dephas-
ing thermal fluctuations at room temperatures (7T = 290 K),
which dominate the low-amplitude Fy physics. This is demon-
strated in Fig. 2(a), which shows the AFS for the modified
Morse potential [Eq. (4)] with nonzero stacking potential
[Eq. (5)], simulated for DNA with AT BPs. Figure 2(b) shows
the same for DNA with GC BPs. The corresponding ¥, is color
coded, and clearly shows the dissociation domains, with well-
defined boundaries (red line). In both cases, the yellow points,
which represent local resonance maxima of a single nth BP,
are randomly scattered in the entire range of frequencies
displayed, for this very small Fy. The random scatter means
the absence of a well-defined resonance frequency, as a result
of the fluctuation dephasing. Note that in the case of very
low temperatures (e.g. 1 K) shown in Figs. 1(c) and 1(d), the
scatter of the yellow points is not visible due to vanishingly
small thermal dephasing. Most importantly, the increasing
driving force restores coherence of the resonances, which is
visible as narrowing of the scatter ranges in Figs. 2(a) and
2(b). This is a well-known effect in the theory of instabilities
or lasing: the driving force compensates for losses, and at this
point the system acquires gain, and becomes unstable (in our
case it enters the dissociation domain).

If the details of the fluctuation dynamics were not needed,
one could average out these fluctuations over all of the 64
BP locations. The result would be a flat spectrum in the
scatter range. Further simplification, often used in response
calculations (e.g,. RPA, for not too high temperatures) is to
include this effect (effectively) as additional homogeneous
damping (e.g., by simply changing y into y’ > y). The
quantum-mechanical justification of this approach is that
the averaged damping in a system of charges results from
scattering events between these charges and the environment
(homogeneous) and phonons (thermal dephasing). Additivity
of these two scattering processes in the response functions has
been demonstrated [23]. We do not make such assumptions
here, but in the spirit of this approach we could interpret
the trace scatter as corresponding to a large effective thermal
damping, which for very small F leads to a vanishingly small
Q < 1. On the other hand, for large Fp, the scatter range
narrows, as discussed above, which could also be viewed
as lowering of the overall damping, and thus dramatically
increasing Q.

Occurrence of the dissociation domains in different areas
of the AFS could allow also for selective dissociation of
specific segments of DNA. For example, Figs. 2(a) and 2(b)
indicate that driving a DNA molecule with Fy = 150 pN and
f= % = 1.45 THz would dissociate only the AT BPs, leav-
ing the GC BPs unaffected. Conversely, for Fy = 250 pN and
f = 3= = 2.8 THz, only GC BPs would be dissociated. This
potentially fine control of the segment dissociation (creation
of localized bubbles) is further demonstrated in Figs. 2(c)
and 2(d). The left panel shows the AT BP sequence with
a single GC BP inclusion, driven by external force with
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FIG. 2. (a), (b) Color maps of the DNA dynamics, showing an average (color-encoded) separation y, of the BP [AT for (a), and GC for (b)],
vs driving parameters Fy and f = w/2m, at T = 290 K. The red line in each figure represents the corresponding dissociation boundary curve.
The critical BP separation for denaturation yp,x is 0.5125A in (a), and 0.338 A in (b). The red arrows represent the corresponding linear
resonance frequencies (fy = 1.26 THz for AT BPO, and f;, = 2.21 THz for GC BP). Yellow dots indicate the resonance maxima locations.
White dots show the resonance maxima locations and the dissociation boundary at 7 = 1 K. (c), (d) Histograms of normalized number of
occurrences of damage (in over 30 independent trials), when only the AT BP exceeds its denaturation threshold. This result is fully consistent

with AFS maps in Figs. 1(c) and 1(d).

Fy =400 pN and f = 32 = 1.5 THz. According to Figs. 2(a)
and 2(b), this condition places the system in the region of
certain dissociation for AT BPs, and stability for GC BPs,
and Figs. 2(c) and 2(d) indicate this as well. Under the same
driving conditions, and for the GC BP sequence with an AT
BP inclusion, only this AT BP inclusion would be dissociated,
again in agreement with Figs. 2(a) and 2(b). This conclusion
remains the same for a variety of different BP combinations
and numbers.

Finally, it should be noted that it is possible to drive the sys-
tem with a more complicated, nonsinusoidal excitation. This
approach is discussed in Ref. [24], and more recently it was
demonstrated that complex molecules ’Li *Cl and “Li*’Cl
can be selectively dissociated with properly engineered trains
of terahertz pulses [25]. The problem of dissociation with
nonsinusoidal excitations is nontrivial, in general, due to non-
linearity of the response; the simple additivity of the response
to a sum of the Fourier components of complex excitations is
no longer valid.

IV. CONCLUSIONS

We have studied large classical molecules from the fold
catastrophe universality class of catastrophe theory, focusing
on universality of the transition from linear behavior at low
amplitudes, to dissociation at sufficiently large amplitudes.
We show that for a range of models from this class, from
the simple harmonic oscillator to the successful, realistic

PBD-type models of DNA, the amplitude-frequency space of
the driving force has the same topology: dissociation domains
with local, dissociation domain boundary minima. We demon-
strate that by simply following the progression of a linear
resonance maximum, while increasing gradually the intensity
of the radiation, one must necessarily arrive at one of these
minima, i.e., a point where high spectral selectivity is retained.
We show that this universal property is a consequence of
the fact that these models belong to the fold catastrophe
universality class of Thom’s catastrophe theory. This implies
that for such molecules, including DNA, a high spectral
sensitivity near the onset of the denaturation processes can be
expected.

The universality of the basic topological structure of the
AFS domains implies high spectral and dynamical resolution
of the large-amplitude dynamics of the structures, including
dissociation, which could lead to various applications. For
example, one might be able to target and irreversibly damage,
in vivo, foreign or mutated biomolecules or cells, provided
that the driving radiation can sufficiently penetrate the target
medium, and the domains of dissociation do not strongly
overlap. Such precise, ultrafast molecular dissociation en-
gineering could lead to highly effective medical treatments
and therapies. Note that this strategy would be preferable to
existing “Trojan horse” therapies (e.g., photothermal), which
deploy particle (including nanoparticle) species chemically
bound to the biological targets, and subsequently activated
(e.g., overheated) by external radiation. Therapies based on
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the dissociation engineering proposed here could be used to
treat viral and bacterial infections. This could be particularly
beneficial, given a steady rise of microorganisms resistant to
antibiotics in this “postantibiotic era” [26]. These therapies
might also be used to address disorders involving mutated
DNA, or prion diseases involving misfolded proteins [27].
Similarly, amyloidosis and neurodegenerative diseases such
as Alzheimer’s disease are associated with the presence of
amyloid proteins and other protein aggregations [28] and
could be treated in the same way. Finally, this method could

also prove effective in destroying cancerous cells, particularly
in the most deadly, metastatic phase.
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