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Exponential trajectories, cell size fluctuations, and the adder property in bacteria

follow from simple chemical dynamics and division control
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Experiments on steady-state bacterial cultures have uncovered several quantitative regularities at the system
level. These include, first, the exponential growth of cell size with time and the balanced growth of intracellular
chemicals between cell birth and division, which are puzzling given the nonlinear and decentralized chemical
dynamics in the cell. We model a cell as a set of chemical populations undergoing nonlinear mass action kinetics
in a container whose volume is a linear function of the chemical populations. This turns out to be a special
class of dynamical systems that generically has attractors in which all populations grow exponentially with time
at the same rate. This explains exponential balanced growth of bacterial cells without invoking any regulatory
mechanisms and suggests that this could be a robust property of protocells as well. Second, we consider the
hypothesis that cells commit themselves to division when a certain internal chemical population reaches a
threshold of N molecules. We show that this hypothesis leads to a simple explanation of some of the variability
observed across cells in a bacterial culture. In particular, it reproduces the adder property of cell size fluctuations
observed recently in E. coli; the observed correlations among interdivision time, birth volume, and added volume
in a generation; and the observed scale of the fluctuations (CV = 10-30%) when N is between 10 and 100. Third,
upon including a suitable regulatory mechanism that optimizes the growth rate of the cell, the model reproduces
the observed bacterial growth laws including the dependence of the growth rate and ribosomal protein fraction on
the medium. Thus, the models provide a framework for unifying diverse aspects of bacterial growth physiology

under one roof. They also suggest new questions for experimental and theoretical enquiry.
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I. INTRODUCTION

The simplest cells, bacteria, exhibit several generic phe-
nomena that were discovered decades ago but still require
explanation. One such phenomenon is that in steady-state
bacterial cultures the size of an individual bacterial cell grows
exponentially with time between birth and division. This was
observed early on [1,2] and its existence in various organ-
isms has been the subject of debate [3,4]. Recently, detailed
single-cell experiments [5—11] have confirmed this property
for many bacterial species in steady-state cultures. Intracellu-
lar molecular populations have also been observed to grow
exponentially in Escherichia coli cells within a generation
[12]. Since bacterial cells divide, the range of size over which
exponential trajectories are seen is limited to a factor of 2
(or similar), thereby potentially permitting alternate fits to
the data. However, the exponential function fits quite well
and is therefore at least a very good approximation. In other
single-celled organisms such as Schyzosaccharomyces pombe
a clear departure from exponential trajectories is seen [4,13],
so this is not a property that can be taken for granted. Why
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most bacteria exhibit this property remains an unanswered
question.

In linear autocatalytic systems [l14-16], exponential
growth is not surprising. The asymptotic rate of exponential
growth of chemical populations in such systems is the largest
eigenvalue of the matrix defining the dynamical system. How-
ever, the chemical dynamics of the intracellular molecular
species in a bacterial cell is highly nonlinear and therefore ex-
ponential trajectories are surprising. In this paper, we provide
an explanation for how cells can exhibit exponential trajec-
tories of intracellular chemicals and cell volume in spite of
the nonlinearity of the dynamics. We show that ordinary dif-
ferential equations representing mass-action-based nonlinear
chemical dynamics in an expanding container whose volume
is linearly dependent on the constituent populations have a
special scaling property, or “quasilinearity.” Such nonlinear
systems naturally have exponentially growing trajectories as
attractors.

Another unexplained phenomenon is “balanced growth”
[17], the remarkable coordination between thousands of in-
tracellular chemicals so that all of them (on average) double
in the same time. This is required for self-replication: A cell at
birth must grow in such a way that division, when it happens,
produces two daughters identical to itself; hence the mother
at division must have twice of everything as the daughter at
birth. In spite of their decentralized dynamics characterized
by reaction-specific catalysts and rate constants, how do thou-
sands of chemicals conspire to double at the same time? It
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is normally supposed that regulatory mechanisms involving
checkpoints and feedback loops are responsible for this coor-
dination. We argue that this sophistication is not needed. The
exponential trajectories that we find as generic attractors in
autocatalytic systems have all chemical populations increas-
ing at the same exponential rate even when no regulation is
present. Thus, their ratios are automatically constant in time
once they reach the attractor. The genericity and robustness
of these attractors suggests that balanced growth could have
been a property of protocells at the origin of life. The protocell
literature has been concerned with this question [18-23] and
has been an inspiration for this work, though the solution
presented in this paper is different from those advocated there.
At a mathematical level, we show that the growth rate as
well as the ratios of chemicals in the attractor are determined
from a nonlinear generalization of the eigenvalue equation of
a matrix.

Another phenomenon that has consistently received at-
tention but is still not understood is the origin and scale
of variation in interdivision time and cell size, reviewed in
Refs. [24-27]. Genetically identical bacterial cells subjected
to the same steady environment exhibit a phenotypic variation
in both these quantities. In the steady state, the volume of the
cells at birth and the time between birth and division have
steady distributions with a constant mean and standard devia-
tion (s.d.) and a coefficient of variation, CV = s.d./mean, in
the range of 10-30%. The mean size of the cell at birth can
be changed by close to a factor of 10 by choosing different
environmental conditions; its CV remains between 10% and
30% [9,11,28]. The CV of the molecular population of an
abundant intracellular chemical across cells in a bacterial
culture (the extrinsic CV) is also 10-30% [29-31]. It is
believed that the source of variation lies in the process that
controls cell division; however, neither the molecular basis
of this process, even for E. coli, nor the origin of the scale
of CV is fully understood. In this paper, we explore, through
a mechanistic mathematical model, the hypothesis [32] that
division is controlled by the intracellular population (not
concentration) of a certain molecule reaching a fixed threshold
~N, a parameter of the model. Then N controls both the
average size and the fluctuations in size and interdivision
time. We provide an explicit expression for the average cell
volume V in terms of N and the other molecular parameters
of the model. Fluctuations arise because molecular production
is stochastic and hence the interdivision time, which under
this hypothesis is the first passage time for this molecule to
reach its threshold, is stochastic. The CV of the interdivision
time is ~1/ V/N; hence, the CV of cell volume and of other
molecular populations is also ~1/+/N. We note that this
hypothesis therefore explains the observed range 0.1-0.3 of
the CV of all these quantities provided N lies between 10
and 100. We compare the theoretical distributions of size,
interdivision time, and added volume with the experimental
data of Ref. [11] to constrain the range of N for E. coli.

Size fluctuations in E. coli have been recently observed
[10,11] to satisfy the “adder” property [33,34], wherein the
volume added by a cell in each generation is independent of
its birth volume in that generation. This property has been
explored in various phenomenological models [8,10,11,33—
35] and implies specific correlations between the cell volume

at birth and division and between interdivision time and
birth volume. It has also been shown to arise in mechanistic
models, a simple linear one [36] as well as a biologically
more realistic model [37]. We show that the adder property
appears robustly for a wide class of nonlinear mechanistic
models under the hypothesis that division is triggered when a
molecular population reaches a threshold value, generalizing
the results of Ref. [36]. We indicate circumstances where
fluctuations depart from the adder.

Fluctuations of the growth rate across cells in a steady-state
culture have been measured in the literature and CV values
ranging from 10% to 40% have been reported [11,12,38,39].
Our models suggest that the physical origin of fluctuations
in the growth rate is different from that of interdivision time
and cell size. The simplest and most natural models that
we consider exhibit a smaller CV (1-5%) than that reported
in the experimental literature, though larger values can also
be accounted for. Our models also reproduce the observed
crossover in the CV of an intracellular molecular population
as a function of the mean population X (CV ~ X! for small
X and constant for large X) [30].

Growth laws of bacterial composition [40-43] constitute
another class of generic phenomena in bacteria which de-
scribe how the cellular steady-state growth rate and ribosomal
protein fraction in the cell depend upon the medium. These
bacterial growth laws have received a substantial theoretical
attention [43-50] and are much better understood compared
to the phenomena mentioned in the previous paragraphs. A
particular model that we discuss in detail reproduces the
bacterial growth laws in addition to the other phenomena
mentioned above. Thus, this work provides possible expla-
nations and a unified understanding of a number of generic
properties of bacteria, including exponential trajectories in
the steady state, balanced growth of cells, the growth laws of
bacterial composition, as well as the scale and correlations of
the fluctuations of several cellular variables. The work makes
predictions that can be experimentally tested.

A. Organization of the paper

In Sec. II, we describe the general class of mathematical
models of cells that we consider. In Sec. III, a specific non-
linear model is considered and results based on numerical
simulations are presented that reproduce the features men-
tioned above. In addition to intrinsic stochasticity in chemical
dynamics, we also discuss here the effect of stochasticity
in the partitioning of chemicals at division and stochasticity
in the threshold value of the division trigger. In Sec. IV,
we derive analytically several of the results presented in
Sec. III. In particular, we provide an analytic understanding
of the robustness (or universality) of the distributions of cell
size, intracellular populations and interdivision time, and the
nonuniversality of the distribution of the cellular growth rate.
Section V discusses the mathematical and physical basis for
exponential trajectories and balanced growth and shows that
these are generic properties of mass action chemical dynamics
in expanding containers whose volume is a linear function of
the internal chemical populations. This section also extends
the analytical results of Sec. IV to a large class of models.
Section VI discusses the unification of the bacterial growth
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laws with the other cellular properties. Finally, Sec. VII gives
a detailed summary of the model assumptions and results and
discusses future experimental and theoretical directions. The
Supplemental Material [51] contains additional figures and
proofs. Some readers may benefit by turning directly to the
summary in Sec. VII for a quick guide to the main results
including equations and figures.

II. A GENERAL MODEL OF A GROWING-DIVIDING CELL

We model the cell as a container with n+ 1 chemical
species, whose molecular populations at time ¢ are denoted
Xi(t), i=1,2,...,n, and Z(t). Z is the species triggering
cell division and X = (Xj, ..., X,) represents all the other
chemicals in the cell. The population dynamics is given by

dX;/dt =X; = f(X), i=1,2,...,n, (la)
dz/dt = Z = h(X, Z), (1b)

where the functions f; and & encapsulate the kinetics of the
chemical reactions in the cell. The Z population is assumed
to have a negligible effect on the X dynamics; hence, the f;
are independent of Z. The volume of the cell is assumed to
depend linearly on the X;:

V(X) =) X, )
i=1

where the v; are constant parameters of the model. V depends
on time through the X;. A particular case of this assumption,
usually made in most models, is that V' is proportional to the
mass of protein in the cell. Again, the contribution of Z to V is
assumed to be negligible. Explicit examples of the functions
fi and h will be discussed later.

In this work, we will primarily consider the case where
the functions f; are homogeneous degree-1 functions of the
molecular populations, i.e., for any 8 > 0,

[iBX) =8fiX), i=12,...,n 3)

We will refer to n-dimensional dynamical systems defined by
(1a) which satisfy (3) as class-I dynamical systems. This class
includes linear systems as well as a large class of nonlinear
dynamical systems. In fact, we show later that any nonlinear
chemical dynamics based on mass-action kinetics becomes
class-I when considered in a container whose volume is given
by (2). Such systems, especially if the underlying chemical
network is autocatalytic, have attractors that show exponential
growth of all the chemicals and the volume with time, as will
be discussed later. We will see that departures from the class-
I property result in departures from exponentially growing
trajectories, examples of which are the models in Ref. [37]
that display both exponential and nonexponential growth.

A. Division control

Starting from some initial condition for the n+ 1 pop-
ulations, the populations are evolved according to (1). The
function £ is assumed to be positive, and hence Z increases
under (1). When Z reaches the threshold Z., the cell divides.
The two daughter cells are assumed to be identical, and hence
each gets half of every chemical in the cell. Since in the

model we track one of the two daughters, at division all n + 1
populations are replaced by half their values. This defines the
state of the daughter at birth in the next generation and with
that initial condition for the populations the above procedure
is iterated.

B. Resetting of Z after triggering; delay between
triggering and division

The above defines the simplest version of the model. It is
useful, however, to consider two generalizations motivated by
empirical observations. The first involves a resetting of the
Z population after it triggers division. In the above scheme,
Zp, the value of Z in a daughter at birth, is always Z./2.
However, specific biochemical processes may cause a degra-
dation of the triggering molecule on a short timescale after
triggering of division. In order to model this, we assume for
simplicity that when Z reaches Z, it triggers division and is
also instantaneously reset to a value Z, < Z.. Z, is another
parameter of the model; Z, = 0 implies complete degradation
of the triggering molecule; Z, = Z, implies no degradation.
Several properties that we discuss (e.g., the adder property)
hold for the entire range of values 0 < Z, < Z.. The second
generalization is that division follows triggering (and resetting
of Z, if any) after a time delay t;, which is another parameter
of the model. When 7; = 0, then division immediately follows
triggering and resetting; hence, Z, = Z,/2. When t; > 0, we
assume that after triggering (and instantaneous resetting of
Z to Z,) all n 4 1 populations continue to evolve via (1) for
a fixed time t;, whereupon cell division takes place and all
are halved. These generalizations are motivated by evidence
that the replication of DNA is initiated when a certain protein
reaches a threshold population, and this chemical degrades
soon after the initiation of replication to avoid multiple repli-
cation rounds. Cell division follows the initiation of DNA
replication after the lapse of a certain time.

To summarize, the population dynamics in the model is
a combination of continuous dynamics described by (1) and
discrete events. The X variables evolve via (la) from their
initial values up to the time of cell division; only at division
do they experience a discrete change: They are halved. The Z
variable evolves via (1b) from its initial value up to the point
where it reaches the threshold Z,. There it is instantaneously
reset to Z,. Subsequently, it again evolves via (1b) for a fixed
time 7. That defines the time of cell division. At that time,
Z is halved (along with the X;). That brings the cell to the
beginning of the next generation and a new set of initial values
of the n + 1 populations, whereupon the procedure is iterated.

Note that the dynamics of Z explicitly depends upon the X
sector through A(X, Z). On the other hand, Z does not affect
the short timescale dynamics of the X sector since f; are as-
sumed to be independent of Z. However, Z exercises a discrete
control over the X variables through the triggering of division,
which in effect determines how large the X; can grow before
cell division occurs and they halve. The functions f; contain
all the interactions among the X chemicals and encapsulate
most of the complexity of the intracellular dynamics.

