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Dynamics of ribosomes in mRNA translation under steady- and nonsteady-state conditions
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Recent advances in DNA sequencing and fluorescence imaging have made it possible to monitor the dynamics
of ribosomes actively engaged in messenger RNA (mRNA) translation. Here, we model these experiments within
the inhomogeneous totally asymmetric simple exclusion process (TASEP) using realistic kinetic parameters.
In particular, we present analytic expressions to describe the following three cases: (a) translation of a newly
transcribed mRNA, (b) translation in the steady state and, specifically, the dynamics of individual (tagged)
ribosomes, and (c) runoff translation after inhibition of translation initiation. In cases (b) and (c) we develop
an effective medium approximation to describe many-ribosome dynamics in terms of a single tagged ribosome
in an effective medium. The predictions are in good agreement with stochastic simulations.
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I. INTRODUCTION

Protein synthesis is an essential process in all living cells.
Proteins are produced by ribosomes from messenger RNA
(mRNA) molecules in a process called translation. A major
goal in molecular biology is to understand how the dynam-
ics of translation is influenced by the underlying mRNA
sequence. Translation is a complex process that proceeds
in three phases: initiation, elongation, and termination. A
ribosome assembles on the mRNA and initiates translation
by recognizing the start codon (initiation). After initiation,
the ribosome moves along the mRNA molecule in a 5′ to
3′ direction and assembles the amino acid chain by adding
one amino acid for each codon on the mRNA sequence
(elongation), until it recognizes the stop codon and releases
the final protein (termination).

Ribosome movement along the mRNA has been shown
experimentally to be nonuniform [1], and this has been linked
to the availability of the transfer RNA (tRNA) molecules
delivering the correct amino acid to the ribosome [2]. The dif-
ferences between populations of isoaccepting tRNAs (tRNAs
that deliver the same amino acid) correlate with codon usage
bias—a phenomenon of nonuniform usage of synonymous
codons that code for the same amino acid [3]. The idea that the
same protein can be translated more efficiently depending on
the choice of synonymous codons has been used to increase
the production of proteins that are non-native to their host
cell [4]. Despite these successes, others have demonstrated
that translation is mostly rate limited by initiation and codon
composition has a lesser effect on protein production under
normal cellular conditions [5–7]. Thus the issue of how the
rate of translation, and hence protein production, is fine-tuned
by the underlying genetic sequence remains hotly debated.

A simple theoretical model, known as the totally asymmet-
ric simple exclusion process (TASEP), has been used exten-
sively to understand the dynamics of translation [8,9]. The
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TASEP captures stochastic motion of individual ribosomes on
the mRNA and accounts for excluded-volume interactions be-
tween ribosomes that may lead to traffic jams. There is a large
body of work on the TASEP applied to mRNA translation,
and many biological details have been added to improve the
original model [10,11]. Outside of the biological context, the
TASEP has been widely studied in mathematics in the theory
of interacting particle systems [12] where it got its name,
and in physics as one of the simplest models of transport far
from the thermal equilibrium and nonequilibrium statistical
physics generally [13–15]. Usually the homogeneous case,
which corresponds to uniform elongation rate for ribosomes,
is considered and many exact results have been obtained
[16–20]. The inhomogeneous case, which corresponds to
codon-specific elongation, remains a challenging problem,
and one must resort to simulations and approximations to
make predictions [21–26].

On the experimental side, in recent years several new tech-
niques have been developed to directly monitor translation ki-
netics. Ribosome profiling (or Ribo-seq) is a technique based
on DNA sequencing of ribosome-protected mRNA fragments
that captures the positions of all ribosomes bound to the
mRNA at a given time [27]. Translation kinetics is monitored
after treating cells with harringtonine, a drug that inhibits
new translation initiation. Ribosome profiling experiments are
repeated at different times, and the average elongation rate is
inferred from the linear decrease in the number of ribosome-
protected fragments over time [28,29]. A disadvantage of this
method is that it requires averaging over many cells that must
be lysed before the measurement is taken, meaning that the
information about ribosome dynamics on individual mRNAs
is lost.

A direct method of probing dynamics of translation on
individual mRNAs in real time is fluorescence imaging of
ribosomes tagged with green fluorescent proteins (GFPs) [30].
The tagging system is achieved by inserting a sequence of
24 SunTag peptides upstream of the gene of interest. Once
translated by a ribosome, these peptides have a high affinity
for GFPs, resulting in a enhanced fluorescence signal at
the ribosome’s position. At a newly transcribed mRNA, the
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FIG. 1. Schematic of the three conditions that we study in the
present work: (a) translation of a newly transcribed mRNA, (b) trans-
lation in the steady state, and (c) runoff translation after inhibition of
initiation.

fluorescence signal increases linearly over time until the
steady state is reached. After treating cells with harringtonine
that stops new initiation, the remaining ribosomes run off
the mRNA and the average elongation rate is estimated from
the linear decay of the fluorescence signal. We refer to this
regime as runoff translation.

In the present work, we model these recent experiments
in the framework of the inhomogeneous TASEP that takes
into account codon-specific elongation rates. Our goal is to
understand the dynamics of translation under three conditions
summarized in Fig. 1:

(a) Translation of a newly transcribed mRNA, specifically,
the time evolution of the ribosome density, and the time to
reach the steady state [Fig. 1(a)],

(b) Translation in the steady state, in particular, the dy-
namics of individual (tagged) ribosomes, the time it takes
a ribosome to translate a mRNA, and the average speed of
ribosomes [Fig. 1(b)], and

(c) Runoff translation after inhibition of initiation
[Fig. 1(c)].

