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Alternating regimes of motion in a model with cell-cell interactions
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Cellular movement is a complex dynamic process, resulting from the interaction of multiple elements at the
intra- and extracellular levels. This epiphenomenon presents a variety of behaviors, which can include normal
and anomalous diffusion or collective migration. In some cases, cells can get neighborhood information through
chemical or mechanical cues. A unified understanding about how such information can influence the dynamics
of cell movement is still lacking. In order to improve our comprehension of cell migration we have considered
a cellular Potts model where cells move actively in the direction of a driving field. The intensity of this driving
field is constant, while its orientation can evolve according to two alternative dynamics based on the Ornstein-
Uhlenbeck process. In one case, the next orientation of the driving field depends on the previous direction of
the field. In the other case, the direction update considers the mean orientation performed by the cell in previous
steps. Thus, the latter update rule mimics the ability of cells to perceive the environment, avoiding obstacles and
thus increasing the cellular displacement. Different cell densities are considered to reveal the effect of cell-cell
interactions. Our results indicate that both dynamics introduce temporal and spatial correlations in cell velocity
in a friction-coefficient and cell-density-dependent manner. Furthermore, we observe alternating regimes in the
mean-square displacement, with normal and anomalous diffusion. The crossovers between diffusive and directed
motion regimes are strongly affected by both the driving field dynamics and cell-cell interactions. In this sense,
when cell polarization update grants information about the previous cellular displacement, the duration of the
diffusive regime decreases, particularly in high-density cultures.

DOI: 10.1103/PhysRevE.101.062408

I. INTRODUCTION

Cell motion plays a key role in many physiological pro-
cesses including tissue morphogenesis, wound healing, and
immune and inflammatory response. It is known that the
movement of cells is strongly influenced by cell-cell interac-
tions, which grants a wide spectrum of behaviors. Cell motion
can be categorized in terms of its external environment, which
can present directional asymmetry in response to a chemical
stimulus, or be isotropic, without a preferred direction. In
this sense, the single-cell tracking technique provides substan-
tial evidence that in the absence of chemotactic cues, cells
perform a persistent random walk, which has been modeled
by the Ornstein-Uhlenbeck (OU) process [1]. In the case of
directional asymmetry of the environment, the cell is said to
perform taxis and cell movement has been widely modeled
using the Keller-Segel diffusion equation [2]. In addition to
this categorization, cell motion can refer to the movement of
individual cells with or without neighbors [3,4] or to a cell
population acting as an aggregate [5–7].
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Experimental results focused on individual movements
present characteristics of Brownian particles [8,9]: exponen-
tial decay of the velocity autocorrelation function (ACF) and
linear growth with time of the mean-square displacement
(MSD), the latter at large timescales [10]. These features can
be explained by the OU process or, equivalently, the conven-
tional Klein-Kramers description [1,11]. However, there exist
cell motions without chemotaxis that do not follow the OU
process. For example, movements of epithelial cells and ag-
gregates of Hydra cells were reported as anomalous diffusion
processes [5]. Also human fibroblasts and keratinocytes move
in a manner that contradicts the OU process [5]. Similarly,
Takagi et al. reported different cell movement behaviors with
anomalous diffusion for Dictyostelium cells in different phys-
iological conditions [12]. These experiments fit well with a
generalized Langevin model which includes a memory kernel
for cell velocity [13]. Furthermore, long-term analysis of
Madin-Darby canine kidney cells has revealed a superdiffu-
sive behavior, in the absence of external cues [4,14]. These
findings can be explained by the fractional Klein-Kramers
equation [4] and highlight that cell movement contains a
more complex dynamics than the persistent random walk.
The fractional Klein-Kramers equation can be considered as
a phenomenological approach, able to describe anomalous
diffusion in terms of very general physical mechanisms.
However, it is rather limited when it comes to indicating
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which biological ingredients lead to an anomalous behavior.
Thus, alternative modeling that allows one to get biological
insight through testing different hypotheses becomes really
interesting.

On the other hand, anomalous dynamics have also been ob-
served in the collective movement of self-propelled particles
in complex media [15–18]. Examples of such active entities in
chemical and biological systems are colloidal nanorods [19],
chemotactic movement in the presence of obstacles [20], and
also colloidal particles driven by an external field [21].