The above formulation describes the deterministic version
of the model. We also consider various sources of stochastic-
ity. One is the intrinsic stochasticity in the chemical dynamics
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resulting from the populations being non-negative integers
instead of continuous variables and each reaction having a
certain probability of occurring. Then Eq. (1) is replaced by
its stochastic counterpart. Further, at division the chemicals
may not partition equally into both daughters. Also Z., the
threshold value of of Z at which division is triggered, may
vary from generation to generation. The specific implemen-
tation of these sources of stochasticity in the model will be
discussed later.

C. Key differences with respect to earlier work

(1) The origin of exponential trajectories and balanced
growth of bacterial cells has remained a puzzle; we explain
the origin as a consequence of the ubiquitous class-1 property
of the dynamics. For class-I systems, we introduce a useful
geometric construct in phase space, the “curve of balanced
growth,” which is often the attractor for the deterministic
dynamics and a useful reference point for stochastic perturba-
tions. (ii) We extend the analytical proof of applicability of the
adder property to a much larger class of models than before.
The division control dynamics above (based on a time-keeper
molecule Z reaching a population threshold Z.) has been
considered earlier in Ref. [36] in a simple model where Z
is the only variable (the X sector is absent) and in Ref. [37]
in a more realistic model where the X sector contains vari-
ous proteins, messenger ribonucleic acid (mRNA) molecules,
and genes (including ribosomes and RNA polymerase). They
find that the adder property arises from this division control
mechanism when the volume grows exponentially and the
Z dynamics is treated stochastically. They have proved this
analytically for the simple model in Ref. [36] and established
the result numerically in the more complicated model of
Ref. [37] in the exponential phase. We analytically prove the
adder property for all models (with some caveats discussed
later) defined at the deterministic level by Eqs. (1)—(3) and
the property h(8X, Z) = Bh(X, Z), when the Z dynamics is
treated stochastically. The model in Ref. [36] and the basic
version of the model in Ref. [37] are special cases of this
class. Note that our result implies that the adder property holds
irrespective of the detailed form of functions f; and 4 and the
number of variables therein (with some caveats), as long as
they satisfy the homogeneous degree-1 property. This helps in
understanding the extent of universality of the adder property
with respect to the dynamics. We also show that the property
does not depend on the constant reset value Z,. Furthermore,
when the function 4 is independent of Z, we show analytically
for this entire class of models that the distribution of the added
volume is the same as the one obtained in Ref. [36] with a
CV of 1/+/N, where N = Z, — (Z,/2). By comparing with the
experimental distributions of Ref. [11] for E. coli, we find N to
be between 20 and 60. We also discuss some new mechanisms
for the departure from the adder property. (iii) We explain the
behavior of the protein number fluctuations (the dependence
of the CV on the mean population of the protein) observed
in Ref. [30] for the same large class of models. Essentially,
the so-called extrinsic noise is nothing but the fluctuation of
the first passage time of the time-keeper molecule Z, which
affects the CV of all protein populations equally and sets
the scale to be ~N for the mean protein number at which
the observed crossover occurs. (iv) We provide a possible

geometric interpretation of the origin of fluctuations in the
growth rate, namely, perturbations orthogonal to the curve of
balanced growth in phase space.

III. A SPECIFIC EXAMPLE WITH3 + 1
CHEMICAL SPECIES

We now consider a concrete example in which the X sec-
tor is described by the precursor-transporter-ribosome (PTR)
model discussed in Ref. [50] containing n = 3 species. Later
on, we will argue that several of the results of the PTR model
hold for the general model described above with a very broad
class of functions f; and h. Here X; = P is a coarse-grained
population variable representing the total number of amino
acid molecules (precursors or monomers out of which proteins
are constructed), X, = T is the total number of transporter and
other metabolic enzyme molecules in the cell responsible for
making P from the food molecules available in the extracel-
lular medium, and X3 = R is the total number of ribosomes in
the cell (catalysts for making 7 and R from the P molecules).
The equations of the X sector (or PTR sector) are

dp RP
i fitP,T,R) =KpT — k7, (4a)
dT RP
e (P, T,R)= KTV —drT, (4b)
dR RP
i (P, T,R) = KRV — drR, (4c)
where
V =vpP +vrT + vgR. %)

The constants Kp, K7, K, k, dr, dg, vp, vy, and vg are pa-
rameters of the model. The rate constant Kp represents the
efficiency of metabolic enzymes T in transporting and pro-
ducing P from external food. It is an increasing function of
the external food concentration [F] and the quality of the
food source ¢ (the number of P molecules produced per food
molecule transported). k represents ribosomal catalytic effi-
ciency and is the peptide elongation rate per unit concentration
of P. dr and dy are degradation rates. vp, vr, and vg define the
contributions of the individual species to the cellular volume
V. It is convenient to parametrize the rate constants K and
Ky as follows:

frk frk

K =—,
mr mpg

fr+fr=1 (6)

Here fr and fg represent the fractions of ribosomes engaged
in making 7 and R, respectively, and my and my are the
number of amino acid residues (or units of P) in a T molecule
and ribosome respectively. It follows that the mass of the PTR
cell (in units of mass of a P molecule) is M = P +m;T +
mgR. For more details, see Ref. [50]. Note that by virtue
of (5), the PTR sector is a class-I dynamical system, i.e.,
fi(BP, BT, BR) = Bf:;(P,T,R) fori =1,2, 3.

In the Z sector, the function £ is defined by

dZ—h(PT R) =K i @)
d[_ s Ly - Zv’

where K7 is a constant. This form assumes that the production
of the molecule that triggers cell division mirrors the growth
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FIG. 1. Plot of the chemical populations P, T, R, Z and volume V vs time ¢ for deterministic trajectories. Parameters of the model are
Kp=500h"", k=10 h"" (um)’, dr = 0.1 h™', dg = 0, my = 400, mg = 10000, vp = vy = vg =2 x 1078 (um)’, fr = 0.19377, K, =
107" h=! (um)?, Z, = 25,7, = 0, 7, = 0. (a) The trajectory of a cell with the initial conditions IC1: P(0) = 2 x 107, T(0) = 107, R(0) = 10,
Z(0) =9, and (b) IC2: P(0) = 10°, T (0) = 10, R(0) = 3 x 10°, Z(0) = 9. The population values in panels (a) and (b) have been multiplied by
the factors mentioned in the legend of panel (a) to bring them on the same figure. The dynamics converges to a steady state (a periodic solution
or limit cycle attractor). The chemical populations in the daughter cell at birth in the steady state are P, = 5.023 x 107, T, = 4.529 x 10, R, =
4.844 x 10* [P, is indicated by black dotted lines in panels (a) and (b)]. The period, or interdivision time t = 0.781 h. (c) The volume of the
cell, V, defined by Eq. (5), as a function of time for the two initial conditions, IC1 and IC2. In this and subsequent figures, the unit of the
time axis is hr and the volume axis is (um)®. First inset of panel (b) and inset of panel (c): Semilog plots of P, T, R, Z, and V vs time in the
steady-state with IC2. The plots of P, T, R, and V are piecewise linear and have the same slope 0.888 h™' (slope of the natural logarithm of
the quantity vs time), showing that they all increase exponentially with the same rate in the growth phase of the limit cycle attractor. The slope
agrees with formula (10c). Second inset of panel (b) plots the ratios of chemical populations as a function of ¢ on the trajectory starting from
IC2. The ratios of populations of the PTR sector become constant on the limit cycle attractor and the constant values agree with Egs. (10a)
and (10b). (d) Simulated phase portrait of trajectories from diverse initial conditions projected on to the two-dimensional space of 7'/R and
P/R showing that the trajectories converge to the same attractor independent of initial conditions. Inset of panel (d): Time dependence of
concentrations of P, T', R on the trajectory starting from IC2, becoming constant on the limit cycle attractor.

of the cell [this term has the same form as the growth term A. Deterministic version; numerical results
of T and R in (4)]. Note that in (7) h(X, Z) is independent
of Z and also satisfies h(BX) = Bh(X). We will later (in
Sec. IV D) give results when /4 has a nontrivial Z dependence
arising from autoregulation of Z (e.g., cooperativity). The

PTR model [50] has been independently extended by Ref. [52]

The rules mentioned above fully specify the dynamical
system once the parameters of the PTR sector (Kp, k, dr,
dgr, mr, mg, fr, vp, V7, UR), the Z sector (Kz, Z., Z,), and 1
are specified. We refer to this as the PTRZ model. Its
deterministic dynamics is discussed in this subsection and

to include a sector whose dynamics is given by (7) and that
triggers division upon reaching a population threshold. Their
treatment differs from ours in various respects, in particular,
that the new sector affects the local dynamics of the PTR
sector through the volume. They have also observed the adder
property of the cell volume in numerical simulations. Apart
from that commonality, Ref. [52] and the present work explore
different aspects of the models.

stochastic dynamics in the next. For simplicity, we consider
the case where t; = 0 (7; > 0 is discussed later). Thus, when
Z reaches Z., the cell divides without any delay; i.e., the
populations P, T, R are halved, and the birth value of Z is
simultaneously set to Z, /2. Subsequently, the populations fol-
low Egs. (4) and (7) until Z again reaches Z, and the procedure
is repeated. Simulations are shown in Fig. 1. Most parameters
of the PTR sector are chosen in the ballpark of realistic
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FIG. 2. Effect of stochasticity in chemical dynamics of the PT RZ cell. Parameter values are as in Fig. 1. (a) A stochastic trajectory of
P, T, R, Z starting from IC2 (see legend of Fig. 1). (b) P vs time ¢ in a semilog plot for five consecutive generations in the statistical steady
state. The slope «p of the best fit straight line (In P vs ¢) varies from generation to generation. (c) Time evolution of the volume distribution
of 30000 cells at birth. The distribution at the beginning of the gth generation (or just after g divisions) is shown for various values of g. In
this case the initial distribution of V is a § function at V = 0.06 («m)?, since all the trajectories start at ¢ = 0 from the initial condition 1C3:
P(0) = T(0) = R(0) = 105, Z = 0. The distributions at g = 19 and 24 are indistinguishable, suggesting a stationary state.

values [42,43,53,54] and reproduce known experimental data
on E. coli within a factor of order unity (namely, the values
of P,T,R and the growth rate). The values of vy and vy
have been set equal to vp for simplicity; we are not aware
of experiments that measure the v; independently. The value
of fr has been chosen so as to maximize the steady-state
growth rate of the PTR cell with the above-mentioned choice
of parameters; this procedure reproduces the bacterial growth
laws as discussed in Ref. [50]. In the Z sector, the value of
Z. and Z, are chosen to get the scale of size fluctuations
in the experimentally observed ballpark (it will be seen that
only the combination Z. — Z,/2 matters). Kz, an unknown
parameter of the model is chosen so that the steady-state birth
volume of the cell turns out in the correct ballpark, ~1 (um)>.
Our conclusions are robust to independent variation of each
parameter (within collective limits as discussed later).

As evident from Fig. 1, after a transient that depends on
initial conditions, the dynamics converges to a steady state.
This steady state is a limit cycle attractor in which the just
born daughter cell grows to twice its size (the populations
P, T, R and the cell volume double) and then divides into two
halves, bringing the system back to the same daughter state. It
is seen that in the attractor, between birth and the next division
(i.e., within a single generation of the cell) the chemicals of
the X sector grow exponentially with time at the same rate
[inset of Fig. 1(b)]. The same is true of V [inset of Fig. 1(c)],
a consequence of (5). Because of exponential growth, the
ratios T/R and P/R remain constant in time throughout the
attractor. Hence, the concentrations of the X -sector chemicals
also remain constant in the attractor [inset of Fig. 1(d)].
During the transient period before the attractor is reached, the
ratios are not constant. For all the initial conditions considered
(with 0 < Z(0) < Z,), the trajectory converges to the same
steady state [Fig. 1(d)], suggesting that the limit cycle is a
stable attractor with a wide basin of attraction. When the
parameters are varied within a wide range (specified later;
Sec. IV A), the same dynamical behavior is observed: initial
transient leading to a limit cycle attractor characterized by
exponential trajectories in the growth phase and constant
ratios of chemicals.

B. PTRZ with stochastic chemical dynamics; numerical results

In Fig. 2(a), we show a typical trajectory of the PTRZ cell
following stochastic chemical dynamics. The difference from
the deterministic version is that the evolution of P, T, R, and Z
is no longer given by the differential equations (4) and (7) but
by a stochastic version of (4) and (7). The populations are now
non-negative integers and are updated according to the proba-
bilities of the chemical reactions, the latter being proportional
to the corresponding terms in the differential equations. The
rest of the dynamical rules are the same as before [starting
from any given initial condition, the populations P, 7', R, and
Z are evolved with time until Z = Z,, at which point P, T,
and R are halved (and rounded off to the nearest integer
value); Z is set to Z, /2 and the procedure is iterated]. No new
physical parameter is introduced in the stochastic dynamics.
The algorithm used for numerical simulations is mentioned in
Computational Methods below.

1. Stochastic steady state

We observe in Fig. 2(a) that after a few rounds of growth
and division the trajectory of the cell reaches a statistical
steady state, a stochastic version of the deterministic steady
state seen in Figs. 1(a) and 1(b). In the stochastic steady
state, the daughter cells produced at the beginning of each
cycle are no longer identical from generation to generation
(in terms of the values of P, T, R, and V), as was the case
in the deterministic simulation, and 7, the interdivision time,
also varies from cycle to cycle. The latter variation arises
because the first passage time of Z to reach Z. varies from
cycle to cycle. Figure 2(b) shows that in the statistical steady
state the population growth of the X -sector chemicals within a
generation can be approximated by an exponentially growing
trajectory with the effective growth rate varying from genera-
tion to generation.