In each of these cases we develop analytic expressions that
we benchmark against stochastic simulations for particular
genes.

Mathematical models of translation are typically studied
in the steady state, and the goal is to compute the ribosome
density and current. The novelty of our approach is that
we consider the dynamics of translation under nonsteady-
state conditions and also the dynamics of individual (tagged)
ribosomes in the steady state. The theory we present allows
simple expressions for experimentally measurable quantities.
Thus our work addresses a noteworthy gap that exists in the
TASEP literature and provides a much-needed framework for
interpreting recent experiments that probe translation dynam-
ics of individual ribosomes.

II. KINETIC MODEL OF mRNA TRANSLATION

A. Definition of the model

We represent the mRNA molecule by a one-dimensional
lattice consisting of L codons labeled from 1 (start codon)

FIG. 2. Schematic of the TASEP with ribosomes of size � = 10
and codon-dependent elongation rates ωi. Here ribosomes occupy
three codon positions only for demonstration.

to L (stop codon) that code for L − 1 amino acids (the stop
codon does not code for an amino acid, see Fig. 2). Each
ribosome is a particle on the lattice occupying � = 10 codons
[27]. A ribosome “reads” the mRNA sequence at its A site,
which is the site within the ribosome where the transfer RNA
(tRNA) molecule delivers the correct amino acid. We assign
an occupancy variable τi to each codon i = 2, . . . , L, which
takes value 1 if the codon i is occupied by the A site and
0 otherwise. Note that in this model site 1 (start codon) is
taken to be part of the initiation step. The occupancy vector
C = (τ2, . . . , τL ) keeps track of positions of all ribosomes on
the lattice.

The model accounts for all three stages of translation:
initiation, elongation, and termination. Translation initiation
involves a ribosome binding to the mRNA molecule and
recognizing the start codon. We model this process as a
single step, after which the A site of the newly recruited
ribosome is positioned at the second codon. The rate at which
ribosomes attempt to initiate translation is denoted by α and
is typically the slowest rate in the translation process under
normal (physiological) conditions. The initiation is successful
only if the codons i = 2, . . . , � + 1 are not occupied by an A
site of another ribosome. This step is summarized as

(initiation) : τ2 = 0
α−→ 1 if τ2 = · · · = τ�+1 = 0. (1)

We note that our simplification of the initiation step accounts
for both prokaryotic and eukaryotic translation initiation.

After initiation, a ribosome enters the elongation stage by
receiving an amino acid from the corresponding tRNA and
translocating to the next codon, provided there is no ribosome
downstream blocking the move. Translation elongation at
codon i = 2, . . . , L − 1 is modeled by the ribosome moving
one codon forward in a single step with codon-specific elon-
gation rate ωi (the inhomogeneous TASEP): the A site moves
from site i to site i + 1. This process is repeated at each codon
until the ribosome A site reaches the stop codon. This is the
final stage of translation, called termination, during which the
ribosome releases the polypeptide chain and unbinds from the
mRNA. In the model, these steps are condensed into a single
step that takes place at termination rate β. The elongation and
termination stages are summarized as

(elongation) : τi, τi+1 = 1, 0
ωi−→ 0, 1 if τi+� = 0,

i = 2, . . . , L − 1, (2)

(termination) : τL = 1
β−→ 0. (3)
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Steps (1)–(2) constitute the original TASEP proposed in
Ref. [8]. There are many other details of the translation
process that may be added to the TASEP description that we
do not consider here: multistep elongation [31–34], premature
termination due to ribosome drop-off [35–37], and translation
reinitiation due to mRNA circularization [35,37–40], to name
a few.

Often the problem with using more complex models is the
lack of estimates for their kinetic parameters. In the case of
mRNA circularization (also known as the closed-loop model),
the exact mechanism of how terminating ribosomes reinitiate
at the start codon is not clear [41], and even less is known
about the corresponding rate [35]. Previously, we analyzed
the TASEP with a simple reinitiation in which the terminating
ribosomes initiate a new round of translation with a certain
probability [37]; this mechanism was previously considered in
Refs. [35,40]. In particular, we showed that reinitiation has the
same effect on ribosome density as increasing initiation rate
in the model without reinitiation. Thus the conclusions drawn
in the present work remain the same as long as the effective
initiation rate is the rate-limiting step in translation.

In other cases such as ribosome drop-off, the effect is
small and can be ignored in the first approximation [37]; the
rate of ribosome drop-off in E. coli has been estimated to
10−3 s−1 [36,42], which is about four orders of magnitude
slower than the elongation rate. Multistep elongation is an
important addition to the basic model, and even the two-step
approximation of the elongation cycle consisting of tRNA de-
livery and translation can significantly alter the phase diagram
of the TASEP [34].

Here, we limit our study to the basic model with codon-
specific elongation rates mainly because dealing with the
nonstationary TASEP—even the basic one—is a difficult
problem. However, we note that none of the methods we use
here are restricted to the basic TASEP.