Over the past few decades, the cellular Potts model (CPM)
[22] has been successfully extended to study active cell move-
ment [6,23–27]. Recently, we introduced a cell reorientation
model based on the CPM framework [28]. In this model,
cell movement is governed by a driving field whose direction
changes following a discrete version of the OU process. In
contrast, previous models for noninteracting particles have
applied the OU process on the velocity vector, leading to
white-noise fluctuations on the direction angle [8,9,29,30]. It
is known that when the orientation angle fluctuates without
correlations (i.e., in the absence of the friction term) the
system exhibits Brownian motion [29,31]. However, when the
friction term is present, we found that high-density cultures
exhibited a double exponential for the velocity ACF, in con-
trast to an exponential characterizing the Brownian motion of
low-density cultures. For both densities the MSD behaves as
a persistent random walk for the short timescale studied in
[28]. On the other hand, at long timescales the proposed cell
reorientation dynamic leads the system to a ballistic regime.
A crossover from a diffusive to a ballistic regime has been
reported in the case of models of noninteracting particles
[29,30]. However, the influence of cell-cell interactions on this
crossover is poorly understood.

In this work we are interested in studying the effect of cell-
cell interactions on alternating regimes of motion occurring in
a large timescale. In this sense, we use the CPM with active
cell movement, with two types of dynamics for the cell orien-
tation angle as introduced in [28]. First, we consider a “naive”
angle actualization where the new orientation is related to the
field direction operating in the previous step, regardless of
the cellular direction of displacement. In the second case, the
update direction depends on the mean orientation performed
by the cell in the previous steps. This implementation of the
field direction update grants a sort of feedback mechanism,
because at each time step the angle of the driving field is
influenced by the recent cell history, taking into account that
cell interactions can lead to blocking or deviation of the
original cell trajectory. We have studied how the crossover
from the diffusive to the ballistic regime is affected both by
the neighborhood information gathered by the cell in previous
displacements and by different cell densities. In addition, we
have calculated the temporal and spatial correlations of cell
velocity, the average distance traveled by a cell during the
time interval in which the driving field is constant, and the
angle direction of cell displacement.

II. MODEL

The CPM is a modified Potts model which includes dif-
ferent terms of energy that make it able to reproduce some

biophysical properties of cells such as deformations of cell
membrane, adhesion, and motility in an excluded-volume
manner. In the model, at each site of the lattice a spin σi =
1, . . . , Q is assigned and cells are represented by domains
with the same spin; thereby if σi = M, with 1 � M � Q, it
belongs to the cell labeled M. The dynamics of the model
are governed by the Hamiltonian, or energy function, which
guides cell behavior by distinguishing the low-energy config-
urations (or favorable) from the high-energy ones. The Hamil-
tonian consists of a term corresponding to the sum of all sur-
face energies, which represent cell-cell adhesion properties.
In addition, to prevent cells from breaking or disappearing,
additional terms related to cell area and perimeter are needed
in the Hamiltonian. Thus, the energy function considered here
is given by

H0 =
∑

i, j neighbors

Jσiσ j (1 − δσiσ j )

+
Q∑

M=1

κ (VM − V0)2 +
Q∑

M=1

�(LM − L0)2, (1)

where δσiσ j is the Kronecker delta and the first sum is over
all neighboring site pairs, representing the boundary energy
of the interacting cells. The second and third terms in Eq. (1)
correspond to the energy costs when cell volume and perime-
ter deviate from the target values V0 and L0, respectively.
In addition, cells interact with a medium which has spin
variable σi = 0, with no target area or perimeter. The adhesion
constant between different cells is denoted by Jcell-cell and
between cells and medium is Jcell-medium. Further, to consider
cell motility preferentially along the direction of a driving
field �F , an additional term should be added to the Hamiltonian
(1) [23,28], as we will see below.

The system evolves using Monte Carlo dynamics.
The variation of energy in a proposed trial configuration is
given by

�H = �H0 +
Q∑

M=1

�FM · ��rM, (2)

where �H0 is the change of energy related to Eq. (1), �rM

denotes the displacement of the center of cell M, and �FM is
the driving field acting on cell M. The acceptance, or not, of a
new configuration is given by the Metropolis prescription (see
[28] for details). The unit of time, a Monte Carlo step (MCS),
is defined as N trials of movement, with N the number of spins
in the lattice.

