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Optimal trapping stability of Escherichia coli in oscillating optical tweezers
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Single-beam oscillating optical tweezers can be used to trap rod-shaped bacterial cells and align them with
their long axis lying within the focal plane. While such configuration is useful for imaging applications, the
corresponding imaging resolution is limited by the fluctuations of the trapped cell. We study the fluctuations of
four of the coordinates of the trapped cell, two for its center of mass position and two for its angular orientation,
showing the way they depend on the trap length and the trapping beam power. We find that optimal trapping
stability is obtained when the trap length is about the same as the cell length and that cell fluctuations in the focal
plane decrease like the inverse of the trapping power.
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I. INTRODUCTION

Optical tweezers (OT) have been widely used in single-
cell studies either for measuring their various biomechanical
properties [1–3] or, alternatively, for cell manipulation, sorting
and microsurgery [4–8]. Recently, it was shown that optical
trapping may also be useful for single-cell imaging [9–12]. In-
dividual trapped cells can be immobilized while embedded in
fluid medium. This approach avoids the potential optical dif-
ficulties that may result from the presence of a solid substrate,
e.g., agarose, to which the cell adheres. Moreover, optical
traps can be used to properly orient cells such as to obtain an
optimized perspective on the particular subcellular structure
that is to be imaged [13,14]. Trapped cells can be rapidly
reoriented to image either different cellular components or the
same one from different viewpoints.

A significant fraction of the single-cell studies involving
the use of optical traps were done on rod-shaped bacteria
and mainly on the Gram-negative Escherichia coli [12,15,16].
This is both due to their simple geometry and their being
among the simplest living organisms. In most of the OT
bacterial imaging studies, trapped E. coli cells were oriented
either with their long axis in the (x,y) focal plane, horizontal
orientation, or with their long axis perpendicular to the focal
plane, vertical orientation. Since the trapping force of standard
single-beam OT is stronger in the (x,y) plane than in the
perpendicular direction, z, the trap aligns elongated objects,
including rod-shaped bacteria, along the z axis. Traditionally
however, rod-shaped bacteria have been imaged in the hori-
zontal orientation while cells are attached to a hydrogel pad.
For this reason, a significant effort was made to image rod-
shaped bacteria that are both trapped and horizontally aligned.

Several optical trapping methods have been used to
horizontally orient rod-shaped bacteria [12–14,17–19]. The
simplest approach consists of using dual traps whereby each
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of the two traps holds the cell at one of its ends [12,17,18].
Recently, the nucleoids of individual E. coli cells were im-
aged by direct stochastic optical reconstruction microscopy
(dSTORM) together with a dual OT system [12]. Since
dSTORM requires a relatively long acquisition time, ∼90 s,
the random fluctuations of the trapped cell significantly lower
the imaging resolution. To bypass this problem, Diekmann
et al. used the fluctuations distribution of the trapped cell
to deconvolute the resulting dSTORM image leading to a
resolution that was below 100 nm. Nevertheless, the extent of
the fluctuations of the trapped cell represents the main limiting
factor that prevents reaching a resolution of around 30 nm as
for dSTORM imaging of immobile cells. Therefore, further
improving the stability of the trapped cell will allow obtaining
higher resolution in imaging setups of this type.

Another OT configuration that was used to trap bacilli in a
horizontal orientation is the tug-of-war (TOW) tweezers [19].
It consists of a dual linear trap that stretches the trapped cell
exerting opposite forces on each of its two ends. To obtain
the appropriate beam shape, the system includes a spatial
light modulator (SLM) along the optical path that encodes
holographic information. Bezryadina et al. [19] have used
TOW tweezers to study the mechanical properties of biofilms
measuring the force required to break up aggregates of several
bacterial cells. Moreover, they have compared the trapping
stability of TOW tweezers and dual traps suggesting that the
former are more stable. First, they showed that while the
fluctuation distribution of the trapped cell for the dual trap
is the same in the x (along the cell) and y (perpendicular to
the cell) directions, for the TOW tweezers the distributions
in the x and y directions are very different from each other.
Specifically, the TOW distribution in y is thinner and that in
x is wider than the corresponding distributions in the dual
trap. It appears that while the two-dimensional fluctuation
distribution of the trapped cell is elongated in the x direction
for the TOW tweezers, its area is similar to that of the distri-
bution obtained in the case of the dual trap. Consequently, the
overall imaging resolution of trapped cells in TOW tweezers
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and dual traps is likely to be similar, although the different
resolutions in the x and y directions in the case of the TOW
tweezers represent a significant limitation. Second, trapping
stability was characterized in an oscillating flow of varying
amplitude and frequency. Mapping the escape threshold in
each of the x, y, and z directions, it was shown that for TOW
tweezers cells remain trapped at higher amplitudes for each
particular frequency than in equivalent dual traps. However,
the escape amplitude threshold represents a measure of the
overall trapping force, a property of traps not directly relevant
to the imaging of immobilized cells.