B. Master equation

The TASEP is described by the probability P(C, t ) to find
ribosomes in a configuration C at time t , where C records
positions of all ribosomes on the lattice. The time evolution
of P(C, t ) is governed by the master equation

∂P

∂t
=

∑
C′

W (C′ → C)P(C′, t )

−
∑
C′

W (C → C′)P(C, t ), (4)

where C′ → C denotes a transition from C′ to C, and W (C′ →
C) is the corresponding transition rate (initiation rate α,
elongation rates ω2, . . . , ωL−1, or termination rate β).

In the steady state ∂P/∂t = 0 and the master equation
reduces to∑

C′
W (C′ → C)P∗(C′) −

∑
C′

W (C → C′)P∗(C) = 0, (5)

where P∗(C) is the steady-state distribution.
Traditionally, the late time dynamical behavior of the ho-

mogeneous TASEP has been studied through the eigenvalue
spectrum of (4) [43,44] and current fluctuations [45,46]. The

TABLE I. Translation initiation and elongation rates for three
genes that we studied.

Initiation rate Elongation rates
Organism Gene α [s−1] ωi [aa/s]

E. coli sodA 1.0 [48] 4.7–56.6 [49]
S. cerevisiae YAL020C 0.08617 [50] 1.59–15.14 [50]
H. sapiens beta-actin 0.0333 [51] 10.0 [51]

evolution from different initial conditions has been studied
on the infinite system [18,47]. However, these results are
not of immediate utility in the translation context and for
inhomogeneous TASEP. Therefore we take a more pragmatic
approach.

C. Kinetic parameters

We modeled translation of three genes, sodA from E. coli,
YAL020C from S. cerevisiae, and beta-actin from H. sapiens.
We used realistic kinetic parameters taken from the literature,
which are summarized in Table I.

The genes were chosen based on the value of their initi-
ation rate in order to represent different levels of ribosome
traffic: sodA for fast (α = 1 s−1), YAL020C for intermediate
(α = 0.086 17 s−1), and beta-actin for slow (α = 1/30 s−1)
translation initiation. These rates were estimated from ribo-
some profiling [48], polysome profiling [50], and fluorescence
imaging experiments [51], respectively.

Translation elongation rates for E. coli and S. cerevisiae
genes were assumed to be codon specific and were estimated
from the concentrations of tRNA molecules delivering the
corresponding amino acid [49,50]. For E. coli, the rates were
chosen at the doubling time of 96 min, which was the closest
match to 85 min reported in ribosome profiling experiments
from which the initiation rates were inferred [48]. For the
beta-actin gene we used an average elongation rate of 10 aa/s
inferred from fluorescence imaging experiments [51].

Translation termination is typically fast, but the specific
data on the rates are lacking. In our model we assume that
ribosomes terminate immediately after they reach the stop
codon so that effectively β � α, which is a common as-
sumption in modeling translation [6]. A fast termination is
consistent with the results of ribosome profiling experiments
showing an increased ribosome activity at the stop codon but
without ribosome queues [28,52]. Indeed, recent estimates of
termination rates from ribosome profiling data in S. cerevisiae
suggest that the termination rate is an order of magnitude
larger than the initiation rate [53,54]. Although that is far
from termination being instantaneous as in our model, setting
a finite value of the termination rate does not change our
conclusions as long as it is larger than the initiation rate.

D. Ribosome density and current

Ribosome density ρi(t ) determines how likely it is to find
a ribosome at site 2 � i � L at time t and is defined as

ρi(t ) = P(τi(t ) = 1) =
∑

C

τi(C)P(C, t ). (6)
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FIG. 3. Time evolution of the total ribosome density ρ(t ) for genes (a) sodA of E. coli, (b) YAL020C of S. cerevisiae, and (c) beta-actin of
H. sapiens, obtained from stochastic simulations averaged over 106 independent runs. The corresponding initiation rates are 1, 0.086 17, and
1/30 initiations/s. Vertical dashed lines mark the average translation time 〈T 〉 of the first round of translation.

The average density ρ(t ) is equal to the average number of
ribosomes at time t divided by L − 1,

ρ(t ) = 1

L − 1

L∑
i=2

ρi(t ). (7)

The steady-state densities ρ∗
i and ρ∗ are defined as above,

with P(C, t ) replaced by the steady-state distribution P∗(C).
Translation is a nonequilibrium process, since there is always
a flow of ribosomes. In the nonequilibrium steady state, the
current of ribosomes J∗ is constant across the mRNA and is
equal to

J∗ = αP∗(τ2 = · · · τ�+1 = 0) (8a)

= ωiP
∗(τi = 1, τi+� = 0), i = 2, . . . , L − � (8b)

= ωiP
∗(τi = 1), i = L − � + 1, . . . , L (8c)

= βP∗(τL = 1). (8d)

It is useful to write J∗ in a slightly different way by noting
that we may write the joint probability P∗(τi = 1, τi+� =
0) as P∗(τi = 1, τi+� = 0) = ρiP∗(τi+� = 0|τi = 1), where
P∗(τi+� = 0|τi = 1) is the conditional probability that codon
i + � is empty, given that the codon i is occupied. P∗(τi+� =
0|τi = 1) measures the efficiency of elongation at codon i
and takes values between 0 and 1, depending on the level of
ribosome traffic. On the other hand, P(τ2 = · · · = τ�+1 = 0)
measures how likely is for the initiation to be successful
depending on the traffic around the start codon. We will
refer to P∗(τi+� = 0|τi = 1) and P(τ2 = · · · = τ�+1 = 0) as
the translation elongation efficiency (TEEi) and translation
initiation efficiency (TIE), respectively [54]. Using these def-
initions, the current J∗ can be written as

J∗ = α · TIE = ωiρ
∗
i TEEi. (9)

We note that we set TEEi = 1 for i = L − � + 1, . . . , L − 1.
Throughout this paper we assume that the steady-state

densities ρ∗
i and current J∗ are known; we obtain these from

stochastic simulations of the model. Alternatively, one can
compute ρ∗

i and J∗ using the mean-field theory [26] and the
power-series method [24,37].