We performed 30 000 stochastic simulations for the PTRZ
model, each with the same initial condition as described in
the caption of Fig. 2(c). The cellular variables were tracked for
each trajectory. The distribution of the cell volume at birth, V},
across the 30 000 trajectories at different generations is shown
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FIG. 3. Distribution of volume, interdivision time, growth rate, and chemical populations in the PTRZ model. This figure shows the
frequency distributions of various cellular variables, measured across 30 000 cells at the steady state. Data were compiled from each trajectory
in the 30th generation to ensure that it had reached the statistical steady state. (a) Distributions of volume at birth V,, volume at division V,,,
added volume A =V, —V,, and (in inset) interdivision time 7. (b) Frequency distributions of various quantities rescaled by their respective
means. The x axis for the curve denoted by V), in the legend stands for V,/(V,), and similarly for the other curves. The distributions of
rescaled P,, Ty, Ry, V,, and V;; are essentially indistinguishable. The distribution of rescaled « is shown in the inset of panel (b). (¢c) CV of
A, T,V Vy, o, Py, Ty, Ry, and Ap = P; — P, as functions of Z,. on a log-log plot. The CV of A and Ap are indistinguishable from each other
(and shown in the topmost line), as are those of V,, V;, Py, T, and R}, (third line from top). The slope of the linear fit is consistent with CV
o< N~Y2 for all the quantities. The vertical separation between the lines gives the ratios of the CV of various quantities and they are consistent
with what is expected when the adder property holds, Eq. (8). Parameter values are as in Fig. 1 except in panel (c), where Z. takes a range of

values.

in Fig. 2(c). The distribution becomes stationary after a few
generations. The same steady-state distribution is obtained by
(a) starting from a different initial distribution of the 30000
cells and (b) sampling over different generations of a single
trajectory after the initial transient period. The distributions
of Vy, Py, Ty, Ry, T, and o are also found to converge to their
respective steady-state distributions independent of the initial
distribution of cellular configurations (« is the “growth rate”
of the cell in a generation, defined as the slope of the best
straight line fit of InV (¢) versus ¢ in that generation). This
indicates that the statistical steady state is a stable attractor
of the dynamics characterized by fixed distributions of the
cellular variables.

2. Distributions of cell size, interdivision time and growth rate,
correlations, and the adder property

The steady-state distributions are shown in Fig. 3. The av-
erages of the steady-state distributions are (P)=5.012x 107,
(T) =4.518 x 10°%, (R) = 4.833 x 10, (V;) = 1.094 pum?,
(V) =2.190 um?, (A)=1.096 um?, (r) =0.782 h, (a) =
0.888 h™!. These are close to the deterministic values in
Fig. 1. The model predictions of the distributions of the above
quantities rescaled by their means (except the rescaled «
distribution) are largely independent of all the PTRZ model
parameters (and hence independent of growth rate, ratios of
chemicals, etc.) and of K; when t; = 0. They only depend
upon the quantity N = Z. — (1/2)Z,. (See Fig. S1 [51] for a
completely different parameter set giving the same rescaled
distributions.) The reason for this extraordinary robustness
will be discussed later. We find that the CV of the A, V,,, V,,
and t distributions are consistent with

V3CV(V,)) = V/3CV(V,) = +/31n2CV(7)

=CV(A) = ®)

ﬁﬁ

The first three relations are expected to hold if the cell volume
grows exponentially with a small variation in the growth rate
and the system satisfies the adder property [11]. The last
equality relates the fluctuations to the parameters Z, and Z,
of the present model. This connects the CV of a macroscopic
quantity A to a potentially microscopic quantity N, the change
in the population of the Z molecule from birth to division. The
CV of Py, P;, and Ap = P; — P, also satisfy (8), as do the
corresponding quantities for 7 and R.

Using the simulation data of the 30 000 stochastic cells, we
determine the correlations between the cell size at birth (V)
and division (V;), the added volume (A), and the interdivision
time () in the steady state (Fig. 4). The correlations show
that the model exhibits the adder property, because the mean
added volume A between birth and division is independent
of the birth size. These are the kinds of correlations observed
in experiments with E. coli [10,11]. Taheri-Araghi et al. [11]
have also measured the distribution of A for a fixed V), at
different values of V}, (binned) for E. coli. They find that not
just the mean of A but the entire distribution to be independent
of V;, which is a strong version of the adder property. For
the PTRZ model in Fig. S2, we exhibit this “conditional”
distribution of A for different fixed values of V, (in a bin).
The distributions collapse onto each other, showing that the
model exhibits this property.

Adder property is independent of Z,. We remark that in the
present model the adder property of cell volume is observed
for the entire range of the reset parameter Z,, 0 < Z, < Z..
This is also shown analytically in Sec. IV D.

3. Intracellular chemical populations: Distribution, adder
property, and dependence of CV on the mean population

Each population Py, T, R, at birth has its own mean and
CV, but the populations rescaled by their respective means

062406-7



PANDEY, SINGH, AND JAIN

PHYSICAL REVIEW E 101, 062406 (2020)

@ 3.0

Pearson Corr. = 0.011
Slope = 0.019 + 0.010

m
N
(6]

2.0
1.5

1.0

0.5

A : Added Volume (u

0'8.6 0.8 1.0 1.2 14 1.6
V,: Volume at birth (um?3)

1.8

—
(2]
~
!ﬂ

(hrs)

1.2
1.0
0.8;
0.6

. Interdivision time

0.4

%66

T

08 1.0 12 14 1.6
V,: Volume at birth (um?3)

1.8

(b)
3.5 m
o o % 8 °,
£30 -
c *50
o
w25
=
ko] o
© 2.0
()
E 1
g 1.5 : Pearson Corr. = 0.508
-2 Slope = 1.019 + 0.010
> 1
U6 08 10 12 14 16 1.8
V,: Volume at birth (um?3)
(d) 7
11 X 10 ‘
Pearson Corr. = 0.012
10 o ° Slope = 0.020 + 0.010
ﬂ_ o
kS
- 8
5
g 7
5 6
§ 5
5 4
< 3
2

3 4 5 6 7 8
P,: Amount of P at birth  x 107

FIG. 4. Dynamics of the PTRZ cell model displays the adder property for cell size and intracellular chemical populations. Each data point
in the scatter plots refers to one trajectory out of 30000. The two axes show two cellular properties pertaining to the 30th generation. For
example, in panel (a) the x axis shows the volume of a cell at birth and the y axis shows the added volume of the cell in the same generation.
The black squares and vertical lines show the mean and s.d. of A within a bin of V},. The lack of correlation between A and V}, is evidence of
the adder property. The slope (& standard error) of the line of binned data is 0.019 £ 0.010 (we expect zero slope for adder). (b) The volume
of the cell at division, V,, is positively correlated with the birth volume, with slope 1.019 & 0.010 for the curve of V,; averaged over bins of V,,
(for the adder, expect slope unity). (c) The interdivision time 7 is negatively correlated with the birth volume, with the correlation coefficient
between the two variables rescaled by their respective means being —0.483 (expect —0.5 for adder). (d) The increment in P from birth to
division is uncorrelated with P,, showing that the chemical population P also exhibits the adder property.

have the same distribution which matches the rescaled V,, and
V, distributions [Fig. 3(b)]. This is because the P, T, R are all
strongly correlated with each other (see Fig. S3), with their
ratios dominated by the deterministic dynamics. By virtue of
(5), they are also strongly correlated to V. We remark that
strong correlations between high copy number proteins are
also observed experimentally [30]. Further, universal fluctu-
ations in protein populations within cells have been reported
in Ref. [31].

We find that in the PTR model with stochastic chemical
dynamics, the chemical populations P, T, and R, like the vol-
ume, also exhibit the adder property [see Fig. 4(d) for P and
Fig. S4 for T, R]. The reason for these populations showing
the same distribution and the adder property is discussed
later in Sec. IVD, where we give an analytical derivation.
We also later identify circumstances wherein other chemical
populations in the cell depart from the adder.

The crossover behavior of protein number fluctuations. A
slight extension of the present model explains the crossover

behavior of the CV of protein levels as a function of their
mean levels observed in Ref. [30]. To see this, we introduce
another variable Q in the X sector, with Q = KoRP/V. This
has the same form as the production of other proteins in
(4). The system now has five variables, PTRQZ. By dialing
Ky, we can control the absolute value of Q in the steady
state. We perform stochastic simulations (with stochasticity
in the chemical dynamics of all five molecules PTRQZ) using
different values of Ky and determine the mean value of Q at
birth (Q) and CV of Q for each. The result (Fig. 5) shows a
universal 1/Q behavior for small Q and a plateau for large O,
as observed in Ref. [30].

An intrinsic source of “extrinsic” noise. In the model, there
is a simple explanation of the above behavior. The (CV)? due
to intrinsic fluctuations is ~1/Q and due to division control
is 1/(3Z,) [from Eq. (8) using Q in place of V,]. For small
0 (0 <K Z.), the intrinsic fluctuations dominate; for large O
(O > 3Z,), the 1/(3Z.) term which is independent of Q dom-
inates. A protein population has intrinsic fluctuations from
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stochasticity in production and degrading processes [29,55].
The variation not explained by intrinsic fluctuations is referred
to as “extrinsic” [56]. Stochasticity in the division time has
been recognized as a source of extrinsic noise leading to
this crossover behavior [57]. In the present model, both the
saturating value of (CV)?[~1/(3Z.)] and the scale of O at
which the crossover occurs (Q ~ 3Z.) are governed by the
division threshold Z, (or in general by N = Z. — Z,/2). The
so-called extrinsic noise in the division time is, in the present
model, ultimately a consequence of intrinsic fluctuations in
the Z population, which causes the fluctuations in the first
passage time of Z reaching its threshold Z. and hence deter-
mines a lower bound on cell-to-cell variation of size and of
intracellular chemical populations.

4. Comparison with experimental distributions

We compare the distributions of certain quantities rescaled
by their means as predicted by the model with the exper-
imentally observed distributions for E. coli [11] in Fig. 6.
As mentioned earlier, the distributions of rescaled A, , Vy
predicted by the model are robust and depend only on a single
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FIG. 6. Comparison of steady-state distributions predicted by PTRZ model with experimental data. Panels (a)—(d) respectively show the
distributions of A, 7, V,, and « rescaled by their means. Experimental values of various quantities for E. coli in seven media were obtained
from data of Ref. [11] to produce the binned histograms. The different media are represented by dots of different color. Model simulations
are done with parameter values as in Fig. 1, except Z., which takes values 20, 40, and 60. All model histograms (dotted lines) are obtained
from an ensemble of 30 000 cells. In all simulations, the intrinsic stochasticity in the dynamics of all four chemicals P, T', R, and Z is present.
Partitioning stochasticity is absent in panels (a)—(c) and in two curves of panel (d) (s = 0; see Sec. III B 5 for definition), but is present in two
simulations shown in panel (d) (s = 1, 4). Threshold stochasticity is absent in all simulations shown (s’ = 0).
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parameter N = Z. — Z,/2. Figures 6(a)-6(c) show that the
experimental data points for all three quantities largely are
between model curves corresponding to N =20 and N =
60, when the only source of stochasticity in the model is
the intrinsic dynamics of the populations. (N = Z, in Fig. 6
since Z, = 0.) This places an experimental constraint on a
key parameter of the model, N. Note that in the real cell
there could be other upstream sources of stochasticity in Z
production, such as the stochasticity in its mRNA production
and degradation. These have not been taken into account in
our simple model. They would also contribute to the CV of the
first passage time distribution, thereby allowing larger values
of N to be consistent with the data.

It is seen in Fig. 6(d) that in the range N > 20 the model
predicts a much narrower width for the « distribution than
is experimentally observed [compare the Z, = 20,40; s =0
curves for the model in Fig. 6(d) with those of the data].
While Ref. [11] reports a CV ranging from 6% to 11%
depending upon the medium in the experimental data, the
model with only intrinsic stochasticity (s =0, see below)
predicts a CV of the « distribution to be only 3.6% at N = 20,
2.5% at N = 40 and lower for larger values of N. We recall
that the o distribution in the model is not as universal as
the distributions of A, 7, V,, and depends on other model
parameters including the parameter values in the PTR sector
(Fig. S1 [51]). We show below that its width is sensitive to
and increases significantly with the inclusion of partitioning
stochasticity in the model. In other words, the model allows
room to get the experimentally observed width of the «
distribution also, without destroying its agreement with the
other distributions. It is also worth mentioning that there is a
significant variation in the CV of the « distribution reported
by different groups, suggesting that this quantity is sensitive
to experimental details and perhaps needs to be measured with
a higher degree of control.

5. Effect of other sources of stochasticity on the distributions
and the adder property

Partitioning stochasticity. In addition to the intrinsic
stochasticity in the chemical population dynamics, consider
a second source of stochasticity, the uneven partitioning of
chemicals between the two daughter cells during cell division.
Thus, at division, instead of replacing X; by X;/2 we replace
it by X/ drawn (independently for each i and each generation)
from a Gaussian distribution with mean = X;/2 and standard
deviation s4/X;/2, where s > 0 is a parameter characterizing
the strength of partitioning stochasticity [58]. s = 1 corre-
sponds to the symmetric binomial partitioning wherein each
molecule can independently go to either daughter with equal
probability (the Gaussian X/ distribution approximates the
binomial distribution P(x) = (M)p*¢" ™ with M =X; and
p=gq=1/2). s > 1 implies that fluctuations are stronger
than the binomial case, a situation that can arise if molecule
clusters are partitioned instead of single molecules [58]. The
result for the o distribution with both sources of stochastic-
ity (intrinsic 4 partitioning) is shown in Fig. 6(d) and for
the other distributions in Fig. S5 [51]. It is seen that when
partitioning stochasticity is included [e.g., Z, =40, s =4 in
Fig. 6(d)], the model reproduces a width of the « distribution

comparable to the experimental data (CV of « is 6.8% for
these parameter values). Figure S5 shows that the inclusion
of partitioning stochasticity has a relatively small effect on
the width of A, 7,V; distributions in this regime and that
the adder property continues to hold in the model at these
strengths of the partitioning stochasticity.

Stochasticity in the threshold value of Z. The biochemical
mechanism implementing the trigger when Z reaches Z. is
expected to have its own stochasticity. Thus, the value of Z at
which division is triggered need not be precisely Z. in every
cell, but could vary from cell to cell and generation to gen-
eration around Z.. We implement this threshold stochasticity
by drawing the threshold (now denoted Z/) from a Gaussian
distribution with mean Z, and standard deviation s’, inde-
pendently for each cell in every generation. The parameter
s > 0 characterizes the strength of the threshold stochasticity.
We ran simulations of the PTRZ model with two sources
of stochasticity, the intrinsic stochasticity of the chemical
dynamics of the populations P,7,R,Z and the threshold
stochasticity implemented as above. In these simulations, the
local dynamics of the populations is as before, except that the
value of Z at which division is triggered, Z/, is chosen from
the above mentioned Gaussian distribution in each generation.
Immediately after triggering, Z is reset to Z,, and at division,
all populations are halved. We consider two cases (a) Z, is a
fixed number, the same for all generations, and (b) Z, is a fixed
fraction of Z/ (the reset value of Z after triggering is a fixed
fraction of the value of Z at triggering).