The driving field is characterized by a direction denoted
by � and an intensity F . We consider that the intensity F
is constant over time and has the same value for all cells.
However, the direction of the driving field operating over cell
M, �M , is actualized according to the OU process, d�M (t ) =
−λ�M (t )dt + σdW (t ), where λ is the friction coefficient
(0 � λ < 1), σ determines the magnitude of the fluctuations,
and dW (t ) represents the Wiener process. For our Monte
Carlo simulations, it is necessary to use a discrete version of
this stochastic differential equation, which can be identified
with a first-order autoregressive process as

�M (n) = (1 − λ)�M (n − 1) + σε(n), n = 1, 2, . . . , (3)
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where ε(n) is a white noise with zero mean and unit variance
(σ 2

ε = 1) and n is the discrete time; λ and σ were defined
previously.

Note that it is not mandatory that the cell displacement has
the same direction as the associated driving field, since both
cell-cell interactions and stochastic fluctuations can deviate
the cell from the driving field direction. Thus, the angle of the
driving field �M is not necessarily equal to the angle direction
of the cell movement, which will be denoted by αM . If the
previous direction of the cell displacement is considered in the
actualization of the driving angle, we have positive feedback
which mimics the situation in which the cell produces its
own chemotactic signal. This aspect was taken into account
previously by other authors in Potts-like models [6,27,32]. In
that way, Kabla considers that the motile force is oriented
along the mean velocity of the cell over its past time steps,
without friction or noise [27]. For Szabó et al. [6] the change
in cell polarization is proportional to a spontaneous decay with
respect to its previous value and a reinforcement of the cell
displacement direction during the time step considered. We
propose an alternative update rule to the angle of the driving
field �M which considers a feedback mechanism

�M (n) = (1 − λ)αM (n − 1) + σε(n), (4)

where αM (n − 1) is the mean displacement angle over the
previous τ MCSs and λ and σ were defined previously.
Equation (4) represents positive feedback since the actualiza-
tion of �M reinforces the previous cell direction. Differently
from previous formulations [6,27,32], our proposal for the
feedback actualization rule takes into account fluctuations. In
addition, an advantage of Eq. (4) is the possibility of a direct
comparison with Eq. (3): The only difference between them is
the dependence on the mean cell polarity αM instead of on the
previous direction of the driving field �M .

When using Eq. (3) the new angle direction of the driving
field is related to the previous direction of the driving field,
regardless of the angle direction of cell displacement. For
that reason, we call Eq. (3) a naive OU model. For both
actualization procedures, the initial direction of the cell M,
�M (0), is chosen randomly between [0, 2π ]; �M evolves in-
dependently of the field operating in other cells. The updating
time in Eqs. (3) and (4), n, is different from the time of
actualization of cell configurations. In particular, at each time
step the direction of the driving field for each cell M changes
with probability 1/τ according to Eq. (3) or (4). Thus, the
change in the directions �M and αM occurs at a mean time τ

independently of the direction of other cells.
The dynamic process underlying both Eqs. (3) and (4) de-

termines a distribution of cell direction centered at � = 0 for
λ �= 0. The width of � distribution depends on the parameters
λ and σ . Consequently, at long timescales, a directed random
walk is expected [33].

III. RESULTS

For all simulations in this paper, we use the fixed parame-
ter values Jcell-cell = 0.1, Jcell-medium = 0.01, � = 0.2, κ = 1,
σ = π/3, F = 10, T = 2, and τ = 10 MCSs. In order to
use physically meaningful units, we considered the units of
time and distance as τ and the average diameter of the cells

(d = 16 pixels [28]), respectively. We use throughout the
paper different values for the friction coefficient λ. We use
periodic boundary conditions and a square lattice of 1024 ×
1024 sites. The model dynamics does not present evident
lattice-size effects. In fact, identical results were obtained by
using lattice sizes of 256 × 256 and 512 × 512 sites. The
density ρ is defined as the ratio between the area occupied by
the cells and the medium. In this way, we calculate the number
of spins with σi �= 0 related to the total number of spins, since
the medium is identified by σi = 0. Low- and high-density
simulations correspond to ρ = 0.2 and 0.9, respectively. The
total numbers of cells for low- and high-density simulations
are Q = 819 and 3686, respectively (for the lattice size used).
More details about initial conditions and thermalization can be
found in [28]. Cell velocity is defined as �vM (t ) = (vM

x , vM
y ) =

��rM (t )/�t , where ��rM (t ) = �rM (t + �t ) − �rM (t ) and �t =
1 MCS. The direction of the cell movement is computed as
αM = arctan(vM

y /vM
x ).