III. TRANSLATION OF A NEWLY TRANSCRIBED mRNA

We first consider time evolution of the total ribosome
density ρ(t ) from a newly transcribed mRNA. We track

ribosomes as they translate the mRNA, leading to an increase
in ρ(t ) over time. Eventually the system settles in the steady
state, and ρ(t ) ≈ ρ∗ for t larger than some characteristic time
t0. Our goal is to understand how t0 depends on the model’s
parameters.

A. Translation time of the first round of translation

In Fig. 3 we plot the time evolution of the total ribosome
density obtained by stochastic simulations using realistic ki-
netic parameters for genes sodA E. coli, YAL020C of S.
cerevisiae, and beta-actin of H. sapiens. Despite gene-specific
differences in the number of codons and the kinetic parame-
ters, all three genes display a similar time evolution consisting
of a linear increase followed by a plateau at the corresponding
value of the steady-state density ρ∗. We further observe that
the time t0 to reach the steady state is very close to the average
translation time 〈T 〉 of the first round of translation (vertical
dashed lines in Fig. 3). These observations are consistent
with fluorescence imaging experiments of newly transcribed
mRNAs that show a linear increase in the fluorescence signal
until the end of the first round of translation [30]. We note that
the linear increase in the ribosome density has been observed
before in the homogeneous TASEP in which the elongation
rates are constant along the transcript [55].

A sharp transition from the linear increase to the plateau
is indicative of translation that is rate-limited by initiation.
Indeed, the rates of initiation of all three genes in Fig. 3 are
smaller than the elongation rates of their individual codons.
The best agreement between 〈T 〉 (the end of the linear in-
crease) and t0 (the beginning of the plateau) is found for
a beta-actin gene which initiates at the rate of α = 1/30
initiations/s. The least agreement is found for the sodA gene,
which initiates 30 times faster than β actin. In that case
the linear increase which ends after 〈T 〉 is followed by a
slower nonlinear increase towards the steady-state value ρ∗.
The nonlinear regime is characteristic of high initiation rates,
which lead to increased ribosome traffic and slower relaxation
dynamics.

Based on these observations, we use the translation time
of the pioneering round as a proxy for the time to reach the
steady state. The translation time T is equal to the sum of
dwell times ei at each codon i = 2, . . . , L:

T = e2 + e3 + · · · + eL. (10)
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FIG. 4. Probability density function p(T ) for the translation time
T of the first, pioneering round of translation of the sodA gene.
Vertical dashed line is at the mean value 〈T 〉, and the dashed-dotted
lines are at 〈T 〉 ± (〈T 2〉 − 〈T 〉2)1/2.

Because the pioneering ribosome moves across an empty
mRNA, the probability density function (PDF) of ei is simply

pk (ek ) = ωkexp(−ωkek ), k = 2, . . . , L. (11)

The sum of exponential random variables in Eq. (10) follows
the hypoexponential distribution (see Appendix for details).
The PDF p(T ) and the cumulative distribution function (CDF)
P(T ) are known explicitly and are given by

p(T ) =
L∑

k=2

ωke−ωkT

⎛
⎝ L∏

j=2, j 	=k

ω j

ω j − ωk

⎞
⎠, (12a)

P(T ) = 1 −
L∑

k=2

e−ωkT

⎛
⎝ L∏

j=2, j 	=k

ω j

ω j − ωk

⎞
⎠. (12b)

When all elongation rates ωi = ω, the distribution reduces to
the Erlang distribution. The mean and variance of T are

〈T 〉 =
L∑

j=2

1

ω j
, 〈T 2〉 − 〈T 〉2 =

L∑
j=2

1

ω2
j

. (13)

The probability density function for the translation time
T of the sodA gene is plotted in Fig. 4. We note that the
expression for p(T ) in Eq. (12a) can produce significant
rounding errors due to extremely small values of the products
in the sum. Instead, we used an alternative expression for
p(T ) that includes a matrix exponential (see Appendix for
details). The matrix exponential was then computed using the
linalg.expm algorithm from the SCIPY library. When the
number of codons is large, the distribution can be approxi-
mated by a Gaussian distribution, which is due to the central
limit theorem for independent but not identically distributed
random variables [56].