Threshold stochasticity modifies the distributions of
A, t, V;; however, the modification remains small as long as
s’ < /Z. as the dominant contribution comes from intrin-
sic stochasticity in this regime. When s’ > /Z, threshold
stochasticity is the dominant contributor to these distributions.
However, while it modifies these distributions, in case (a) it
does not affect the adder property, which survives even when
s’ > /Z.. This is shown in Fig. S6A [51]. In fact, it can be
shown analytically that when threshold stochasticity is the
only stochasticity present (the intrinsic stochasticity is turned
off), the PTRZ model exhibits the adder property in the steady
state, provided that Z, is independent of Z/. However, when
Z, is correlated with Z/, as is true for case (b), we lose the
adder property (see Fig. S6B [51]. This is because the added
volume from one trigger to the next depends upon the reset
value Z, after the first trigger, while V}, of a generation depends
on the value of Z/ in the previous generation. Thus, the added
volume becomes correlated with V, when Z, is correlated
with Z.

Unlike partitioning stochasticity, threshold stochasticity
does not contribute significantly to the width of the o distri-
bution even though it affects the A, 7, V; distributions. In fact,
when threshold stochasticity is the only stochasticity present,
the latter distributions have a finite CV but the CV of the
a distribution is zero. The reason for this will be given in
Sec. IVE.

Another kind of stochasticity present in the cell is that the
position of the septum is not necessarily at the middle of the
dividing cell. This directly affects the distribution of V; and
enhances its CV, which is found to be larger than the CV of V;
[11]. The effect of this stochasticity is not considered in the
present paper.
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IV. ANALYTICAL DERIVATION OF THE RESULTS
OF THE MODEL

In this section, we provide explanations of the results of the
PTRZ model presented in the previous section. In particular,
we discuss the exponential growth of populations and V,
and give analytic expressions for the average interdivision
timescale, intracellular concentrations, and the cell size. We
also explain the origin of the adder property and the shape of
the A and t distributions. We explain why the « distribution
behaves so differently from the A, 7, V,; distributions under
different types of stochasticity and what factors contribute to
it. These results will be generalized to a much wider class of
models than the PTRZ model in Sec. V.

A. The PTR sector, exponential growth, and the growth rate

At the deterministic level, all the features of the steady-
state solution in Fig. 1 can be understood by considering
an exponential ansatz for the trajectories of the chemical
populations:

P(t) = Pye™, T(t)=Tye", R(t)=Rpe", )

with four unknown constants Py, T, R, (representing the
populations at birth of the cell in the steady state), and p,
the growth rate of the PTR cell. It is easy to see [50] by
substituting (9) into Eq. (4) that (9) is a solution of (4) only
if the ratios of the populations and p are fixed in terms of the
parameters. Specifically,

T T; d
wTE_Z_”Z@f_TM’ (10a)
R Ry, mr fr(n+dr)
P P, +d K,
1//PE_Z_}J_@(M R)|: pST _1i|’ (10b)
R R, fr wu mr (i + dr)
B— B> —4ay
p=P VP TRy (10¢)
20
Here ' =1—¢, B=a+b+ ¢, y =ab; a=vfr —dr,
b=pfr —dr; v=Kp/mr, p=k/(mpvp); €] = #z_ifT +
o fr, € = 2o frdg + - frdr. I Py, Ty, Ry satisfy

(10a) and (10b) and p is given by (10c), then (9) is a solution
of (4). That an exponentially growing trajectory is a solution
of the nonlinear equations (4) is a consequence of the fact that
(4) defines a class-I system.

Not only is (9) a solution of (4), it is a stable attractor
of the dynamics. In Fig. 1, we have considered the PTR
sector in conjunction with the Z sector which truncates the
growth of PTR at discrete times [at the point of division,
Eq. (4) is effectively suspended]. However, if there is no such
truncation and (4) together with (5) is the sole dynamics of
PTR, then the exponentially growing solution (9) happens
to be an asymptotic attractor of the dynamics (see Fig. S9
[51] for numerical evidence with different initial conditions
and parameter sets). Thus, starting from an arbitrary initial
condition, eventually the system approaches the exponential
trajectory (9) with p given by (10c) and ratios of populations
given by (10a) and (10b).

When division control via the Z sector is included in the
dynamics, we get the behavior shown in Fig. 1 with a limit
cycle attractor. In the growth phase of this attractor (the

period after birth and just before division), the populations
again grow exponentially following (9), with the exponential
growth rate of P, T, R,V matching the formula (10c), and
the ratios of chemicals in the attractor matching (10a) and
(10b). We have verified this numerically for diverse initial
conditions [with P(0), T(0), R(0) > 0, and 0 < Z(0) < Z.]
and diverse parameter sets for which the right-hand side of
(10c) is positive (when the latter is negative, there is no
exponential growth). The numerical work suggests that given
a fixed set of parameters [with a positive right-hand side
of (10c)], for arbitrary physical initial conditions the system
always settles down in a limit cycle attractor similar to the one
described in Fig. 1 such that the trajectory between birth and
division in every cycle is described by (9) and (10) (numerical
simulations have been done for non-negative values of the rate
constants and other parameters of the model). The positivity
of the right-hand side of (10c) seems to be the only collective
requirement on the parameters of the PTRZ model for this
kind of dynamical behavior to arise.

B. Curve of balanced growth, interdivision
time, and concentrations

By construction, the dynamics of the PTR sector does not
depend upon Z, except for the fact that at certain discrete
times (when Z approaches Z.) the three populations are
halved. Therefore, it is useful to consider the projection of the
dynamics onto the three-dimensional space with coordinates
(P, T, R). (Since we are dealing with populations, we only
consider the positive octant.) Geometrically, Eqs. (10a) and
(10b) define a straight line passing through the origin of this
three-dimensional space whose angles with the three coordi-
nate axes are fixed by the parameters. We refer to this line in
the three-dimensional space as the curve of balanced growth
(CBQG) for this system. If the initial point of a trajectory
lies on this line, the three populations grow exponentially
according to (9) with the rate pu given by (10c), and their
ratios remain constant in time and are given by (10a) and
(10b). Since the division process halves the three populations,
they remain on the CBG after division. Thus, the CBG is
an invariant manifold of the deterministic dynamics. Since
numerically we find that starting from arbitrary initial values
the ratios approach those given by (10a) and (10b), this means
that the stable attractor of the dynamics lies on the CBG.
In fact, the steady state is a limit cycle lying on the CBG
characterized by repeated rounds of exponential growth of
populations from birth to division with growth rate x until the
populations double, followed by halving of the populations.
The interdivision timescale on this limit cycle is therefore
given by

T =1In2/u, (11)

with p given by (10c). Note that the concentrations of three
chemicals, given by [P] = P/V,[T]1=T/V,and [R] =R/V,
are the same everywhere on the CBG and hence are constant
on the limit cycle. This is because V is a linear function
of the populations (5). Thus, for example, V = R(vpp +
vrYr + vg); hence, R/V is completely expressed in terms of
the ratios ¥p and ¥, which are constant on the CBG. Thus,
the growth rate or interdivision timescale and all intensive
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quantities pertaining to the PTR sector in the steady state of
the deterministic dynamics are completely determined by the
parameters of the PTR sector of the model.

C. The Z sector and cell size

The Z sector determines the absolute size scale of the cell
by fixing one extensive quantity pertaining to the PTR sector.
In the deterministic steady state, since P, T, R satisfy (9), we
can write (7) as

Z =Ce", (12)

where C = %ﬁp”. C is an extensive quantity of the PTR sector
(homogeneous degree 1 in the populations) and can be written
in terms of V}, and the intensive quantities:

C = Kz(RbP},/Vbz)Vh = szp(vplﬁp + vr I//T + UR)72V],.
(13)
The requirement that in the steady state Z must also complete
its cycle in the doubling time t fixes C and hence the size of
the cell. Equation (12) has the solution

Zt)=Zp+ A(1t), At)=BE" —-1), B= g (14)
where Z,, is the value of Z at ¢t = 0. Note that unlike P, T, and
R, Z does not increase exponentially because it is reset from
Z. to a value Z, # Z,. If there is no resetting (Z, = Z.), then
(14) implies that Z also increases exponentially.

When 71 =0, then Z equals Z;, at t =7, and Z, = Z, /2.
Substituting this in Eq. (14) gives B=N = Z. — Z,/2. This
fixes the absolute size scale of the cell and the absolute
populations. In particular, we get R, = Nu(vpy¥p + vrr +
vr)/(Kz¥p), from which P,, T}, can be obtained by multiply-
ing by ¥p, ¥r. Further, using (13) we get

_ Np oy + vrypr + vg)’

Kz Yp

This is an explicit formula for the cell size at birth in terms
of the model parameters [y and {p being given by (10a)
and (10b)]. The numerical values obtained in deterministic
simulations (e.g., Fig 1) agree with this formula (as do the
absolute populations).

When t > 71 > 0, instead of B = N we get B = Ne*™ (see
Supplemental Material, Sec. S2 A, for the derivation [51]).
Then it follows that

Vs =A. (15)

V, = AeM™, (16)

where A is defined in Eq. (15). This expression contains the
exponential factor e*™ = ¢*“*P) obtained by Donachie [59].
The e#*' factor in the expression for V;, arises because of the
exponential dependence of Z on time, Eq. (12), which is a
consequence of the exponential growth of the X -sector popu-
lations in the steady state. The latter, in turn, is a consequence
of the homogeneous degree one nature of the functions f;
defining the X -sector dynamics, which we argue later is quite
universal and not restricted to the PTR model.

The PTRZ model has been defined above for v > t;. To
extend it for higher growth rates, one needs multiple origins of
replication [60]. Adapting the work of Ref. [35] to the present
model, it can be shown that the formula (16) holds for higher
growth rates as well. Details will be presented elsewhere.

The Schaechter et al. growth law of cell size [40], a strong
version of which has been established in Ref. [61], states
that the average cell volume in different growth conditions
depends exponentially on the growth rate x. Note that while
Eq. (16) contains the exponential factor e¢”™, it cannot be
construed as equivalent to this growth law. This is because
(16) has, in addition to the exponential factor e*™, the pref-
actor A, which itself has a complicated u dependence. This
factor depends upon the ratios of various chemicals in the
steady state [which, in turn, depend upon w; see (10)] and
the contribution of each chemical to the volume of the cell
(the constants v;). In general, the prefactor A (unlike the
e!™ factor which is much more universal) depends upon
the details of the X and Z sectors—the actual form of the
functions f;, h, regulatory mechanisms acting in the X sector
(which are contained in the functions f;), parameter values,
etc. A more general expression for A in terms of the functions
fi» h, and v; is given later, Eq. (34). However, comparing
the theoretical prediction (16) or (34) with experiments, in
particular reproducing the growth law [40,61], is a task for
the future.

D. Stochastic dynamics and the adder property

The full stochastic dynamics of the PTRZ model whose
numerical results were presented earlier is difficult to treat
analytically. However, we can make some approximations to
obtain partial results. As observed numerically in the statis-
tical steady state, the growth of PTR sector populations in a
given generation could be approximated by an exponential fit
[Fig. 2(b). Moreover, since the actual numbers of P, T, and
R were large, their relative fluctuations around their average
trajectories were small. Thus, as an approximation we ignore
the stochasticity in the chemical dynamics of P, T, and R and
only consider the stochasticity in Z. For simplicity, we assume
that in the steady state the PTR dynamics is deterministic
and lies on the curve of balanced growth discussed earlier.
Thus P(t), T(t), and R(¢) are assumed to be given by (9),
their population ratios and the growth rate being constant and
fixed by (10). However, due to the fluctuation in the time taken
by Z to reach Z., the exponential factor by which they grow
varies from generation to generation and in each generation
they start from a different point on the CBG at birth (i.e., the
absolute scale of Py, T, R;, varies from generation to gener-
ation). Clearly, this approximation assumes that there is no
fluctuation in the growth rate & and hence we cannot hope to
obtain the « distribution from this approach [«, defined as the
slope of InV versus ¢, equals p in this approximation, whose
value is given by the right-hand side of (10c)]. However, we
can obtain analytic expressions for the v and A distributions.

1. Derivation of the adder property and distributions of T and A

In order to get the probability distribution of the interdi-
vision time, we need to consider the stochastic version of
the differential equation (1b), or more specifically, (7). As a
consequence of the assumptions in the previous paragraph,
we can use (9), and hence (7) reduces to (12). This means
that the probability that Z increases by unity in the small time
interval (¢, ¢ + 8t) is given by Z8t where Z is given by (12),
and the probability that it remains unchanged is 1 — Z8t. A
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given trajectory starts with fixed values of P, T, R, V, and Z at
birth, denoted Py, T, Ry, V), and Z;, and hence a fixed value of
C= %Z’P”. These values can change from generation to gen-
eration, but since in the present approximation P,, 75, and R,
are assumed to always lie on the CBG, the ratio C/V} is
constant for all generations and given by (13). This justifies
a crucial assumption, namely, that C o« V}, or equivalently
Z « Vpe, made in Ref. [36] where the first passage time
problem of a division triggering chemical based on (12) has
been discussed. Consider the ensemble of trajectories with a
fixed value of P,, T}, R}, Z;,, and hence fixed V}, and C. Since
the right-hand side of (12) is a fixed function of time, the
stochastic process in Z is the one-dimensional inhomogeneous
Poisson process (if the right-hand side had been independent
of ¢ it would have been the standard Poisson process). Given
Z = Zp, att = 0, the probability that the first passage time for
it to reach Z. is between t and t 4 d7 is given by P(r)dr,
with (see Supplemental Material Sec. S2 B for a derivation

[51D)

AN=le=2 g,
(N = D!dzt’

where A=A(t) =B(e""—1)and N=2Z, — Z, = Z.—Z,/2.
In a given trajectory of the ensemble, the volume increment
between birth and division is given by A = V(" — 1) =
(Vp/B)A(t). This being proportional to A, the probability
R(A)d A that a given trajectory in this ensemble has a volume
increment in the range A to A + d A is obtained from (17)

P(r) = (17)

y AN Tleman B C N
RA)=a"——, a=—-=—=—, (18)
(N = D! Vo uV, A
where A is given by (15). From this, it follows that
o0 N
(A) = / dAR(AA = —, (19)
0 a

which is the same as the deterministic value of Vj, (15). The
distribution of rescaled A, u = A/(A) is thus a I distribution
given by

uN-1
P(u) = NN —— 7N, (20)

(N -1
The adder property follows from (18). Note that N = Z, —
Z,/2 is a constant parameter of the model that does not change
from generation to generation as long as Z., Z, do not change
from generation to generation. The only other parameter that
determines the shape of R(A) in Eq. (18) is a, which is
independent of the value of V,, in any generation. The latter is
the case because on the CBG, where (12) holds, a is a constant
irrespective of the scale of V;, (a = C/(uV,) with C given by
(13). Thus, a depends only on the ratios of populations of
the PTR sector, and on the CBG these ratios are the same
irrespective of the scale. This proves the strong version of the
adder property: not just the mean but the entire distribution
of A is independent of V},. The distribution of u only depends
upon N and on no other parameter of the PTRZ model. This
explains the extraordinary robustness of the u distribution
mentioned irll Sec. III B 2. From (20), it follows that CV of

A=o,= I which derives the last equality in Eq. (8).