In order to characterize the movement of a cell population
we calculate the mean-square displacement as MSD(t ) =
〈[�rM (t ) − �rM (0)]2〉, where the calculation is made for each
cell M between the starting point at t = 0 and the actual
position at time t and the average is taken over all Q cells
of the simulation by means of a simple average. According to
Fig. 1, the MSD presents two or three regimes in the timescale
considered, depending on the value of λ and on the updating
rule used. For λ = 0.01 and the OU actualization (3), we can
see that at short times the MSD is almost ballistic and after
that it resembles a random walk, regardless of the density. For
the other situations, the MSD has three regimes: It is almost
ballistic at short times, diffusive at intermediate timescales,
and ballistic at long times. When the direction of the driving
field is actualized by using the OU process with feedback
(4), the crossover between the random-walk behavior and the
ballistic regime at long times occurs for λ = 0.10 before it
does for 0.01. On the other hand, when the OU actualization
is used, this crossover is present for λ = 0.10 but not for 0.01.
Consequently, the duration of the diffusive period is shorter
when the friction coefficient is higher (same actualization
model and different values of λ) and when the feedback is
present (same value of λ and different actualization models).
In order to understand these results, we turn to discuss the
meaning of the different regimes observed for the MSD along
the different timescales. For all cases, the almost ballistic
short-time behavior is related to the persistence time of the
driving force, τ . In fact, in a previous paper [28] we showed
that the temporal behavior of the MSD scales with τ for the
OU actualization. The diffusive behavior of the MSD, also
present for all cases shown in Fig. 1, is the result of the
fluctuations in the direction of the driving field, since Eqs. (3)
and (4) are stochastic equations. However, the actualization of
� is not completely random. In fact, the friction coefficient
λ introduces correlations in the successive directions of cell
displacement, leading to a biased distribution of cell direction.
The effect of this bias is observed at long times in the ballistic
asymptotic behavior. In addition, when using Eq. (4) the
presence of feedback in the angle direction actualization raises
correlations and therefore anticipates the ballistic regime. In
addition, from Fig. 1 we see that the MSD obtained from
the angle updating rule with feedback is greater than or equal
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(a) (b)

FIG. 1. A log-log plot of the mean-square displacement versus time (distance in units of average cell diameter d and time in units of τ ).
The direction of the driving field is actualized according to the Ornstein-Uhlenbeck process (OU naive) and the Ornstein-Uhlenbeck process
with feedback (OU + feedback) for (a) λ = 0.01 and (b) λ = 0.10, with ρ = 0.2 (dashed line) and ρ = 0.9 (solid line). Lines with slopes
equal to 2 (ballistic) and 1 (random walk) are shown for comparison purposes only. The MSD is calculated between the starting point at t = 0
and the actual positions at time t and averaged over all Q cells of the simulation. More details are given in the text.

to that found with the OU actualization. This result suggests
that feedback helps cells avoid collisions with other cells,
making the movement more effective. Finally, we discuss the
effect of density on the MSD, starting with the model of OU
actualization. Low-density configurations have MSD higher
than or equal to that obtained for high density, for both values
of λ (see the black lines in Fig. 1). In fact, a lower MSD for
high-density cultures is expected, since crowded cell cultures
usually disturb the movement of cells. The same behavior
related to density can be observed at short and intermediate
times when the feedback updating rule is used. However, at
long times, the high-density culture presents higher MSD than
the low-density one, for λ = 0.10 and feedback update. This
inversion in the MSD suggests that the feedback gives rise
to a spatially coordinated movement of cells in high-density
simulations.

The time behavior of the MSD shown in Fig. 1 suggests the
potential of a scaling. As noted previously, the MSD presents
three regimes and therefore two different crossovers. The first
time crossover tc1 separates the almost ballistic regime at short
times from diffusive behavior at an intermediate timescale and
only depends linearly on τ [28]. This is because the driving
field acting on cells changes in the average time τ . Thus, cells
perform a ballistic movement for this limited time. The second
time crossover tc2, from which MSD grows ballistically at
long times, strongly depends on the friction coefficient λ. We
found that the second time crossover behaves as tc2 ∼ λ−h,
in units of τ , for a given cell density and updating rule. The
MSD data collapse is achieved in two steps [34]. Considering
first the OU model for low-density cultures, every curve of
the MSD versus time corresponding to a given value of λ in
the inset of Fig. 2(a) is rigidly translated to move the first
crossover point to the origin, by rescaling the vertical y axis
as MSD/ctβ and the horizontal x axis as t/tc1, with the first
time crossover equal to a constant value tc1 = 9 in units of τ .
Then the vertical y axis is rescaled by γ = 1/ ln[MSD(tc2)] =