In recent years, we have introduced another approach to
horizontally align rod-shaped bacteria that is simpler than
the TOW tweezers and relatively flexible [13,14]. We use a
single trap that oscillates at a sufficiently high frequency to
effectively generate a linear trap. The length of the linear trap
is determined by the amplitude of the oscillation. Oscillating
traps that are slightly longer than the cell length were found
to display optimal horizontal trapping stability. We have used
such oscillating traps to image individual E. coli cells in
either phase contrast or fluorescence modes [20–22]. In what
follows, we analyze the stability of trapping in oscillating
tweezers to find the optimal parameters, namely, the oscilla-
tion amplitude and trapping power. Unlike in previous studies,
we include angular fluctuations in addition to those of the
center of mass in our analysis of cell trapping stability. We find
that the trap length for which E. coli are most stably aligned
in the oscillating tweezers is approximately equal to the cell
length. Moreover, the variances of each of the coordinates that
were studied are to a good approximation proportional to the
inverse of the trapping beam power.

II. EXPERIMENTAL METHODS

A. Optical system

We have described our optical setup in detail in previous
publications [13,14,21]. Here we will only present a brief
summary. The system consists of an inverted microscope
(IX70, Olympus), a cooled CCD (CoolSNAP ES2, Photo-
metrics), a near infrared diode laser (SDL, λ = 830 nm),
and a galvanometric mirror (Cambridge Technology). The
Gaussian laser beam is deflected by the galvanometric mir-
ror and focused by the microscope objective lens (UPLFLN
100XO2PH, 1.3 NA, oil immersion) to obtain the trap. This
objective is also used to image the trapped cells. A telescope
is placed along the optical path allowing to adjust the height of
the trap such that trapped cells lay in the focal plane. It is also
used to expand the laser beam to overfill the back aperture
of the objective. It consists of two plano-convex lenses, L1

with a focal length, f1, of 200 mm (Thorlabs), and L2 with
f2 = 130 mm (Melles-Griot), located at a distance f1 + f2

from each other. The galvanometric mirror, the telescope and
the objective back aperture lay in conjugate planes ensuring
that the center of the trap remains in the focal plane throughout
its oscillating trajectory.

In most of our experiments, the linear trap was obtained
oscillating the galvanometric mirror sinusoidally at 100 Hz.
For comparison, we also used other waveforms, e.g., square,
sawtooth, etc. For high enough frequencies, square wave
oscillating tweezers are essentially equivalent to double traps

[Fig. 1(d)]. Cells were imaged in phase contrast and the pixel
size was 41 nm. The sample chamber consists of a parafilm
spacer (∼0.13 mm thickness) between two #1 round cover
slips (22 mm diameter, Marienfeld). While the power of the
trapping laser beam, P, as measured on top of the lower
cover slip, was varied in the range between 4 and 11 mW,
in experiments performed at constant power, we used P =
9.65 mW. The corresponding extent of heating due to the
trapping beam is expected to be below 1°C. This aspect
was extensively studied for silica and polystyrene microbeads
trapped in nonoscillating tweezers showing that the heating
occurs mostly via the fluid surrounding the trap [23]. Al-
though our system is different from that of Ref. [23], the 1°C
estimate is a safe upper bound on the heating of the trapped
cell. Such small degree of heating will have a negligible effect
on the stability of trapping for rod-shaped cells.