The above distributions and the adder property were ob-
tained in Ref. [36] from the assumptions that the cell volume
grows exponentially with time [V () = V,e*'] and that the
rate of growth of the time-keeper protein Z is proportional
to V(¢). The first assumption is equivalent to a linear model
for cell size growth, V = V. The present work obtains the
exponential dependence of V on ¢ from a nonlinear dynam-
ical model of the cell whose volume is defined in terms of
the three chemical populations. As discussed above, it also
justifies the second assumption (Z o V). In other words, in
the present work Eq. (12) with C <V}, is not an assumption
but a consequence of more basic dynamics, wherein the cell
is attracted to the CBG. We show later in Sec. V C that this
holds for a much larger class of models in which the X sector
has n chemicals where the functions f; and / in Eq. (1) are
nonlinear functions arising from mass action kinetics. Thus,
the present work generalizes the results of Ref. [36] to a very
large class of nonlinear models.

We note that the present model implies that the popula-
tions of the X sector also satisfy the adder property. Their
increments between birth and division, A; = X;; — X;,, have
the same distribution as A given by (18), with a = B/X,.
This follows from the fact that like V, the X; also grow
exponentially, and hence A; = Xjp(e”* — 1) = (Xj/B)A(T).

In the above derivation of the A and t distributions and
the adder property, it has been assumed that P, T, R have
no stochasticity and lie on the CBG. When stochasticity in
P, T, and R is included, they no longer lie on the CBG. In
fact, in a given generation, the best-fit value of the growth
rate is not the same for all three populations, and hence
(7) does not reduce to (12). Nevertheless, the analytically
derived distributions (20) and (17) compare well with our
numerical simulations of PTRZ model where stochasticity
in P, T, and R is included; see Figs. 7(a) and 7(b). Further,
as discussed in Sec. III B 2 and shown in Fig. 4, the adder
property also appears. This suggests that the approximation
of treating P, T, and R as deterministic and on the CBG is a
good approximation to the full stochastic dynamics.

2. When does the adder property arise?

The adder property and the A and t distributions have
been derived above from three assumptions: (i) In a given
generation, the cell volume obeys V (t) = V,e!!, where V, is
the volume at birth in that generation (taken to be at + = 0).
(i) A molecular population Z which starts at some value
Z,, triggers division at time T when it reaches a threshold
value Z,, where Z. — Z, is a positive constant (the same for
all generations). (iii) The dynamics of Z between birth and
division is the stochastic version of (12) in which the constant
C is such that C/V}, is a constant for all generations. In fact,
the same can be derived from weaker assumptions that do not
require V and Z to be exponential functions of time. Consider
the case where Z and some quantity Y have their rates of
increase between birth and division to be proportional to each

other,
Z=H@t), Y=KH®), (21)

where the function H(¢) and the constant K could depend
upon the generation. If now we make the Z dynamics the
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FIG. 7. Analytic A, t distributions Egs. (20) and (17) agree with simulations of PTRZ model. (a) Rescaled A distribution (20) compared
with numerical simulations of PTRZ model for different values of N. Data from all bins of V, have been pooled together in the numerical
curves, since the A distribution is independent of V, (see Fig. S2). (b) Conditional t distribution obtained from numerical simulations of PTRZ
model compared with Eq. (17). Since the analytical distribution is conditional on the value of C, for comparison the numerical data was binned
in ranges of C indicated in the legend. The derivation of Egs. (20) and (17) assumes stochasticity in Z dynamics only; P, T, and R are assumed
to lie on the CBG and obey deterministic dynamics. In the PTRZ simulations, there is stochasticity in the chemical dynamics of Z as well as
P, T, and R. The parameters for the PTRZ model are the same as in Fig. 1, except that Z. = 15, 30, 60 in panel (a) and Z. = 30 in panel (b).

stochastic version of Z = H(r), while retaining the deter-
ministic dynamics of ¥, ¥ = KH(¢) and also retaining as-
sumption (ii) above, the distribution (17) still arises, with
A= for dt'H(t") (see Supplemental Material, Sec. S2 B [51]).
In other words, (17) gives the conditional distribution of
interdivision time, valid for those generations in which the
function H(¢) is the same. Now A=Ay =Y(r) —Y(0) =
for dt'KH(t") = KX, and hence the distribution of A is again
given by (18) with @ = 1/K. This distribution is independent
of the functional form of H(#) and only depends upon K. In
other words, H(¢) appearing in Eq. (21) does not have to be
an exponential function of time as in Eq. (12). Thus, if K is
independent of ¥, = Y (0), then so is R(Ay), and therefore Y
displays the adder property. This argument shows that not only
the adder property for Y but also the shape of the distribution
(18) for Ay arises when these assumptions hold [namely, (ii),
(21) with K independent of the generation, and the stochastic
dynamics of Z].

A biochemical scenario in which Eq. (21) can arise was
presented by Sompayrac and Maaloe [32] and emphasized
recently in the context of the adder property [34,35]. In that
scenario, the Z molecule is on the same operon as another
molecule A whose concentration is held constant in the cell
through regulatory mechanisms (autorepression). This implies
that the increase in cell volume is proportional to the number
of molecules of Z produced, thereby realizing Eq. (21) with
H(t) being an unspecified function of ¢. Then, together with
assumption (ii) and the stochastic dynamics of Z, the adder
property of cell volume and the distributions (17) and (20)
follow as argued above.

The present model presents an alternative mechanism
for realizing Eq. (21) which does not require a regulatory
mechanism. Here this property arises because the population
dynamics has an attractor lying on the CBG in which both
Z and V are proportional to e*’. We argue later that the
latter is a very generic property of chemical dynamics in
self-expanding containers. As a consequence, it predicts that

the adder property of the volume should be accompanied by
the same for intracellular populations (the variable ¥ could be
V or any of the X;).

Cooperativity in the Z dynamics does not spoil the adder
property. We now consider the generalization in which the
function h(X, Z) in Eq. (1b) has a nontrivial Z dependence.
In particular, we consider the generalization of (7):

"

K"+ 271"
(22)

dz
= —wP,T,R,Z)=

K2y, Hz)=
dt zy ek e =

where K and A’ are constants. r(Z) represents a positive
autoregulation of Z production, with 4’ being a Hill coefficient
measuring the strength of cooperativity in the Z dynamics.
Since Z does not appear in the functions f;, in the deter-
ministic dynamics the PTR variables converge to same ratios
as before (the CBG is unaffected by this change) and the
growth rate u in the steady state is also the same and given
by (10). Under the approximation that PTR sector is treated
deterministically (discussed at the beginning of Sec. IV D),
Eq. (12) is therefore replaced by

7 =Ce"'r(2), (23)

where C is given by (13) as before. In order to determine
the first passage time distribution and the added volume
distribution, we now need to consider the stochastic version of
(23), where the right-hand side has a nontrivial Z dependence.
By considering the master equation following from (23), we
show analytically in the Supplemental Material, Sec. S2 C
[51], that the presence of a nontrivial autoregulation changes
the shape of the A distribution [which is no longer given by
(18)], but the adder property remains intact. This is also borne
out by numerical simulations shown in Figs. S7TA and S7B,
conducted on the PTRZ model with intrinsic stochasticity in
all four population variables and autoregulation implemented
in the Z sector via r(Z). Both positive and negative autoregu-
lation of Z preserve the adder property.
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However, the adder property is not preserved if the reg-
ulatory function 7 is a function of the concentration of Z,
[Z] = Z/V, instead of the population Z (see Figs. S7C, S7D,
and text in Supplemental Material, Sec. S2 C [51]).

Departure from adder. After the brief excursion in the last
two paragraphs to the case where 4 depends nontrivially on Z,
we return to case where / is independent of Z [where the Z
dynamics is given by (7)] and the distributions (17) and (18)
hold along with the adder property. Since the A distribution
(18) depends upon N, one way of losing the adder property is
to have N correlated with Vj,. The part of assumption (ii) that
Z. — 7 is the same in all generations ensures that N is not
correlated with V,. A weaker assumption that N varies from
generation to generation but is uncorrelated with V;, would
still give the adder property, though the distribution for A
would in general change and depend upon the distribution
of N. An example of this is given in Sec. IIl B 5 where
threshold stochasticity is considered. We discussed two cases:
(a) where Z, varies randomly from generation to generation
but Z, = Z,/2 is fixed; this corresponds to the weaker as-
sumption (ii) that preserves the adder property (see Fig. S6A)
because N is still uncorrelated with V},; and (b) where Z,. varies
randomly from generation to generation and Z, of a generation
is correlated with the Z. of that generation; this spoils the
adder property (see Fig. S6B) because this correlates the Z,
(and hence N) of a given generation with the V,, of the same
generation. Since the triggering event at the threshold and
the degradation of Z must be implemented by biochemical
mechanisms, it is possible to imagine both kinds of scenarios.

Departure from the adder property for an intracellular
chemical population while cell size exhibits the adder property.
Up to now, we have seen that in the PTRZ model, the adder
property for V is accompanied by the adder property for the
chemical populations P, T, and R. However, in general, it is
not necessary that all molecules in the cell exhibit the adder
property when the cell size does. We now discuss an example
where P, T, R, and V exhibit the adder property while another
molecule Q in the cell does not. Consider the PTRZ model
defined by Egs. (4), (5), and (7) augmented with another
molecule Q in the X sector whose population dynamics is
given by

0 = KoRPr([Q])/V. 24)

Here r([Q]) is a function of the concentration of Q,
[Q] = Q/V, that represents auto-regulation of Q production.
For example, r([Q]) = [Q]”/(K” + [Q]h’) represents auto-
enhancement and r([Q]) = K" / (Kh, + [Q]h/) represents au-
torepression (with 4’ > 0 being a Hill coefficient and K being
another constant). In the model, we allow two sources of
stochasticity: (i) the intrinsic stochasticity in the chemical
dynamics of the molecules P, T, R, Z, and Q and (ii) the par-
titioning stochasticity at division as discussed in Sec. III B 5.
Figure S8 displays a simulation where V exhibits the adder
property but Q does not. It is seen that the increment in
0, AQ = Q4 — Op (where Q) and Qy, are, respectively, the
population values at birth and division) increases with Q; in
the case of autoenhancement and decreases with Q,, in the case
of autorepression. This behavior occurs because partitioning
stochasticity causes a departure from the curve of balanced
growth as discussed in the next subsection.

E. Origin of the « distribution

As is evident from the above, under the hypothesis that the
first passage time of a molecule to reach a threshold controls
cell division, the distributions of 7, A, and V, are closely
related and their CVs are governed by N or equivalently Z.
as described by (8). One can now ask for what controls the
distribution of « in this setting. Note that « is obtained for
a given trajectory by fitting the observed trajectory of cell
volume to the exponential form V (z) ~ ¢*. Thus « in any
generation is the slope of the best fit straight line to the
InV vs t curve from birth to division. In the analysis of the
previous subsection where analytic expressions for the t and
A distributions have been derived, the X sector populations
P, T, and R are assumed to obey their deterministic dynamics
and lie on their CBG. On the CBG, the deterministic growth
trajectory of P, T, R is given by (9), and hence the value of
« is fixed and equal to u given by (10c). Thus, the analysis
of the previous subsection assumes that the o distribution has
zero width and is therefore just the Dirac § function §(o — ).
That the analysis produces nontrivial distributions of A, 7, V,
while assuming that the o distribution has zero width suggests
that any explanation of the origin of a nontrivial « distribution
must invoke phenomena not included in that analysis.

In our numerical simulations of the PTRZ model, we
included the stochastic fluctuations of the P, T, and R pop-
ulations. There we found the « distribution to have a finite
width [Fig. 6(d), although smaller than the one experimentally
observed in Ref. [11]. We noticed that partitioning stochas-
ticity increased the width of the o distribution to reach the
width observed in Ref. [11] as the strength s of partitioning
stochasticity was increased. However, threshold stochasticity
did not contribute to « width. Furthermore, while the rescaled
A, t,V, distributions depended only on the parameter N,
the rescaled « distribution was found to be dependent on
the other parameters of the PTRZ model as well (Fig. S1).
These observations suggest that (a) intrinsic stochasticity and
(b) departure from the CBG resulting in a mixing of a pure
exponential (given by rate w) with other functions of time
contribute to the width in « in these models.

The role of intrinsic stochasticity in producing a nonzero
width is straightforward. A population variable that is a
smooth exponential function of time in a deterministic simu-
lation would be a jagged function when intrinsic stochasticity
is switched on, to which an exponential fit would give a
different value of growth rate in different trials. The vol-
ume, being a linear combination of chemical populations,
will consequently also have a variation in « in different
generations.