1/ ln(aλ−h) and the horizontal x axis by χ = 1/ ln(tc2/tc1).
A last transformation (a backward rotation y → ycxβ ) is in-
cluded in order to recover the overall behavior of the MSD.
The resulting plot is shown in Fig. 2(a) for the MSD data of the
inset. The very good collapse on a single curve is apparent and
gives support to the idea of universality of the MSD for the OU
model for low-density cultures. However, this scaling law fails
for high densities [see Fig. 2(b)]. Clear differences among
the curves for different values of the friction coefficient λ in
the region of diffusive behavior are observed. This indicates
that cell-cell interactions affect the MSD in a unpredictable
manner. The same qualitative results were found for the OU
model with feedback given by Eq. (4) (not shown here). In
this case, MSD curves associated with low-density cultures
collapse with the same scaling of the OU naive model, but
with different constant values. In the case of high-density
cultures the collapse is not found, evidencing once again the
effect produced by cellular interactions.

The temporal behavior of MSD scales with time as
MSD(t ) ∼ tβ(t ), where the exponent β characterizes the dif-
ferent regimes observed. In that way, a ballistic behavior
is associated with β = 2, whereas normal diffusion presents
β = 1. The logarithmic derivative of the MSD allows the
calculation of β as β(t ) = d ln MSD(t )

d ln(t ) . Similar measurements
were used to study cell migration [4] and intracellular trans-
port [35] in both experiments and models and in a simple
model that mimics the diffusion of a particle in an anisotropic
amorphous material [15]. Figure 3 shows the behavior of β as
obtained from the two angle updating rules, for low (dashed
lines) and high (solid lines) densities and different values of λ.
Further, β was calculated by linear interpolation of the MSD
curves in the log-log plane. We used a time-sliding window,
the size of which increases exponentially with the temporal
scale. At the short timescale the exponent β corresponds to
anomalous diffusion. At this scale, we can note that for the
OU actualization low-density cultures present greater values
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(a) (b)

FIG. 2. Rescaled MSD of the curves of the inset, for results obtained from OU naive actualization model at (a) low and (b) high cell
density. Scaling functions are defined as γ = 1/ ln[MSD(tc2)] = 1/ ln(aλ−h ) and χ = 1/ ln(tc2/tc1), with constant values (a) a = 3.0 × 10−5,
h = 6.4, tc1 = 9 (units of τ ), tc2 = 4.04 × 10−4λ−h (units of τ ), c = 0.015, and β = 1.8 and (b) a = 3.5 × 10−5, h = 5.6, tc1 = 8 (units of τ ),
tc2 = 1.26 × 10−3λ−h (units of τ ), c = 0.0086, and β = 1.6. The insets correspond to the log-log plot of the MSD versus time (distance in
units of average cell diameter d and time in units of τ ), for results obtained from the OU naive actualization model at (a) low and (b) high cell
density. The curves correspond to different values of the friction coefficient: λ = 0.01, 0.05, 0.07, 0.08, 0.09, 0.10 (violet, orange, blue, green,
red, and black, respectively).

of β than high-density ones. This aspect is less evident when
the feedback mechanism is considered, since β for low- and
high-density cultures presents almost the same value in the
range [3, 10] in τ units. In addition, at short timescale a slight
increase in β for the update with feedback can be observed.
These results indicate that feedback makes cell movement
more efficient, particularly for high-density cultures, as dis-
cussed before. At an intermediate timescale, β decreases and
the MSD tends to exhibit a diffusive behavior. In particular, for
the OU actualization and low-λ values, the diffusive behavior

is observed at intermediate and long timescales. For the other
conditions of Fig. 3, the transition between short-time and
long-time ballistic regimes is so tight that the exponent β = 1
is almost not reached, but it will be referred to as a diffusive
regime. The duration of the diffusive regime decreases with
λ (for the same angle updating rule) and with the feedback
(for the same value of λ), as pointed out in Fig. 1. Also,
for the OU actualization and low-λ values, β is independent
of the density at intermediate and long timescales. For the
other conditions in the same timescales, the high-density

FIG. 3. Logarithmic derivative of the MSD β(t ) versus time (in units of τ ), calculated from data shown in Fig. 1 and additional data. The
direction of the driving field is actualized according to (a) the OU naive process and (b) the OU process with feedback for different values of
λ = 0.01, 0.05, 0.10 (dark, red, and blue, respectively) and ρ = 0.2, 0.9 (dashed and solid lines, respectively). We used a time-sliding window,
the size of which depends on time. Successive measurements of β are made in the time interval [�1.775k	, �1.775(k+4)	] in time units of MCSs,
with k = 1, 1.2, 1.4, . . . , 16, since the MSD data are considered until t = 105 MCSs. Here �· · · 	 indicates the greatest integer less than or
equal to the argument.
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(a) (b)