B. Calibration of the galvanometric mirror

To calibrate the oscillating tweezers, we image the time
averaged intensity distribution of the laser beam, I(x,y), in
the focal plane [Figs. 1(c) and 1(d)]. To this end, we focus
the beam on the bottom of the sample (upper surface of
the bottom coverslip) and use an exposure time of 20 ms,
twice the oscillation period. For the sinusoidal oscillation,
the I(x,y) distribution has a stadium-like shape with maxima
at its ends [Figs. 1(a) and 1(c)]. We define the length of
the trap, Ltrap, as the sum of the distance between the two
maxima of I(x,y), D, and the full width at half maximum
(FWHM) of the nonoscillating laser beam intensity profile
[Fig. 1(b)], d , Ltrap = D + d . For the square wave case, the
trap length can be defined in the same way, although here,
I(x,y) consists practically of two Gaussian distributions with
FWHM = d located at a distance D of each other along the
x direction [Fig. 1(d)], as long as D is larger than ∼2d . The
FWHM of the nonoscillating laser beam in the focal plane, d ,
is obtained from a quantitative analysis of the corresponding
image (not shown). In particular, we measure the intensity
profile along an axis passing through the center of the beam
image. After subtracting the background and normalizing the
maximal intensity to 1, we fit a Gaussian distribution to
the resulting intensity [Fig. 1(b)]. We find that the FWHM of
the best fitting Gaussian is 1.10 ± 0.01 µm and define it to be
the width of the nonoscillating optical trap, d .

In our system, we control Ltrap via the oscillation amplitude
of the galvanometric mirror. Specifically, in the range of
amplitudes used in our experiment, the distance between the
two maxima of I(x,y), D, depends linearly on the root-mean
square (RMS) of the oscillating voltage, Vrms [Figs. 1(e)
and 1(f)]. The best linear fit to the measured values of D,
D = aVrms + b, corresponds to a = 0.243 ± 0.003 μm/mV
and b = −0.8 ± 0.1 μm for the sinusoidal case [Fig. 1(e)] and
a = 0.174 ± 0.001 μm/mV and b = −0.09 ± 0.04 μm for
the square wave voltage [Fig. 1(f)]. This calibration together
with the value of d allows us to determine the length of the
trap, Ltrap, for the two waveforms at different RMS voltages,
Vrms. We note that the intercept, b, of the linear fit to the
D(Vrms) does not vanish, mainly in the case of the sinusoidal
oscillation. In part, this is due to D being slightly smaller than
the beam oscillation amplitude. However, the main reason is
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FIG. 1. Behavior of the oscillating tweezers. (a) Schematic diagram of the sinusoidally oscillating laser beam. It describes the time-
averaged intensity distribution in the focal plane, I(x,y), where D is the distance between the I(x,y) maxima and Ltrap is the trap length. Moreover,
Ltrap = D + d , where d is the full width at half maximum (FWHM) of the nonoscillating laser beam intensity profile in the focal plane. (b)
Normalized intensity profile, I(x), of the nonoscillating laser beam in the focal plane (red squares) together with the Gaussian that represents
the best fit to I(x) (red line, FWHM = 1.10 ± 0.01 μm). (c) Images of the oscillating laser beam I(x,y) for sinusoidal voltage at 100 Hz
and Vrms = 12.6 mV. (d) Same as in panel (c) for a square wave voltage and Vrms = 17.9 mV. (e) The distance between the two maxima of
I(x,y), D, as a function of the oscillating voltage, Vrms, at 100 Hz frequency for the sinusoidal voltage (blue squares). The red line represents
the best linear fit to the data. (f) Same as in panel (e) for the square wave voltage.

that, in the range of small oscillation amplitudes, where the
two peaks of I(x,y) significantly overlap, the dependence of
D on Vrms will deviate from its linear behavior, vanishing at a
finite value of the voltage.

C. Sample preparation

To test the trapping stability in oscillating tweezers we used
fixed E. coli cells (EC448 [24]). Cells were grown in Luria-
Bertani liquid medium (LB) till 0.2 optical density, OD600 =

0.2, in the exponential growth regime. Next, cells were fixed
using 0.2% formaldehyde. For microscopy, 30 µl of fixed cells
were placed in the sample chamber (see Sec. II A).