To explain how the departure from the CBG is an indepen-
dent source of variation of «, we consider two models in the
same broad class defined in Sec. II but linear and much sim-
pler than PTRZ, one containing only one population variable
in the X sector (the XZ model) and the other containing two
(the XY Z model). These are defined by

XZmodel: X = uX, Z=K;X; V=vX, (25a)
XYZmodel: X =Y, Y =cX, Z=K;X; (25b)
V = U1X + U2Y. (ZSC)
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Here u, Kz, v, ¢y, ¢2, v1, and v, are constants. When these
models are simulated with only intrinsic stochasticity in the
chemical dynamics (partitioning stochasticity and threshold
stochasticity absent), they produce the same rescaled A, t, V,
distributions as the PTRZ model and their own specific
nonzero width « distributions (see Fig. S1). This is in keeping
with the discussion above. However, now consider simula-
tions of both these models treating the population dynamics
of all chemicals deterministically and implementing only
partitioning stochasticity with some strength s as described in
Sec. III B 5 (intrinsic stochasticity and threshold stochasticity
are absent). The resulting distributions are shown in Fig. 8.
The A, and t, V, distributions are different from what we get
when only intrinsic stochasticity is present and all three have
nonzero width for both models. But the « distribution has zero
width for the XZ model and a nonzero width for the XYZ
model. This difference between the two models shows that
departure from the CBG contributes to the « distribution. For,
in the XZ model, the phase space of the X sector coincides
with the CBG (both are one-dimensional) and there can be no
departure from the CBG: Any initial condition X (0) leads to
the trajectory X (1) = X (0)e*, which always leads to o = u.
Whereas in the XYZ model the XY sector phase space is two-
dimensional and for a general initial condition [X (0), Y (0)]
the trajectory of the system is a linear superposition of two ex-
ponentials: X (¢) = ae’' + be ™ and Y (t) = d'e" + be ™,
where p = (cic2)"? and a, b, d’, b are linear combinations
of X(0), Y(0). Thus, V(¢) is also in general a superposition
of two exponentials and fitting it to a single exponential
will yield a value of « that will depend upon X (0), Y (0). In
this linear example, the dynamics is governed by the matrix
A= (CO2 COI), which has two eigenvalues +u. The eigenvector
corresponding to 4y is the attractor of the dynamics and is
the CBG [it is the line in the XY plane which passes through
the origin and has the slope Y/X = (c2/c1)'/?]. On this line,
the growth is pure exponential with @ = w. But even if the
system has reached this line before division, partitioning

stochasticity will throw it off this line after division, because
the X and Y populations of the daughter cell are chosen
independently of each other at partition and will no longer
have the same ratio as before. Thus, in the next generation, the
trajectory will again be a superposition of two exponentials,
resulting in a value of o # .

The above argument makes it clear how being thrown
off the CBG contributes to the width of the « distribution,
because in every generation the departure of X (0), Y (0) (birth
coordinates of the cell) from the CBG will be random due to
partitioning stochasticity and the extent of that departure will
govern how different the fitted value of « in that generation
is from w, whereas in the XZ model since there can be
no departure from the CBG partitioning stochasticity always
gives a = . This explains why in the PTRZ model we found
the width of the « distribution to grow with s: Larger s
means a greater departure from the CBG and hence a greater
departure from a pure exponential solution. This also explains
why when only threshold stochasticity is present (intrinsic
stochasticity and partitioning stochasticity absent) the width
of the « distribution is zero. This is because once the system
reaches the CBG attractor, threshold stochasticity by itself
cannot throw it off the CBG because it only operates in the
Z sector and does not affect the ratios of populations in the X
sector. In view of the above discussion, it is not surprising that
the « distribution depends upon parameter values and details
of the models.

The mixing of exponentials as a possible origin of the «
distribution has also been discussed in Ref. [62] in the context
of a linear model. Our explanation, in terms of the cell being
thrown off the CBG by partitioning and intrinsic stochasticity
covers both linear and nonlinear dynamics.

The above discussion also clarifies the origin of the depar-
ture from the adder property of an autoregulated chemical Q
discussed in the previous subsection. Since the cell is thrown
off the CBG, the growth rate of Q is no longer p but can be
affected by Q) because of autoregulation. Hence, it departs
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from the adder. PTR also has a growth rate different from
W, but being large and unaffected by Q, does not show a
significant departure from the adder property (and hence V
also does not).

V. THE ORIGIN AND CONSEQUENCES
OF EXPONENTIAL GROWTH

A. Exponential growth arises in class-I dynamical systems

We saw that the PTR sector defined by (4) and (5) was
characterized by the exponential growth of chemicals in the
deterministic steady state in the growth phase [insets of
Figs. 1(a), 1(c), S9A, and S9B], given by Eq. (9). We now
argue that this is a general property of a large class of chemical
systems which naturally arise in cellular dynamics, the class-I
systems. Consider a set of n chemicals whose dynamics is
given by (la), with f; satisfying (3). For such systems, an
exponential ansatz

Xi(t) = X;(0)e"" for all i=1,...,n (26)

is generically a solution of the dynamics. Substituting Eq. (26)
in Eq. (1a), and using Eq. (3) to write

fiX1(0)e, X2(0)e™, ..., X, (0)e")

= " fi(X1(0), X2(0), ..., X,(0)), (27
we get:
1X;(0) = £i(X1(0), X2(0), ..., X,(0)), fori=1,2,..,n.
(28)

The t dependence has canceled out from both sides because of
the class-1 nature of the f;. This shows that for class-I systems
(26) is a solution of the dynamics if and only if X(0) and
wu satisfy (28). Equation (28) is a set of n equations for the
n + 1 constants x and X;(0) appearing in Eq. (26). Assuming
X,(t) > 0, we can define the ratios of populations ¥;(f) =
X))/ X,(t), i=1,2,....,n—1, ¥, = 1. It follows that ;
satisfy the differential equation dv;/dt = fi(¥) — ¥ f,(¥),
where ¥ denotes the vector (v, Y2, ..., ¥,_1,1). Under
the ansatz (26) ; are time independent, ¥;(f) = ¥;(0) =
X;(0)/X,,(0). Dividing both sides of (28) by X,,(0) and using
(3), we get

u; = iy, Yo, ooy Yq, 1) fori=1,2,..,n—1,
w = fai, Yo, ooy Yu1, 1). (29)

For class-I systems, (28) and (29) are equivalent. Equa-
tion (29) is a set of n (in general, nonlinear) equations for
the n unknowns p and vy, ..., ¥,_;. Generically these n
equations provide a solution for the n — 1 independent ratios
of chemicals ¥; (i = 1, ...,n — 1) as well as  in terms of the
parameters appearing in the functions f; (see Supplemental
Material, Sec. S2 D [51] for additional remarks and qualifica-
tions). The PTR model is a particular case of n = 3 for which
the explicit solution is given in Eq. (10). The fixed values of
the ratios ¥; so obtained define a straight line passing through
the origin of the n-dimensional phase space I" of the variables
X in the direction of the vector ¥. The implication of the
above analysis is that for any initial condition X(0) lying on
this line, the trajectory of system will satisfy (26); in other
words, all the populations X;(¢) will grow exponentially with
the same rate p preserving their ratios. Therefore, this line

can be referred to as a curve of balanced growth (CBG) for
the system (a trajectory that starts on the CBG remains on the
CBG with constant ratios of populations). Such a curve does
not exist in general for systems that are not class 1.

As discussed earlier in Secs. IV A and IV B and Fig. S9,
in the case of the PTR dynamics defined by (4) and (5), an
exponentially growing trajectory lying on the CBG is not just
a solution but also a stable attractor of the dynamics. We have
found this property to be true in simulations of many other
class-I chemical systems representing cellular dynamics with
different forms of the functions f;. This includes autocatalytic
systems with regulation involving Hill functions (see Eq. (24)
and models in Ref. [63]), another with a network of a thousand
chemical species constructed along the lines of Ref. [64],
and other complicated class-1 autocatalytic systems (details
to be presented elsewhere). On the other hand, without the
class-I property, even simple systems do not have an attractor
satisfying (26). For example, we can consider the PTR model
with the same Eq. (4) but with a modified Eq. (5) such that
the volume is not a linear function of the populations. Let us
assume that V is proportional to S*2 where S is the surface
area of the cell (motivated by spherical shaped cells), and let
us take S to be proportional to 7', the number of transporter
molecules. Then the asymptotic trajectory is not exponential
(see Fig. S10). The reintroduction of the division process
does not produce the exponential behavior in this non-class-I
system. Similar behavior is observed in several other non-
class-I systems we have studied. In this context, we remark
that in Ref. [37] where the dynamics is class-I, exponential
growth is observed, and where it departs from exponential
growth it is not class-I (in the latter case, the rate of protein
production becomes constant, leading to linear growth).

Thus, we find the class-I condition (3) to be an impor-
tant condition for the existence of attractors with exponen-
tial growth. Note that linear functions [f;(X) = 23;1 AiiX;
with constant A;;] are a special case of class-I and here the
asymptotic attractor is exponential: X(t) = X®"e!' where
is the eigenvalue of the matrix A = (A;;) with the largest
real part and X*) is the corresponding eigenvector. In this
case, ¥ is proportional to X, Class-I systems are in general
nonlinear (e.g., the PTR model above) but share the feature
of exponential solutions with linear systems. Equation (28)
can be considered a generalization of the eigenvalue equation
AX = uX to the nonlinear case, which determines the ratios
of the X;(0) and the “eigenvalue” u.

B. When does the class-I property arise?

The class-I property of f; will always arise for well-stirred
mass action kinetics, however complicated the latter may be,
when the volume of the container is a linear function of the
chemical populations. This can be seen as follows.

Let us consider a well-stirred chemical reactor of fixed
volume V containing n chemical species whose populations
are given by X; and concentrations by x; = X;/V. The law of
mass action implies that the dynamics of the concentrations is
given by the set of nonlinear equations

xi=gx), i=12,...,n, (30)
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where g; are some nonlinear functions of the arguments that
depend upon the set of chemical reactions that take place in
the system. For example, if there is a chemical reaction of
the kind A + 2B — C, then x¢ will contain a term of the kind
kxax3. It is important to note that the right-hand side of (30)
is a function of the concentrations of the chemicals, not their
populations.

Now assume the container is expanding, with the volume
having a time dependence V = V (¢). Then the above equation
would be modified to

. Xi dv

5= g0 — 31)
with the second term reflecting the effect of dilution due to
expansion. Let us ask for the dynamical equations in terms of
the populations X; = Vx;. In a fixed (constant) volume, X, =
Vx; =Vgi(x) =Vgi(X/V). In an expanding volume X; =
Vii4+Vxi=Vg(X/V)—xV +Vxi =Vgi(X/V). Thus, in
terms of the population variables, the dynamics in the expand-
ing container does not contain any extra term and is given by

X; = Va(X/V). (32)

Now suppose the volume of the container is a function of
the populations, V = V(X); i.e., it depends upon time only
through X(7). This feature would modify the nature of the
dependence of the right-hand side of (32) on X:

. X
Xi = V(X)gl<V(X)> = fi(X). (33)
A particularly interesting situation arises when V(X) is a
linear function of the populations given by (2), as is possibly
true for bacterial cells. [This can happen, for example, due to
osmotic pressure. If we assume that water enters or leaves the
cell on a short timescale compared to the timescales of the
dynamics (32) to maintain the total concentration of solute

inside equal to that outside the cell xex, then ZV—X = Xext

orV = XL Y. X;. This is a particular case of (2) where the
sum over i includes all the chemical species in the bulk
(interior) of the cell.] Then it follows that f; satisfies the
class-I property because (2) implies that V(8X) = BV (X);
then f;(BX) =V (BX)gi(7h5g) = BV X)gi(55g) = BS(X).

Thus, the class-I property (3) follows from well-stirred
mass action kinetics in an expanding container Eq. (31) and
the assumption that V' is itself a homogeneous degree-1 func-
tion of the molecular populations [in particular its special case
(2) that it is a linear function of the populations]. Note that the
gi(x) can be highly nonlinear functions of their arguments and
so will in general f;(X) be; nevertheless, the f; will satisfy
the condition (3). This property of well-stirred mass action
kinetics is hidden when the dynamics is formulated in terms
of concentrations but is apparent when formulated in terms of
populations which are extensive quantities.

Note that the dynamical system (32) in terms of extensive
variables is not fully specified until V is specified as a function
of time or as a function of X. Similarly, the dynamical system
(31) in terms of intensive variables is not fully specified until
V/V is specified as a function of time or as a function of x.
The choice (2) specifies both dynamical systems completely
where the constants v; are treated as parameters of the system.

With this choice the concentrations satisfy the constraint
> ;vix; = 1, obtained by dividing both sides of (2) by V. It
can be easily seen that this constraint is preserved by the time
evolution under (31). Thus, there are only n — 1 independent
intensive variables, which can be taken to be the (n — 1)-
independent x; or the n — 1 y; (each set can be expressed in
terms of the other set).

It is important to note that the specification (2) allows
us to find the steady-state growth rate as a function of the
parameters. Specification (2) implies that the f; appearing in
(33) satisfy the class-1 property and this leads to (28) under
the ansatz (26) from which both p and the ; (or x;) can
be determined. The x so obtained is a fixed point of (31).
The u and x so obtained depend, among other things, on the
parameters v; appearing in Eq. (2) [see, e.g., (10c)]. If, instead
of specifying V as a function of X, we had simply replaced
vV by w in (31), we could still solve for the fixed point
of (31) in terms of p and other parameters appearing in the
functions g; but we would not be able to solve for u in terms
of the parameters.

C. Consequences of the class-I property

The class-I property allows us to generalize the results of
the PTRZ model to a much more general class of models
described in Sec. II. In this subsection, we discuss the gen-
eralizations and the assumptions under which they hold.

1. Exponential growth of size, expressions for the average birth
volume, and interdivision timescale

Exponential trajectories. Most mathematical models of
cellular dynamics are formulated in terms of concentrations,
with particular choices of the functions g; in Eq. (30). For cells
in a steady-state culture, it is usually assumed that the volume
grows exponentially; consequently a term —ux; is added to
account for dilution due to volume expansion. However, the
exponential dependence of V on ¢ is, a priori, a puzzling
fact given the nonlinear nature of cellular dynamics. The
discussion above provides an explanation of that and also
explains why the exponential growth property is so generic
and independent of the form of g;. As remarked in Sec. V A,
we find exponentially growing chemical trajectories (26) as
attractors of the dynamics for a wide range of systems ir-
respective of the form of f; when the f; are class-I. In all
these cases, f; were derived from physically motivated g; via
Egs. (33) and (2). Then, since the volume of the container
is a linear function of the populations (2), it follows that the
container size in the attractor also grows exponentially with
the same rate: V(z) ~ e*'. Thus, the ubiquity of exponential
growth of V is a consequence of the facts the f; are class I
irrespective of the form of g; and that such systems possess
exponential solutions which are often the attractors of the
dynamics.

This explanation also exposes a physical property that
is required for exponential trajectories that has not been so
far recognized, namely the linear dependence (2) of V on
the populations [or, more generally, V(8X) = BV (X)]. This
suggests that the biophysical origins of the assumption (2)
need to be explored further. In particular, the constants v;,
which also affect the steady-state growth rate of the cell (and
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hence cellular fitness), should be determined experimentally
and estimated theoretically. This also provides a possible
explanation of the departure from exponential trajectories
observed in certain eukaryotic unicellular organisms [4,13].
The departure may be in part a consequence of the violation
of (2) caused by other structural features of the cell such as
the cytoskeleton.