FIG. 4. Semilogarithmic plot of the velocity ACF function C(t ) versus time (in units of τ ). The direction of the driving field is actualized
according to the OU naive process and the OU process with feedback, for different densities ρ = 0.2, 0.9 (dashed and solid lines, respectively)
and friction coefficients (a) λ = 0.01 and (b) λ = 0.05. Here C(t ) was averaged over all Q cells of the simulation and over t0 for each simulation
sample. We consider three samples for ρ = 0.2 and one for ρ = 0.9, each with 6 × 104 MCSs. More details are given in the text.

cultures present greater values of β than low-density ones.
In addition, from the behavior of β at long timescales when
the feedback is considered [Fig. 3(b)], we can suppose that
for a larger timescale (that is, for t � 104τ ) β will continue to
increase until it reaches β = 2. In fact, we can expect the same
behavior for Fig. 3(a), since for both actualization rules there
is a preferential direction for cell movement at long times. As
we have discussed previously, the correlation comes from the
friction term and it is reinforced by the feedback. Cell-cell
interactions also increase correlations at intermediate and long
timescales.

The ACF velocity is another important tool to characterize
cell movement [36]. For one cell the velocity ACF is defined
as CM (t ) = ZM (t )/ZM (0), where ZM (t ) = 1

T −t

∑T −t
t0=1[�vM (t0 +

t ) · �vM (t0)], with T the total duration of the simulation. The
velocity ACF of the simulation C(t ) is obtained by a simple
average of CM (t ) over the total number of cells Q. In addition,
in order to improve statistics it is possible to make an ensem-
ble average by considering several independent simulations
that are averaged through a simple mean. Figure 4 shows that
the velocity ACF obtained for the angle updating rule with
feedback (4) is always higher than the one obtained for the
naive angle update (3), regardless of the values of λ or ρ. In
fact, if cells are more successful in avoiding collisions with
other cells we expect a higher ACF. In Fig. 4, for the OU
actualization, high-density cultures have smaller ACF than
low-density cultures, for both λ = 0.01 and 0.05. This result
can be understood by the fact that a crowded neighborhood
usually disrupts the movement of cells. However, when the
feedback update is considered, this relation is inverted: High-
density cultures have a greater value of ACF than low-density
ones, independently of the value of λ. Therefore, we can
conclude that the feedback makes cell movement more ef-
ficient, mostly for high-density cultures. Actually, when the
update with feedback is used in high-density cultures there is a
competition between two effects: On the one hand, a crowded
environment hinders cell movement while, on the other, the

feedback promotes it. In the OU update only the first effect can
be found. Because of that, the difference in the velocity ACF
between the two update rules is more evident for high-density
cultures.

Also, Fig. 4 shows that the ACF is greater for λ = 0.05
than for λ = 0.01, regardless of the density or the update
model. This result indicates that the friction coefficient en-
hances the correlation in cell movement, as discussed before.
Finally, for the OU process with a feedback update and
λ = 0.05 the ACF presents a very slow decrease at long
times, consistent with an algebraic decay, independently of
the density. For the other parameters considered in Fig. 4 the
ACF drops to zero before t = 25 in units of τ .

The spatial correlations of the cell velocities are also used
to study cell movement. The spatial correlation for a time
t is calculated as Ct (r) = 1

Npairs

∑∗
M,M ′ �vM · �vM ′/(|�vM ||�vM ′ |),

where r = |�rM − �rM ′ | is the distance between the center of
mass of cells M and M ′. Here

∑∗ runs over all cells pairs
M, M ′ that are at a distance r at time t and Npairs is the total
number of these pairs. The spatial correlation C(r) is obtained
by means of a simple average of Ct (r) over all time steps.
When comparing the two angle-update rules, we can see from
Fig. 5 that C(r) is always higher when the update rule with
feedback is used, as it is also the case for the ACF (Fig. 4).
As discussed in a previous work [28], the peak close to the
typical diameter of the cell (r = 1 in units of d) is related
to anticorrelated velocities of cells that travel in opposite
directions. At intermediate and long distances (r � 1 in units
of d), cells in high-density configurations are more correlated
for both actualization rules and λ values. Apart from this, C(r)
in high-density simulations approaches zero very slowly, as
r increases, in particular for λ = 0.10 and when using the
feedback-update rule [Fig. 5(b)]. These results indicate that
cell-cell contact induces long-range spatial correlation of cell
velocity and that this effect is enhanced by both the feedback
and the friction coefficient. Also, the difference in C(r) be-
tween low- and high-density cultures is more noticeable in
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(b)(a)