B. Time evolution of the ribosome density ρi(t )
and the total ribosome density ρ(t )

So far we have seen that when translation is rate limited
by initiation, the steady state is reached shortly after the end

of the pioneering round of translation. We now extend this
result to any codon position i and assume that the steady-state
density ρ∗

i is reached as soon as the pioneering ribosome
leaves the site i. Under this assumption,

ρi(t ) ≈ ρ∗
i P

⎛
⎝ i∑

j=2

e j � t

⎞
⎠, (14)

where P is the same as in Eq. (12b), except that L is replaced
by i. Approximation 14 simply expresses ρi(t ) as an average
over two values 0 or ρ∗

i , depending on the random position of
the pioneering ribosome. In Fig. 5 we plot time evolution of
the ribosome density ρi(t ) at two codon positions, i = 2 and
i = 100. The simple expression in Eq. (14) agrees well with
the results of stochastic simulation for the beta-actin gene but
less so for genes YAL020C and sodA, which have 2.5 and
30 times faster initiation rate, respectively. The overshoot of
the density noticeable in Figs. 5(a)–5(c) is due to the first
ribosome entering the lattice. The density then drops down
as the first ribosome moves away but rises again due to the
next ribosome. After a few of these oscillations, the density
eventually flattens due to the steady flux of ribosomes. In
general, we expect Eq. (14) to be accurate for small α such
that ribosome collisions are rare.

The time evolution of the total density ρ(t ) is obtained by
inserting Eq. (14) into (7),

ρ(t ) ≈ 1

L − 1

L∑
i=2

ρ∗
i P

⎛
⎝ i∑

j=2

e j � t

⎞
⎠. (15)

This expression reproduces the linear increase followed by a
plateau observed in Fig. 3, which we demonstrate for the sodA
gene in Fig. 6.

IV. TRANSLATION IN THE STEADY STATE

In this section we want to understand the dynamics of
individual (tagged) ribosomes after the system has settled in
the steady state. We tag a ribosome that initiated translation
at some reference time t = 0 and track its position X (t ) along
the mRNA. We denote by T ∗ the (stochastic) translation time
it takes the ribosome to move across the mRNA and terminate
at the stop codon. Our goal is to find the distribution of X (t )
and T ∗.

A. The effective medium approximation

The probability that the ribosome at codon position X (t ) =
n moves to X (t + 	t ) = n + 1 during a small time interval 	t
is given by

P(X (t + 	t ) = n + 1|X (t ) = n)

= (ωn	t )P(τn+�(t ) = 0|X (t ) = n). (16)

Probabilities involving the tagged particle position X (t ) are
more complicated objects than the particle density and exact
results are rare [12,47,57]. To make progress we approxi-
mate the right-hand side of (16) with the steady-state condi-
tional probability P∗(τn+� = 0|τn = 1), which in turn may be
written as P∗(τn+� = 0|τn = 1) = P∗(τn+� = 0|τn = 1)/P∗
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FIG. 5. (a)–(f) Time evolution of the ribosome density ρi(t ) for genes sodA (left column), YAL020C (middle column), and beta-actin
(right column) at two codon positions, i = 2 (top row) and i = 100 (bottom row). Symbols are from stochastic simulations averaged over 106

independent runs. Dashed lines were computed using Eq. (14). Horizontal dashed line is the steady-state density ρ∗
i .

(τn = 1), or using definitions of current and density [Figs. 8(b)
and 6] in the steady state,

P(X (t + 	t ) = n + 1|X (t ) = n) = J∗

ρ∗
n

	t . (17)

To arrive at this approximation, we have assumed that the
process as seen by the tagged ribosome has the same steady-
state probability distribution P∗(C) as the original process.

The probability that the tagged particle stays at codon n in
the small time interval 	t is 1 − J∗/ρ∗

n	t , which means that
the dwell time e∗

n of the tagged ribosome at codon n follows
an exponential distribution with the effective rate λn = J∗/ρ∗

n ,

pn(e∗
n ) = λne−λne∗

n , λn = J∗

ρ∗
i

. (18)

FIG. 6. Time evolution of the ribosome density ρ(t ) for gene
sodA of E. coli. Symbols are from stochastic simulations averaged
over 106 independent runs. Solid line was computed using Eq. (15).
Horizontal dashed line is the steady-state density ρ∗.

We call Eq. (17) the effective medium approximation, because
it reduces the dynamics of a tagged ribosome in the dynamic
environment made of other ribosomes to a continuous-time
random walk of a single ribosome with effective rates λn.
Using the definition of J∗ from Eq. (9), the effective rate
λn becomes λn = ωnTEEn, where TEEn is the translation
elongation efficiency. TEEn, which takes values between 0
and 1, is a simple measure of ribosome traffic that allows us to
understand how the dynamics of a single ribosome is affected
by other ribosomes on the mRNA.

Interestingly, the effective medium approximation be-
comes exact in the infinite TASEP with particles of size � = 1
and homogeneous elongation rates ω, provided the system is
initially in the steady state in which ρ∗

i = ρ∗ (the Bernoulli
measure). In that case J∗ = ωρ∗(1 − ρ∗), and the position
X (t ) of the tagged particle follows the Poisson distribution
with rate ω(1 − ρ∗)t [12].

B. Distribution of the translation times T*

Within the effective medium approximation, the probabil-
ity density function of the translation time T ∗ in the steady
state is equal to

p(T ∗) =
L∑

k=2

λke−λkT ∗

⎛
⎝ L∏

j=2, j 	=k

λ j

λ j − λk

⎞
⎠, (19)

while the mean and the variance of T ∗ are given by

〈T ∗〉 =
L∑

j=2

ρ∗
j

J∗ , 〈T ∗2〉 − 〈T ∗〉2 =
L∑

j=2

(
ρ∗

j

J∗

)2

. (20)

From here we can compute the average elongation rate in the
steady state, defined as

v∗ = (L − 1)

〈T ∗〉 , (21)
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FIG. 7. Probability density function p(T ∗) of the translation time T ∗ in the steady state for genes (a) sodA, (b) YAL020C, and (c) beta-actin.
The histograms are the result of stochastic simulations averaged over 105 independent runs. Dashed lines were computed using Eq. (19).

which leads to a simple expression that depends only on J∗
and ρ∗,

v∗ = J∗

ρ∗ . (22)

We mention that the average translation time 〈T ∗〉 and elon-
gation speed v∗ have been recently computed by Sharma et al.
[58] using stochastic simulations for thousands of genes of E.
coli, S. cerevisiae, and H. sapiens.