Expression for t. Let us consider the consequences of this
for the general model described in Sec. II. We assume, for
the rest of this section and the next section, that (a) V is a
linear function of the populations and the functions f; satisfy
the class-I property, and (b) that an exponential solution (26) is
the attractor of the X -sector dynamics for the initial conditions
of interest. In discussing averages, we ignore all forms of
stochasticity and treat the dynamics as deterministic. Then,
the X; variables flow toward the CBG defined by the vector
¥ whose components, the ratios of populations, as well as
1, satisfy (28). This flow is not affected by the change of Z
because X; is independent of Z, except at discrete points when
all the X; are halved. The latter interruption does not disturb
the flow towards the CBG because v; are unaffected by it
[as mentioned above, (1a) and (3) imply that ; = fi(¢¥) —
V¥ fu(¥), which is invariant under change of scale of the X].
The dynamics of ratios of chemicals and their concentrations
(31) therefore does not see any discontinuity at division. Thus,
the X variables reach the CBG in the presence of the division
process. This will be true as long as division changes all the
X; by the same scale (not necessarily half), and irrespective
of whether division is triggered by the Z dynamics as in the
present case or by some other process. Thus, in particular
it is guaranteed that in the attractor of the growth-division
dynamics, the cell volume and all populations X; will grow ex-
ponentially with time between birth and division. Furthermore
in the steady state, since the variables must grow by a factor
of 2 between birth and division (assuming X; are halved at
division), the interdivision time is given by t = In2/u. Note
that T only depends upon the parameters of the X sector and
not the Z sector.

Expression for V,. Now let us further assume that (c) the
function A(X, Z) in Eq. (1b) is independent of Z and satisfies
the class-I property, h(8X) = Bh(X) [as is the case in the
PTRZ model, Eq. (7)]. When the X have reached their CBG,
we can write X;(¢t) = Xppe'' = Xphre or X(1) = X e,
where X, is the value of X; at a birth of the cell (taken to be
t = 0 for convenience). Then Z = h(X) = Ce™, with the last
step following from (c), and C = X,,,h(¥). This is the same
as (12), except that the expression for C is now more general.
The argument below (12) and in the Supplemental Material
Sec. S2 A [51] applies as before, fixing the absolute scale of
the X;; and V. In particular, X, = Nue’™ /h(y¥r) and since
V=30 vXi =X )1 ViV, We get

NI»L n
Vp = Ae'" = —— Vet (34)
’ h(¥) 2 ub

i=1
This is the expression for cell size at birth in terms of the
parameters for the general model described in Sec. II when

the conditions (a)—(c) hold. Equations (15) and (16) for the
PTRZ model are special cases of this formula. Note that p

and ; are determined in terms of the parameters appearing in
the f; through (28).

2. Balanced growth of chemicals

In order to replicate itself, a growing cell must solve a high-
dimensional coordination problem between its chemicals. The
amount of each chemical in the mother cell at division must be
double that in the daughter cell at birth (assuming that upon di-
vision a daughter gets half of every chemical from its mother).
Otherwise, daughters at birth in successive generations will
not be identical. How does the cell manage to double all of
its chemicals (and there are thousands of them) at the same
time? This is a puzzle because each chemical is produced
and consumed in a specific set of reactions that have their
own specific rate constants, varying from reaction to reaction.
However, if the exponential solution (26) is an attractor of the
dynamics (la), the problem is automatically solved because
in the attractor each chemical has the same growth rate p and
ratios of chemicals are preserved in time. It is remarkable that
class-I systems describing cells seem to have such attractors.
This is not true for systems that are not class I (for an example,
see Fig. S10), which must solve their coordination problems
by other means (to be discussed elsewhere).

3. Genericity of the adder property and the A and t distributions

So far in this subsection, we have discussed the conse-
quences of the class-I property for the general system (1) at
the deterministic level (without stochasticity). Now consider
the inclusion of intrinsic stochasticity in the chemical dynam-
ics of Z, while still treating the dynamics of the X-sector
chemicals as deterministic and also ignoring all other sources
of stochasticity such as partitioning stochasticity, threshold
stochasticity, etc. The adder property and the A and t dis-
tributions discussed in Sec. IV D are derived from three key
ingredients: (i) V(¢) = Vet (ii) cell division occurs at the
time when Z first reaches Z., whereupon it is reset to a fixed
value, and (iii) the dynamics of Z is the stochastic version of
(12) in which C is an extensive quantity proportional to the
chemical populations and hence to the volume of the cell. In
the class of models described in Sec. II, property (ii) is taken
for granted (it is part of the definition). Property (i) follows
from assumptions (a) and (b) mentioned above (in Sec. V C 1).
As noted above, when assumption (c) holds, then on the CBG
attractor of the X-sector deterministic dynamics, (12) also
holds with C and V, both proportional to X,,, and hence to each
other. Thus, (iii) also holds provided we treat the Z dynamics
as stochastic. This proves that under conditions (a)—(c) when
we treat the X-sector dynamics as deterministic and the Z
dynamics as stochastic the general model described in Sec. 11
displays the adder property and the A and t distributions
given in Sec. IVD [Eqgs. (17) to (20)] arise with C = h(X,)
and B = C/u. Further, the populations X, (rescaled by their
means) also show the same distribution as V, and exhibit the
adder property.

When the X-sector dynamics are also treated stochasti-
cally, and other sources of stochasticity such as partitioning
stochasticity and stochasticity of Z. are included, we expect
that the model will exhibit a behavior similar to that dis-
cussed for the PTRZ model in Sec. III B, e.g., a nontrivial «
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distribution will arise, the adder property for the cell volume
will continue to hold unless Z, and Z. are correlated, the CV
of molecular populations as a function of the mean X will
decline as X increases for small X <« N and flatten out for
X > N, etc.

VI. UNIFIED DESCRIPTION OF BACTERIAL CELL SIZE
BEHAVIOR AND GROWTH LAWS

So far we have discussed issues related to the size of
bacterial cells in a growth culture. The models considered here
have a modular character, in that there are two sectors, the
Z sector which is concerned with the triggering of division
and the X sector which contains all other chemicals in the
cell. We have seen that certain properties of the models
are independent of the details of the X sector, as long as
certain broad conditions are met (class-I nature of dynamics,
linear dependence of V on populations, etc.). The average
cell volume at birth depends upon various cellular parameters
(15), (16), and (34). It depends on the X-sector parameters
through the growth rate u, the ratios of chemicals v;, and
the coefficients v;, and on the Z-sector parameter N/K, [or
N/h(¥) in general]. It also has the exponential factor e*™. The
overall dependence of V on u is complicated in light of the
fact that the ratios y; also depend upon the same parameters
of the X sector that ;v depends upon [through a solution of
(28)] and this would be different for different models. On
the other hand, the fluctuations in V' and the populations X,
in particular their CV, as well as the CV of t, are governed
by a single parameter N and are largely independent of the
details of what happens in the X sector. Experiments seem to
constrain the parameter N between 20 and 60, as discussed
in Sec. III B 4. The properties of exponential growth and the
adder property for V and X; are also largely independent of
the details of the X sector.

We now mention another aspect of bacterial growth physi-
ology that pertains to the effect of the medium on the growth
rate and composition of the cells, the bacterial growth laws.
These are summarized in three empirically derived equations:

[F]

= _ 35a

W= Moo e (35a)

op = oI 4 L (35b)
Kt

O = op — 2 (350)
Ky

The first [65] describes the dependence of the steady-state
growth rate on the concentration [F] of a limiting food re-
source in the external medium. The second [40—43] describes
how the fraction of total protein in the cell that is riboso-
mal protein, ®g, increases as u is increased by improving
the nutritional quality of the limiting food resource. The
third [43] describes how @y increases as u is decreased by
adding antibiotics to the medium that diminish the transla-
tional efficiency of ribosomes or by producing mutants that
specifically target the translational efficiency. The six con-
stants [loo, Ci, @?i“, PR¥™, k¢, and k,, are phenomenological
constants [43] whose values are extracted from experiment.

In Ref. [50], the above three laws were derived from
the PTR model, which is the X sector of the PTRZ model
discussed above. There are two classes of macromolecules
represented in the PTR model, T and R, made up of myp
and mg units of P respectively, and the ribosomal fraction
can be defined as &g = mgR/(mrT 4+ mgR) = mg/(mpYr +
mg). To derive the growth laws (35), the expression (10c) for
the steady-state growth rate was maximized with respect to
fr, keeping all other parameters fixed. This implements an
underlying regulatory mechanism in the cell that regulates the
fraction of ribosomes that are engaged in making ribosomal
protein. The value of fr that maximizes the right-hand side
of (10c) was substituted in Eq. (10a) to get an expression for
¥r (and hence ®g) and in Eq. (10c) to get an expression for
. This yielded Eqgs. (35) for the growth laws together with
expressions for the six phenomenological constants in terms
of the parameters of the PTR sector. For the parameter values
given in Fig. 1, the predictions of the model agree with the
experimental data up to factors of order unity.

It is clear that the above procedure and its results are
unaffected by the presence of the Z sector in the PTRZ model.
The modular structure of the PTRZ model and the fact that
the division process does not cause any discontinuity in the
dynamics of the intensive variables of the X sector ensures
that the PTRZ model also reproduces the same equations for
the bacterial growth laws. Setting fr to a particular value
(that optimizes w) affects the values of u and the ratios ¥y
and g, and hence the value of V}, in Eq. (16), but does not
affect the existence of exponential growth. In particular, (12)
still holds, albeit with values of C and i given by the above
procedure. Thus the consequences of the Z-sector dynamics
are also unaffected. The PTRZ model thus provides a unified
explanation of the bacterial growth laws together with fluctua-
tions of size, interdivision time, growth rate, and intracellular
molecular populations as well as the adder property.

The PTR sector can be augmented [63] by introducing
other chemical species whose dynamics model the regulation
of fz mechanistically instead of using the optimization proce-
dure. Standard regulatory mechanisms are consistent with the
general form (30) and do not alter the class-I nature of the
X sector. The feature of exponentially growing trajectories
remains intact in such models. The results above about cell
size and fluctuations will therefore also hold for such models.

VII. SUMMARY AND DISCUSSION

We have presented a class of mathematical models that
explain a number of observed properties of bacterial cells and
make testable predictions. The work also introduces concepts
that may help further theoretical analysis and identify new
experiments.

A. Summary of assumptions and results

The models assume that the cell can be described in terms
of the intracellular chemical populations X;, i=1,...,n,
whose growth dynamics, at the deterministic level, is given
by coupled ordinary differential equations (1a). The cell vol-
ume V is assumed to be a linear function of the chemical
populations, Eq. (2). The models have further structure to
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describe the control of cell division, but already, even without
that structure, certain key properties of the cell, summarized
in the next paragraph, are fixed by the X sector itself. These
are governed by the character of the functions f; appearing in
Eq. (1a).

Class-I property: Exponential trajectories, growth rate,
interdivision timescale, and intensive quantities. The mod-
els provide an explanation of the observation that cell size
and intracellular molecular populations grow exponentially
with time between birth and division in steady-state bacterial
cultures. Exponential growth is shown (in Sec. VA) to be
a consequence of the class-I property [Eq. (3)] of the func-
tions f;. This property in turn is a general consequence of
mass action kinetics in expanding containers (see Sec. V B)
when the cell volume V depends linearly on the populations
[Eq. (2)] and could therefore hold for a large class of models
applicable to bacteria. When the class-I property holds, we
find that the populations are typically attracted to a curve of
balanced growth (CBG) in which their ratios y; = X;/X,, are
constant, and the populations themselves grow exponentially
in time [Eq. (26)] with a constant growth rate . This explains
the phenomenon of balanced growth [17] in bacterial cells.
This also explains why V' grows exponentially in the steady
state. The ratios ¥; and wu are determined in terms of the
constant parameters of the model as solutions to a set of
(typically algebraic) equations [Egs. (28)], which constitute
a nonlinear analog of the eigenvalue equation of a matrix.
Hence, all the intensive quantities in the steady state including
the concentrations x; = X;/V of the chemicals are fixed. The
interdivision timescale t is fixed by the reciprocal of p. For
example, if the division is symmetric (i.e., the two daughters
are identical), then e** = 2 since all chemicals should double
in quantity between birth and division in the steady state;
hence, T = In2/u. Explicit solutions for u and ¥; [Eq. (10)]
are presented for a nonlinear model with n = 3 populations,
the PTR model [50] defined by Egs. (4). We also show
examples of non-class-I models where the growth trajectory
of the individual cell is not exponential (Sec. V A, Fig. S10).

Bacterial growth laws. The PTR model also reproduces the
bacterial growth laws of composition [40—43] when regulation
is implemented through an optimization procedure [5S0] or by
introducing additional molecular species [63] while preserv-
ing its class-I property and exponential trajectories (Sec. VI).

Division control: Absolute size and populations. While in-
tensive quantities and the interdivision timescale in the steady
state are fixed by the previous assumptions, the absolute scale
of cell size and populations requires a specification of the
division control mechanism. In this work, we assume that
the cell commits itself to division when one of the chemical
populations (denoted by Z and separated out from the X; for
convenience) reaches a threshold Z., with division following
commitment after a possible delay 7;. The dynamics of Z
depends upon the X; through (1b). For simplicity, we assume
that Z contributes negligibly to its own dynamics, to the
continuous time dynamics of the X;, and to V. Immediately
after it reaches its threshold Z., we allow Z to be reset to a
value Z, < Z.. Upon division, all the populations are halved.
With these assumptions, division is governed by the nature of
the function & appearing in Eq. (1b). In this paper, we have
primarily considered the consequences of & also satisfying

the class-I property like the f; [Eq. (3)]. Then we can get a
general formula for the birth volume V; [Eq. (34)] in terms
of h and a specific formula in the case of the PTRZ model
[Eqg. (16)] when a specific form [given by (7)] of 4 is chosen.
The absolute populations are also fixed [expressions given
above (34) and (15)].