FIG. 5. Spatial correlation function of the velocities C(r) as a function of the distance r between cell pairs (in units of average cell diameter
d). The direction of the driving field is actualized according to the OU naive process and the OU process with feedback, for different densities
ρ = 0.2, 0.9 (dashed and solid lines, respectively) and friction coefficients (a) λ = 0.01 and (b) λ = 0.10. Here C(r) is averaged over all Q
cells of the simulation and over time until t = 105 MCSs. More details are given in the text.

the case of update with feedback. Therefore, the effect of the
feedback raising spatial correlations is greater for the crowded
cultures, as observed for the temporal correlations in Fig. 4.
These results might indicate a coordinated movement of cells
in high-density cultures as a consequence of the feedback
mechanism.

In order to get insight into the effect of the feedback
mechanism and of different densities on cell movement, we
introduce D. We define the average distance D traveled by
a cell during the time interval in which the driving field is
operating in a given direction. Mathematically, it is defined as

D = 1

Q

Q∑

M=1

〈|��rM (t f − ti )|〉It , (5)

where ��rM (t f − ti ) is the cell displacement from the time
the driving field starts operating, ti, until the time of the
next direction change, t f (with t f − ti ∼ τ ). Here 〈· · · 〉It in-
dicates the average over all time intervals It = [ti, t f ], that
is, we consider all time intervals in which the driving field
is operating in a given direction during the simulation run.
Finally, the sum runs over all cells on the substrate. This
magnitude gives information about the cell movement only
in the short timescale (∼τ , i.e., during the first almost ballistic
regime). For that reason D presents similar values for different
λ values, as we can see in Fig. 6(a). Further, it is expected that
cells can move much more in low-density cultures than in a
crowded medium, which is also evident in Fig. 6(a), where
D is much higher for ρ = 0.2 than for ρ = 0.9. Figure 6(a)
also establishes a comparison of the magnitude D for the two
angle-updating rules specified by Eqs. (3) and (4). In all cases,
the average distance D reached by the cells when the OU
process with feedback is acting is greater than when the OU
update is applied. In particular, we observe that in the case
of a crowded medium there is a remarkable increment (of
about 20%) of D when the update with feedback is applied
with respect to the OU actualization. For the low-density case

the increase is only about 3%. These results suggest that the
OU process with feedback update promotes or increases cell
displacement, especially in crowded environments.

By calculating the direction of cell movement αM for all Q
cells during a certain simulation time, it is possible to obtain
the histogram of α, whose analysis allows us to study the
existence of a preferred angle in cell movement. In Figs. 6(b)–
6(e) we compare the two update rules given by Eqs. (3) and (4)
for different situations: low and high densities and different
values of λ. The bias observed in the angle distribution is more
evident for higher values of λ, as shown in Figs. 6(b) and 6(c).
This result is quite expected since the updating rules have a
direction centered at � = 0 (for λ �= 0) that leads to directed
motion at long timescales. However, the effect of cell-cell
interactions is, a piori, more elusive. In this sense, we find that
cell interactions increase the bias in cell movement, which is
more evident when the feedback-update rule is acting. These
results are in agreement with the fact that the ballistic regime
occurs previously for the update rule (4) and for a more
crowded environment, as seen in Figs. 1 and 3.

IV. DISCUSSION AND CONCLUSION

Much of the work about cell motility is based on the study
of the time behavior of the second moment, the MSD. A
system is considered to exhibit Brownian motion when the
MSD increases linearly in time. Otherwise it is considered
to present anomalous diffusion. However, we usually want
to know more about the cell trajectories rather than only
the second moment [3,4]. Other features of interest are the
distribution and correlations of cell velocity. Thus, if normal
diffusion occurs, the velocity correlation decreases to zero
exponentially, or more quickly, while anomalous diffusion
presents a slower ACF velocity decay. The MSD and the
correlations can be theoretically derived only from simplified
models [13,29,30,35,37]. This modeling feature is particularly
interesting to get insight into the asymptotic behavior of the
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(a)
(b) (c)

(d) (e)