Interestingly, we can combine Eqs. (21) and (22) into the
following equation:

N∗ = J∗〈T ∗〉, (23)

which predicts that the long-term average number of ribo-
somes on the transcript [N∗ = ρ∗(L − 1)] is equal to the aver-
age rate at which ribosomes initiate translation (J∗) multiplied
by the average time that a ribosome spends on the lattice
(〈T ∗〉). In queuing theory, this relationship is known as Little’s
law [59] and has been shown to be universal with respect to
the details of the queuing process. A similar relationship has
been used in fluid dynamics where the total amount of fluid
in a given volume is equal to the residence time of a particle
in that volume multiplied by the fluid influx; for a rigorous
derivation of this law in stochastic lattice gases, including the
homogeneous TASEP, see Ref. [60].

In Fig. 7 we compare the probability density function
p(T ∗) obtained by stochastic simulations to Eq. (19) predicted
by the effective medium approximation. The best agreement
is found for the beta-actin gene, while a small but visible
disagreement is found for YAL020C and sodA genes. The
excellent agreement for beta-actin is expected, because the
average number of ribosomes per mRNA is only 1.2 and
therefore ribosome collisions are rare. However, the differ-
ence between p(T ∗) obtained by stochastic simulations and
Eq. (19) for YAL020C and sodA genes is puzzling. One might
think that the difference is due to increased ribosome traffic
caused by higher initiation rates relative to the beta-actin gene;
however, the situation is more complex. For example, when
the initiation rates of YAL020C and sodA genes are increased
to 10 s−1, the average translation time 〈T ∗〉 is still accurately
described by Eq. (20), but the predicted distribution is much
broader than that from stochastic simulations. Interestingly,
when we repeat the analysis for other genes (aaeA and ccmE)
at the same high initiation rates, the difference between p(T ∗)
obtained by stochastic simulations and Eq. (19) becomes

negligible. These findings suggest that the accuracy of the ef-
fective medium approximation at high initiation rates depends
not only on the overall ribosome density and traffic but also
on codon-specific elongation rates and their distribution along
the mRNA sequence.

C. Dynamics of individual (tagged) ribosomes

We now show that the effective medium approximation
allows us to describe the kinetics of the tagged ribosome and
find the distribution of its position X (t ). A ribosome that is
at codon position X (t ) = n must have arrived arrived at n at
some earlier time t ′ � t and have been waiting at n for at
least t − t ′. The probability P(X (t ) = n|X (0) = 2) that the
ribosome is at position X (t ) = n at time t given that it was
at X (0) = 2 at time t = 0 can be then computed from

P(X (t ) = n|X (0) = 2)

=
∫ t

0
dt ′ p(e∗

2 + · · · + e∗
n−1 = t ′)

∫ ∞

t−t ′
dt ′′ pn(t ′′)

=
∫ t

0
dt ′ p(e∗

2 + · · · + e∗
n−1 = t ′)e−λn(t−t ′ ). (24)

The last expression is a convolution, in which case the Laplace
transform of P(X (t ) = n|X (0) = 2) is equal to the Laplace
transform of p(e∗

2 + · · · + e∗
n−1 = t ′) (see Appendix) multi-

plied by 1/(λn + s), the Laplace transform of exp(−λnt ′′),
∫ ∞

0
dtP(X (t ) = n|X (0) = 2)e−st

=
⎛
⎝n−1∏

j=2

λ j

λ j + s

⎞
⎠ 1

λn + s
= 1

λn

n∏
j=2

λ j

λ j + s
.

(25)

The product in the last expression the Laplace transform of
p(e∗

2 + · · · + e∗
n ) (the sum now includes e∗

n), so that the final
expression for the distribution of X (t ) is

P(X (t ) = n|X (0) = 2)

= 1

λn

n∑
i=2

λie
−λit

⎛
⎝ n∏

j=2, j 	=i

λ j

λ j − λi

⎞
⎠. (26)
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FIG. 8. Time evolution of the ribosome density ρi(t ) for sodA
gene at codon positions (a) i = 2 and (b) i = 100 after translation
initiation inhibition at t = 0. Symbols are from stochastic simula-
tions averaged over 106 runs. Solid line was computed from Eq. (30).
Dashed horizontal line is the steady-state density ρ∗

i .

This result can be generalized to any starting point X (0) =
m � n, which will become handy in the next section,

P(X (t ) = n|X (0) = m)

= 1

λn

n∑
i=m

λie
−λit

⎛
⎝ n∏

j=m, j 	=i

λ j

λ j − λi

⎞
⎠. (27)

If all the effective rates are equal, λi = λ, the above expression
is replaced by

P(X (t ) = n|X (0) = m) = (λt )n−me−λt

(n − m)!
, (28)

which is the Poisson distribution.