D. Measuring center of mass and orientation
angles of trapped E. coli

To measure the fluctuations of cells trapped in oscillating
tweezers, these were monitored using phase contrast imaging
in an appropriate range of trap lengths and trapping beam
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FIG. 2. Fluctuations of the trapped cell. (a) Schematic diagram of the horizontally aligned cell in the trap. Illustration of the cell rotation
angles, (b) relative to the focal plane, α, and (c) within the focal plane, ϕ. (d) Image of a horizontally aligned trapped cell. (e) Same cell as in
panel (d) rotated at an angle out of the focal plane, a = 17◦. The image corresponds to a relatively large angle shown to emphasize the effect
of such rotation. (f) Illustration of the effect on the cell image of rotation within the focal plane. Since in our system the fluctuations in ϕ are
rather small, here we show the same image as in (d) only rotated by 30◦. (g) Dependence of the standard deviation (σ ) of xcm, σx , as a function
of the trap length, Ltrap (blue squares). Error bars correspond to the error of the standard deviation (see text) and Lcell = 3 μm (cell II). To guide
the eye, a line connects between the data points (red line). For comparison, the best fit of Eq. (1) to the σx (Ltrap ) data is also shown (black line).
(h) Same as in panel (g) only for the standard deviation of the angle α, σα . Here we use Eq. (2) to fit the σα (Ltrap ) data (black line). (i) Same as
in panel (g) only for the standard deviation of the angle ϕ, σϕ .

powers. For each cell and set of trap parameters, we recorded
50 frames with 20 ms exposure time and about 200 ms
between consecutive frames. Using MATLAB (MathWorks),
cell images were analyzed to obtain the contours best approx-
imating the position of the cytoplasmic membrane (CM) in
the focal plane. To this end, we used an approach that was
previously developed in our lab [25,26]. It involves a calibra-
tion stage whereby we measure the phase contrast intensity
corresponding to the CM. Fixed cells are labeled with FM4-64
staining the CM and each one is imaged in both fluorescence
and phase contrast modes. Assuming that the position of the
cell is the same in the two images and that the pixels along the

high intensity ridge in the fluorescence image locate the CM,
this allows tracing the CM in the corresponding phase contrast
image. Averaging the phase contrast intensity along the CM
and for Nc different cells, Nc = 7, we obtain an intensity
threshold value that approximates the position of the CM in
phase contrast images. The CM contours are obtained with
subpixel accuracy using two-dimensional linear interpolation.

Trapping stability in the oscillating tweezers was charac-
terized in terms of four of the cell coordinates, namely, its
(x,y) center of mass coordinates, xcm and ycm, the angle with
respect to the (x,y) plane, α, and the azimuthal angle [in the
(x,y) plane], ϕ [see Figs. 2(a)–2(f)]. For each cell image, the
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values of these coordinates were estimated using the cell CM
contours. For example, xcm and ycm were obtained by averag-
ing the x and y coordinates, respectively, of the cell contour
points. Another two coordinates, namely, the fluctuations of
the center of mass in the z direction, zcm, and the rotation
angle around the long cell axis, χ , cannot be obtained from
the cell contours requiring a different approach. We postpone
the stability analysis of the zcm and χ coordinates for future
studies (see Conclusions).

To approximate the angle between the cell axis and the
focal plane, α, we define the length of the cell contour as the
maximal distance between any two contour points. For images
where both caps of the trapped cell appear to be equally
focused, α ≈ 0, the length of the cell contour corresponds to
the cell length, Lcell. In contrast, the contours of cells that are
inclined with respect to the (x,y) plane, α �= 0, approximate
the projection of the cell edge on the focal plane. In this case,
the length of the cell contour is shorter than Lcell by a factor
of cos(α) allowing us to determine the absolute value of α,
|α|, but not its sign. We note that for large α the contour
detection algorithm becomes inaccurate due to the cell caps
becoming too defocused. Consequently, our approach is lim-
ited to the range of small angles. Nevertheless, a slight gener-
alization of this method was shown to extend its validity up to
α ≈ 70◦ [14].