FIG. 6. (a) Average distance traveled by a cell during the time interval that the driving field is operating, D (in units of average cell diameter
d), for densities ρ = 0.2 and 0.9. The direction of the driving field is actualized according to the OU naive process and the OU process with
feedback (black and red, respectively) with friction coefficients λ = 0.01 and 0.10 (different color patterns, as indicated). Histograms of the
direction of the cell movement α are shown for different conditions: (b) ρ = 0.2 and λ = 0.10, (c) ρ = 0.9 and λ = 0.10, (d) ρ = 0.2 and
λ = 0.01, and (e) ρ = 0.9 and λ = 0.01. The update of the direction of the driving field is according to labels in (a). Here D is averaged over
all Q cells in the simulations until 105 MCSs (the first 500 MCSs are disregarded). In addition, α was calculated for simulations until 5 × 104

MCSs for ρ = 0.2 and 104 MCSs for ρ = 0.9, in order to have similar quantity of data, that is, Q times the number of time steps. Error bars
are smaller than the line thickness.

MSD. On the other hand, for models which include biological
ingredients like cell volume and cell-cell interactions, such as
the CPM-based ones, it is difficult to get analytical expres-
sions. However, these models can add valuable information
about cell motion [6,27,28,38]. For example, they are able to
test feedback mechanisms from the neighborhood at a distinct
spatial scale in an excluded-volume schema [27,38]. In addi-
tion, Kabla studied different cell dynamics for the collective
movement resulting from the balance between adhesion and
cell motile forces [27]. Here we have studied cell movement at
long timescales addressing the effect of cell-cell interactions
and neighborhood information gathered by the cell within the
framework of a CPM-based model. We have considered that
cells move actively according to a driving field that has a
constant intensity and whose orientation is governed by two
alternative OU updating rules.

We observed alternating regimes between ballistic and
Brownian motion for the MSD. The almost ballistic behavior
at short times is related to the persistence time τ of the
driving field [28]. At intermediate-time intervals the MSD
becomes diffusive due to the random actualization of cell
direction. A crossover from a quadratic to a linear regime in
the MSD has been previously reported. In fact, in a model
of self-propelled particles this transition is found when the
diffusive behavior arising from particle reorientation domi-
nates the persistence process [30]. In addition, when the OU
dynamics is applied to update the particle velocities vector
(instead of updating the angle direction as was done here)
the same crossover is observed in the MSD and the resulting
asymptotic regime is Brownian [1,29]. In addition to this
initial crossing of regimes, we found a second crossover
between the diffusive behavior and a ballistic regime at large
timescales. The asymptotic ballistic regime is a consequence
of the existence of a preferential direction in the angle-update

rule. This preferential direction is more evident for higher
friction coefficients λ. Therefore, the second crossover occurs
previously for large-λ values. Furthermore, we show that
this crossover also depends on the angle-update rule used,
occurring earlier when Eq. (4) is operating. This result agrees
with the fact that temporal and spatial correlations are higher
when the update rule with feedback is used. In the same
way, we observed that the feedback-update rule helps cells
avoid collision against other cells, making the movement
more effective along the preferential direction and therefore
anticipating the ballistic regime. Finally, the transition to the
long-term ballistic regime depends on cell-cell interactions
and occurs previously in crowded cultures. In conclusion,
we have shown that the appearance of the long-time ballistic
regime is favored by the friction term λ, by the feedback
updating rule, and also by a crowded environment. All these
factors introduce correlations in cell movement, anticipating
the crossover time between the diffusive and the ballistic
regime. We also expect this crossover to be affected by σ ,
since greater values of σ are related to a more stochastic cell
movement and should correspond to a longer diffusive period.
Our findings might be related to previous results provided by
a directed-random-walk model [33]. In this paper the time
of appearance of the asymptotic ballistic regime depends on
an anisotropy parameter, which fixes the correlations in the
displacement direction: At higher values of this parameter (or
stronger anisotropy), there is more correlation and the ballistic
regime appears earlier [33].

The crossover between the diffusive and the ballistic
regime at large timescales could be relevant in the context
of the cell migration in tissues with a chemotactic gradient.
For example, real-time cell tracking in intact thymic lobes
has revealed that the thymocytes exhibit random-walk mi-
gration, but after positive selection they display a directed
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motion [39,40]. Long-time cell tracking in tissues is diffi-
cult to access and in most cases experimental results re-
fer to transient regimes [3,4,12,41]. For this reason, a di-
rect comparison with theoretical models should be carefully
carried out.
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