V. RUNOFF TRANSLATION AFTER INHIBITION
OF TRANSLATION INITIATION

We assume that the system is initially in the steady state so
that the probability to find a ribosome at codon i is equal to
ρ∗

i . At time t = 0, the translation initiation is inhibited (e.g.,
by harringtonine), which is equivalent to setting the rate of
initiation α to zero. Eventually the remaining ribosomes run

FIG. 9. Time evolution of the total ribosome density ρ(t ) after
translation initiation inhibition at t = 0 for gene sodA. Symbols are
from stochastic simulations averaged over 106 runs. Solid line was
computed from Eq. (31). Dashed horizontal line is the steady-state
density ρ∗.

off leaving an empty mRNA. Our goal is to find the time
evolution of ρi(t ) and ρ(t ) as they decrease to zero.

Since translation initiation is inhibited after t > 0, only
ribosomes that are positioned at j � i at t = 0 will contribute
to ρi(t ). If we treat each of these ribosomes as an individual
tagged particle, we can write the ribosome density at i at t as
a sum over contributions from each of the tagged particles,

ρi(t ) =
i∑

j=2

P(X (t ) = i|X (0) = j)ρ∗
j . (29)

We now approximate P(X (t ) = i|X (0) = j) using the effec-
tive medium approximation (27), yielding a simple approxi-
mation for ρi(t ) and in turn the total density ρ(t ):

ρi(t ) =
i∑

j=2

ρ∗
j

λi

i∑
k= j

λke−λkt
i∏

m = j
m 	= k

λm

λm − λk
, (30)

ρ(t ) = 1

L − 1

L∑
i=2

i∑
j=2

ρ∗
j

λi

i∑
k= j

λke−λkt
i∏

m = j
m 	= k

λm

λm − λk
. (31)

To test the accuracy of this approximation, we plot in Fig. 8
the time evolution of the ribosome density ρi(t ) obtained
by stochastic simulations and compare to Eq. (30) for the
sodA gene at two codon positions, i = 2 and i = 100. The
time-dependent ribosome density ρi(t ) is accurately predicted
by Eq. (30) at both codon positions. For i = 100, the early-
time behavior of ρi(t ) is nonmonotonic due to nonuniform
steady-state densities ρ∗

i in Eq. (30). Remarkably, the approxi-
mation captures this behavior rather well. Finally, in Fig. 9 we
demonstrate that the total ribosome density ρ(t ) predicted by
Eq. (31) reproduces the linear decay characteristic of runoff
experiments [30,51].

The total runoff time on a single mRNA is equal to the
time it takes the last ribosome to leave the mRNA. If the last
ribosome was at codon position k at t = 0, then the total runoff
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time is equal to ek + · · · + eL and its average value is

trunoff(k) = ρ∗
k /J∗ + · · · + ρ∗

L/J∗ (single mRNA). (32)

In experiments, runoff traces are typically averaged over many
mRNAs. In that case we need to weight trunoff(k) by the steady-
state probability P∗(τ2 = · · · = τk−1 = 0, τk = 1) that the last
ribosome is at codon position k,

trunoff =
L∑

k=2

P∗(τ2 = · · · = τk−1 = 0, τk = 1)trunoff(k). (33)

We can compute P∗(τ2 = · · · = τk−1 = 0, τk = 1) using the
power-series method if translation is rate limited by initiation
[24,37] or using the mean-field approximation in the general
case [8,9,21].

We now consider the homogeneous TASEP [21], where we
can find closed form expressions for ρi(t ) within our effective
medium approximation. First we summarize the steady-state
properties in the low-density phase:

ρ∗
i ≈ ρ∗ = α

ω + α(� − 1)
, (34)

J∗ = αω(1 − α/ω)

ω + (� − 1)α
, (35)

λi = J∗/ρ∗
i = ω(1 − α/ω). (36)

After inserting Eq. (28) into Eq. (30), the expression for ρi(t )
takes a simpler form:

ρi(t ) = α

ω + α(� − 1)

�[i − 1, ω(1 − α/ω)t]

�(i − 1)
, (37)

where �(n) = (n − 1)!, and �(n, x) is the upper incomplete �

function,

�(n, x) = �(n)e−x
n−1∑
j=0

x j

j!
. (38)

VI. CONCLUSION

In this paper we have modeled experiments that monitor
translational kinetics within the framework of inhomogeneous
TASEP. We have proposed simple and practical approxima-
tions which provide quantitative predictions consistent with
observed phenomenology.

Translation of a newly transcribed mRNA. We have ob-
served that the newly transcribed mRNA reaches a steady
state shortly after the first, pioneering round of translation,
provided translation is rate limited by initiation, i.e., α is small
compared to ωi. Thus the translation time for the pioneering
ribosome may be taken as a proxy for the relaxation time into
the steady state. We determine the full distribution of the first-
round translation time and from there a simple expression for
the time evolution of the ribosome density. In the context of
mRNA degradation, these findings imply that the steady state
is reached before the mRNA is degraded (assuming that an
mRNA has allowed the production of at least one protein)—an
assumption that is often made in the TASEP framework. In
future work it would be of interest to determine whether the
first-round translation time is correlated with the lifetime of
mRNA molecule.

Translation in the steady state. In the steady state the
dynamics of a tagged ribosome becomes more complicated
due to collisions with other ribosomes. We circumvent this
difficulty by introducing an effective medium approximation,
which maps the tagged particle problem to a single-particle
problem with effective elongation rates. This approximation
allows us to obtain the full distribution of the translation time
in the steady state. In addition, we find a simple expression for
the average elongation rate and the time-dependent probabil-
ity for the tagged particle’s position.