Stochasticity in chemical dynamics of Z: Analytic distribu-
tions of T and A; the adder property for cell size and chemical
populations. The preceding three paragraphs summarize re-
sults for deterministic versions of the models and therefore
pertain to averages across cells in the cultures. In order to
understand cell-to-cell variation in steady-state cultures, we
include various sources of stochasticity. Our stochastic results
are obtained for the case 7, = 0. It is convenient to distinguish
four sources of stochasticity that we have considered (which
have distinct physical consequences): (A) Intrinsic stochastic-
ity in the chemical dynamics of Z, (B) intrinsic stochasticity
in the chemical dynamics of the X-sector chemicals, (C)
partitioning stochasticity, and (D) stochasticity in the value
of the threshold Z,.. Intrinsic stochasticity results from the
fact that each chemical reaction is a molecular event with a
certain probability. In particular, this makes the interdivision
time, which by assumption is the first passage time for Z to
reach Z., a stochastic quantity. Our implementation of (C)
and (D) is defined in Sec. IIl B 5. We have investigated
different types of stochasticity in isolation and in suitable
combinations. When type A is the only stochasticity present,
we obtain some analytic results for general class-I systems,
namely, the distributions of t (17), and of added volume
A (18), both conditional on the birth configuration of the
cell. The conditional A distribution is independent of V,,
thereby proving the adder property. In fact, the rescaled A,
u= A/(A), has a distribution (20) that depends on only one
parameter, N = Z, — Z, /2, and is independent of the details
of the functions f;, 7 and other parameters (Sec. V C 3;
Fig. S1). Molecular populations also satisfy the adder property
and their rescaled increments have the same distribution as
u. However, the distribution of growth rate « has zero width
when only type A stochasticity is present (discussed in the
beginning of Sec. [V D).

Other sources of stochasticity: Robustness of size and T
distributions; crossover of population distributions; origin of
the growth rate distribution; departure from the adder prop-
erty. We have studied stochasticities of types B, C, and D with
numerical simulations of the nonlinear PTRZ model [defined
by Eqgs. (4), (5), and (7)] and two linear models, the XZ and
XYZ models [Eq. (25)]. We find, in the parameter ranges
considered, that the rescaled distributions of A, t, V,, and V,,
obtained with purely A-type stochasticity are robust to the
inclusion of B-type stochasticity (Figs. S1 and 7) and also to
the inclusion of the C- and D-type stochasticities (Sec. III B 5;
Figs. S5), provided their strength is not too large. The robust-
ness of the rescaled size and interdivision time distributions to
parameter values (except V) and other sources of stochasticity
is one of the striking results of this work. The CV of all these
distributions is proportional 1/+/N when only the A- and
B-type stochasticities are included [Fig. 2(c)], with propor-
tionality constants given by Eq. (8). The rescaled distributions
of the populations X; are also robust, provided the population
mean (X;) is not too small. We find a crossover behavior of the
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CV of X; as a function of (X;) (Fig. 5), with CV ~(X;)~1/2 for
(X;) < N and CV constant for (X;) > N. The adder property
of the volume and populations is also found to be robust to
the introduction of the BCD-type stochasticities (Figs. 4, S4,
S5D, and S6A). However, the adder property is lost with
D-type stochasticity if Z. and Z, are correlated with each
other (Fig. S6B). The distribution of growth rate « acquires
a nonzero width upon the introduction of type-B stochasticity
(Fig. 6) depends upon parameters other than N (Fig. S1) and is
strongly influenced by type-C stochasticity (Fig. 6). We show
that the origin of the « distribution is in part a consequence
of the fact that type-B and type-C stochasticities throw the
populations off the CBG and thereby cause a mixing of a
pure exponential function of time (having a rate @) with other
functions of time (including exponentials with rates other
than w).

Comparison with experiment. At the level of averages, the
models reproduce the exponential trajectory of the volume and
intracellular populations as seen in E. coli experiments, as well
as the bacterial growth laws of composition. At the level of
fluctuations, they reproduce the adder property of cell volume
fluctuations in E. coli. Experimental distributions of A, t, V,
[11] constrain the parameter N of the models to be between
20 and 60 (Sec. III B 4). The models find a much narrower
distribution of « than the one observed in Ref. [11] when
only the intrinsic stochasticity of chemical dynamics is in-
cluded and require a significant strength (perhaps unnaturally
large) of partitioning stochasticity to reach the observed width
(Sec. III B 5). This discrepancy needs to be explored further,
both theoretically and experimentally. The dependence of the
o distribution in our model on various parameters (strength
of partitioning stochasticity and other parameters indicated in
Fig. S1C) might be experimentally testable. It would be in-
teresting to explore the relationship between the mechanisms
contributing to the « distribution in the present model to those
discussed in other works [66,67]. Another task for the future is
comparing the observed correlations between « and the other
cellular variables [68] with the predictions from our models.
The models reproduce the observed crossover behavior [30]
of the CV of a molecular population as a function of its
mean population X: CV ~X~!/2 for X « N and constant for
X > N (Sec. III B 3).

B. Discussion

A key question is the following: Which molecular popula-
tion in the cell does Z correspond to? One possible candidate
is the DnaA molecule, which is known to initiate deoxyri-
bonucleic acid (DNA) replication and has been suggested
as an upstream trigger for cell division (for reviews, see
Refs. [69-72]). DNA replication in E. coli is known to be
initiated when a certain number, believed to be between 20
and 30, of active [attached to adenosine triphosphate (ATP)]
molecules of DnaA bind to sites on the DNA molecule at
oriC, a region of DNA at the origin of replication. Soon after
the initiation of replication, the DnaA is deactivated by other
enzymes; the complex of active DnaA falls apart to prevent
multiple rounds of initiation. Each initiation is followed first
by the replication of DNA (referred to as the C period in
the bacterial growth cycle) and then by the separation of the

chromosomes into two halves of the cell and cell division
(referred to as the D period). After division, the daughter cells
have a smaller number of active DnaA molecules bound to the
above-mentioned sites, and this number grows in the period
between birth and the initiation of replication (known as the B
period). Various aspects of the dynamics of DnaA have been
modeled mathematically [71,73-76].

In the context of the present model, it is tempting to
identify Z with the number of active DnaA molecules in the
initiation complex bound to oriC. Then present experiments
with DnaA suggest that the parameter Z, of the model should
be between 20 and 30, Z, should be essentially zero (the
initiation complex dissociates after triggering replication),
and 1y = C + D ~ 1 h. It is interesting that this identification
leads to a value of N between 20 and 30, which overlaps
with the range 20-60 obtained from a completely independent
experimental constraint, the spread in the distributions of
A, 7, and V;. In other words, this identification provides a
natural explanation of why the CVs of cell size, interdivision
time, and the large intracellular molecular populations are in
the ballpark of 20% [Eq. (8) with N ~ 25]. The model predicts
that the average cell size increases when the rate of production
of the Z population is lowered [V}, is inversely proportional
to Kz or h(y¥), Egs. (15) and (34)]. This is consistent with
the empirical observation that cell size increases when the
production of DnaA is impaired [77]. We note that the fact
that cooperativity in the Z dynamics leaves the adder property
of the volume intact (shown in Sec. IV D 2 and Supplemental
Material Sec. S2 C [51]) is an encouraging sign for the above
interpretation of Z, as such cooperativity is known to exist for
the active-DnaA molecules bound at oriC.

However, the model also has problems with respect to
the above interpretation. Note that in the previous paragraph,
Z is identified not with the total number of DnaA protein
molecules in the cell, or even the total number of active
(ATP-bound) DnaA molecules in the cell, but with the number
of active DnaA molecules bound to the DNA molecule at oriC.
A problem with the present model is that a production term
for Z such as in Eq. (7), where Z is an extensive quantity,
may be appropriate for a chemical produced in the bulk of
the cell, but a chemical species localized in space (such as
the set of active-DnaA molecules bound to the DNA at oriC)
would need further justification or a mechanism not provided
by the present model. Further, in this interpretation, it is
not clear how to account for the synchrony observed in the
initiation of replication at multiple origins [78]. The resolution
of the above-mentioned problems might lie in the fact that
oriC and the dnaA gene are close by on the DNA molecule
and spatial proximity effects need to be taken into account.
It also needs to be noted that the dynamics of active-DnaA
molecules bound to the origin of DNA replication is affected
by many factors in the cell, including autoregulation of DnaA
production, binding of DnaA to a large number of sites other
than oriC on the DNA, and sequestering of the binding sites by
other enzymes. Another proposed model [79] is that initially
in the cell cycle DnaA binds other sites on the DNA and the
replication-initiating event is the binding of active DnaA to a
site in oriC that triggers cooperative binding of active DnaA
on a relatively short timescale to oriC. In this interpretation, Z,
would correspond to the effective number of sites that DnaA
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binds to before the cooperative binding event occurs. In the
light of the above caveats, the question as to whether the Z
population in the present model or its extension corresponds
to some subpopulation of the DnaA protein in the cell remains
an open question to be investigated further.

Note that the adder property and the A distribution (18)
[and consequently Eq. (8) relating the CV of A to 1/+/N] fol-
low from very general assumptions [Eq. (21) and assumptions
mentioned below it; or the class-1 property and assumptions
mentioned in Sec. V C 3]. They and many other properties
discussed above do not depend upon other details of the Z
dynamics. Thus, the models could apply to other candidates
for the Z molecule than DnaA. Another candidate for Z is
the FtsZ protein, which forms a ring around the cell that
constricts and causes cell division and degrades after cell
division (for reviews, see Refs. [80,81]). However, the number
of FtsZ molecules required for ring formation seems to be
large (in the range ~10°~10*, suggesting that N is in the range
~10°-10%); in which case stochasticity in the production of
FtsZ alone would not account for the observed CV of cell
size and division time (the model predicts CV ~1/ W , which
would be too low). The present model ignores stochasticity
in the mRNA population corresponding to the Z protein; its
inclusion would enhance the CV of the cellular variables in
Eq. (8) beyond \/Lﬁ and in particular improve the case for FtsZ.
Further, in the cell, stochasticity in both DnaA and FtsZ can
simultaneously contribute to the stochasticity in interdivision
time and cell size.

In sum, while there are two good candidates (DnaA and
FtsZ) for the time-keeper molecule, we believe that more
work, both experimental and theoretical, is needed to establish
whether the observed stochasticity in the interdivision time
and cell size is a consequence of their populations (or appro-
priate subpopulations) having to reach a critical threshold. Of
course, there may be other molecular candidates in the cell for
triggering division that we are not aware of.

The models discussed in the present work predict that
the adder property of the cell volume is accompanied by
the adder property for coarse-grained intracellular molecular
pools, such as the pool of amino acids in the cell or the pool
of metabolic enzymes, whose copy numbers are >N and
that the distribution of such a molecular population rescaled
by its mean is the same as the rescaled volume distribution.
Chemical population distributions have been measured and
found to be universal [31] but the adder property for molecular
pools has not been reported to our knowledge. Susman et al.
[62] have reported a departure from the adder property for
two individual protein populations in single-cell trajectories
of E. coli but the adder behavior of larger molecular pools
(predicted by our models) remains an open empirical question.
The models also predict that in the presence of threshold
stochasticity (Z, being distributed over a range of values from
cell to cell) the adder property is lost if the reset value Z,
is correlated with Z.. It would be interesting if this could be
tested by suitable mutations of E. coli, or by studying bacteria
in which the adder property is absent.

An experimental question that this work draws attention to
is the role of osmosis and other biophysical mechanisms in
understanding exponential trajectories of cells. In Sec. V B,

we argued that the linear dependence of V on the intracellular
populations, Eq. (2), is a crucial requirement for exponential
trajectories. As mentioned in that section such an assumption
might be justified if cells equalize the osmotic pressure of
solute inside and outside the cell. Cells actually maintain an
osmotic pressure difference between their interior and the ex-
terior. It is important to test whether the linearity assumption is
valid and also to measure the coefficients v;. It is worth noting
that these coefficients affect the steady-state growth rate u
[see, e.g., Eq. (10c) and the expressions below it] and thus
contribute to cellular fitness. A departure from the linear de-
pendence of V on intracellular molecular populations, caused
by other structural elements such as the cytoskeleton, may
explain the departure from exponential trajectories observed
in certain eukaryotic organisms.

At a mathematical level, this work suggests that a certain
class of dynamical systems, class-I systems [defined by (la)
and (3)], are both generic and analytically useful for modeling
bacterial cells. The present study shows that some physical
properties (summarized above, and including averages and
fluctuations) are universal for all such systems in that they
do not depend upon the model and (many of) its parameters,
and it identifies some that are not. For this class, the steady
states are exponentially growing trajectories whose growth
rate u is a solution of a nonlinear version of the eigenvalue
equation, Eq. (28). When the functions f; are algebraic u
is given implicitly in terms of the model parameters as a
solution to a set of algebraic equations. In this work, we have
only investigated some properties in a few examples of class-I
systems; other mathematical properties and examples need to
be investigated. Since exponential growth appears in many
areas where the underlying dynamics is nonlinear, it is quite
possible that these systems find applications elsewhere.

For any fixed environment, p is a measure of the organ-
ism’s fitness. Having it as a function of the system parameters
allows us to describe the fitness landscape including the
neutral directions, valleys, and hills in parameter space. Thus,
it specifies the evolutionary paths in that environment. This
class of models could be relevant for the study of evolution
because they provide p as a function of the parameters. It is
worth mentioning that for the class of models studied here,
is independent of the parameters of the division control sector
[e.g., the function & in Eq. (1b), and the thresholds Z,. and
Z,], which are therefore neutral directions of variation as far
as steady-state fitness is concerned. This is a consequence of
a kind of modularity in the model implicit in the assumption
that the dynamics of the X sector is independent of Z and is
influenced by Z only through division. It would be interesting
to empirically explore the extent of, or departure from, such a
modularity in real cells.

Since the models discussed here are dynamical, they cap-
ture not just the steady state but also the transients. Thus, they
could also be useful in exploring those regulatory mechanisms
that affect or seek to optimize performance over the transients.
Extension of these models may find applications in modeling
the stationary phase [82] and antibiotic environments [83]
where the net cell population growth goes to zero with a
balance between cell growth and death. It would also be
interesting to use these models to make contact with other
allometric modeling approaches [84] that seek to understand
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how the amounts of cellular components like ribosomes and
proteins depend upon cell size across diverse bacteria.

VIII. COMPUTATIONAL METHODS

All numerical simulations were done in C programming
language. Numerical solution of the ODEs for the mathemat-
ical models were done using the CVODE solver library of the
SUNDIALS (Suite of Nonlinear and Differential /Algebraic
Equation Solvers) package [85] and the adaptive Runge-Kutta
(RKS5) method. The stochastic simulations were done using
the 7 leaping method [86,87]. In particular, the trapezoidal
variant of adaptive implicit fau leaping was used [88,89].
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