Runoff translation after inhibition of initiation. Initiation is
switched off by setting α to zero, after which the remaining
translating ribosomes run off. We are able to describe this
dynamical process in terms of steady-state quantities and the
effective elongation rates of the effective medium approxi-
mation. Our results reproduce the time dependence of the
ribosome density ρi(t ) at codon position i, as well the linear
decay of the total ribosome density.

In this work we have compared our predictions with
stochastic simulations of three particular genes. It would be
of interest to further test the predictions genome-wide for dif-
ferent organisms. Finally, the approximations we have used,
in particular, the effective medium approximation, may be of
utility in more general TASEP-based models.
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APPENDIX: HYPOEXPONENTIAL DISTRIBUTION

If x1, . . . , xn are independent random variables with proba-
bility density functions pi(xi ) = λiexp(−λixi ), then their sum

V =
n∑

i=1

xi (A1)

follows a hypoexponential distribution. We derive the cor-
responding probability density function p(V ) in two ways,
one that uses a Laplace transform and the other that uses
mapping to a Markov process. The former is more appropriate
for calculating moments, and the latter is more suitable for
evaluating p(V ).

By definition,

p(V ) =
∫ ∞

0
dx1· · ·

∫ ∞

0
dxn

n∏
i=1

pi(xi )δ

⎛
⎝V −

n∑
j=1

x j

⎞
⎠ .

(A2)

The Laplace transform g(s) of p(V ) is equal to

g(s) =
∫ ∞

0
dVe−sV p(V ) =

n∏
i=1

λi

s + λi
. (A3)

In order to find p(V ) we first perform the partial fraction
decomposition of g(s),

g(s) =
n∑

i=1

Ai

s + λi
. (A4)
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Here we assumed that all λi are distinct. The unknown coeffi-
cients Ai can be found by multiplying g(s) by (s + λ1) . . . (s +
λn):

n∑
i=1

Ai

n∏
j=1, j 	=i

(s + λ j ) =
n∏

j=1

λ j . (A5)

We now select s = −λk so that only the term with i = k
survives in the sum, yielding

Ak = λk

n∏
j=1, j 	=k

λ j

λ j − λk
. (A6)

Finally, the probability density function p(V ) is given by

p(V ) =
n∑

i=1

λie
−λiV

n∏
j=1, j 	=k

λ j

λ j − λk
. (A7)

From here the cumulative density function P(V ) is obtained
by integrating p(V ) from 0 to V ,

P(V ) = 1 −
n∑

i=1

e−λiV
n∏

j=1, j 	=k

λ j

λ j − λk
, (A8)

where we used that the sum of Ai/λi over i = 1, . . . , n is
equal to g(0) = 1. In the special case in which all λi = λ, the
resulting distribution is called the Erlang distribution and its
probability density function reads

p(V ) = λnV n−1e−λV

(n − 1)!
. (A9)

If we use Eq. (A7) to evaluate p(V ), we may run into
problems with numerical precision. Namely, the product in
Eq. (A7) can generate numbers smaller than the machine
precision, which can lead to rounding errors. The solution
is to write p(V ) using a matrix exponential, which can be
computed using various algorithms.

The first step is to interpret xi as exponentially distributed
waiting times in a Markov jump process in which states
1, . . . , n are transient and state n + 1 is absorbing. If Pi(t ) is
the probability of being in state i at time t , then

p(V ) = λnPn(V ). (A10)

The master equation for the probability Pi(t ) is given by

dP1

dt
= −λ1P1 , (A11a)

dPi

dt
= −λiPi + λi−1Pi−1, i = 2, . . . , n − 1, (A11b)

dPn

dt
= −λnPn + λn−1Pn−1, (A11c)

and the system is initially in state 1, Pi(0) = δi,1. We can
write Eq. (A11) as a first-order ordinary matrix differential

equation,

dP(t )

dt
= MP(t ), P(0) ≡ a =

⎛
⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎠, (A12)

where P is a column vector made of Pi, M is the following
n × n matrix,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 0 0 · · · 0 0
λ1 −λ2 0 · · · 0 0

0 λ2 −λ3
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . λn−2 −λn−1 0

0 0 · · · 0 λn−1 −λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A13)

and P(0) is the initial probability vector, which we denote by
a. The solution to Eq. (A12) is

P(t ) = etMa. (A14)

We can obtain p(V ) by adding Eqs. (A11) together, which
yields

d

dt

n∑
i=1

Pn = −λnPn. (A15)

Then we note that

p(V ) = −1T dP
dt

= −1T MP, (A16)

where 1 is a column vector made of 1 and 1T is the transpose
of 1. The final expression for p(V ) is thus given by

p(V ) = −1T MeV Ma. (A17)

If we now take a transpose of both sides we get the expression
for p(V ) that is commonly found in the literature,

p(V ) = −aT eV MT
MT 1. (A18)

In order to find the cumulative distribution function P(V ) we
use the identity

(∫ V

0
dvevMT

)
MT = eV MT − I, (A19)

where I is the identity matrix so that

P(V ) = 1 − aT eV MT
1. (A20)

Thus both p(V ) and P(V ) can be computed at the same time
by computing the matrix exponential exp(V MT ).
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