To obtain the azimuthal angle, ϕ, we first removed from
the cell contour the two, approximately semicircular, cap
sections. Next, we used the best linear fit to each of the
remaining lateral sections of the cell contour and averaged the
corresponding two slopes to estimate the value of ϕ.

For cells trapped in oscillating tweezers, the four cell
coordinates that we measure, xcm, ycm, α, and ϕ, fluctuate
around equilibrium values. The average center of mass, (〈xcm〉,
〈ycm〉), coincides with the center of the trap and the average
angles vanish, 〈α〉 = 0 and 〈ϕ〉 = 0. Therefore, to quantify
the stability of the trapping we use the standard deviations (σ )
of the measured coordinates [Figs. 2(g)–2(i) and 3]. For each
cell and set of trap parameters, the σ ’s are computed from
the corresponding 50 frame time lapse movie. Although in
the case of the angle α, our approach only allows to measure
〈|α|〉, assuming a Gaussian distribution for α, it can be shown
that σα = √

π/2〈|α|〉 [27]. Moreover, assuming that all four
coordinates are Gaussian distributed allows us to obtain the
error of their standard deviations, �σ = σ/

√
2N [27]. Here,

N denotes the number of frames.

III. RESULTS

Rod-shaped cells can be trapped and horizontally aligned
in oscillating tweezers. The main parameters that affect the
stability of the trapped cells are the trap length and the
trapping power.

A. Cell trapping stability in oscillating tweezers–Dependence
on trap length

To analyze the effect of the trap length on the stability
of the trapped cell we first used a simple approach whereby
the extent of the fluctuations is compared by visual in-
spection. For each cell, we scan the trap length, Ltrap, and

FIG. 3. Fluctuations of the trapped cell. Same as in Fig. 2(g) only
for the standard deviation of ycm, σy.

appreciate for which value is the cell most stably trapped.
Repeating the experiment for cells of varying length, Lcell,
we find that trapping stability is best for values of Ltrap

that, to a good approximation, depend linearly on the cell
length, Ltrap = a Lcell + b, where a = 0.5 ± 0.1 and b = 1.3 ±
0.3 μm (Fig. 4). Assuming the smallest cells to be 2.5 µm
long, this relation suggests that for short cells the length of the
most stable trap is approximately equal to the cell length, e.g.,
Ltrap(2.5 μm) = 2.5 ± 0.4 μm. In contrast, for longer cells the
optimal trap length becomes gradually smaller than the cell
length itself, e.g., Ltrap(4 μm) = 3.3 ± 0.5 μm. This result
seems to contradict our previous observations that whenever
the length of the trap becomes smaller than the cell length, the
cell will align at a certain angle with the focal plane, α �= 0
[13,14]. However, in the past we only studied cells that were
about 3 µm long. Moreover, the fluctuations in the optimal
trap length data of Fig. 4 and the corresponding errors in the
fit parameters are relatively large, suggesting that we should
further analyze this behavior before drawing conclusions.

For a more accurate analysis of the trapping stability, we
have studied the fluctuations of each of the four cell coordi-
nates that we measure from the CM contours, xcm, ycm, α, and
ϕ, (see Sec. II), as a function of the trap length [Figs. 2(g)–2(i)
and 3].

FIG. 4. Dependence of the optimal trap length on the length of
the cell. For different cells we determine the trap length where the
trapping is most stable by visual inspection. The data for Ltrap(Lcell )
(blue squares) is compared to the corresponding best linear fit (red
line), Ltrap = a Lcell + b, where a = 0.5 ± 0.1 and b = 1.3 ± 0.3 μm.
Here we use Ltrap to denote the particular trap length where the cell
is most stably trapped.
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The fluctuations of the trapped cell center of mass position
along the x axis, xcm, are nearly constant as long as the trap
length is smaller than the cell length, Ltrap < Lcell, and increase
gradually after exceeding the cell length, Lcell = 3 μm [cell
II, Figs. 2(g)]. Regarding the oscillating tweezers as a linear
trap [see Fig. 1(c)] provides a simple framework to understand
this behavior. In the range where Ltrap < Lcell, cell motion
along the x axis is limited to within the boundaries of the
trap. Accordingly, the fluctuations of xcm are of similar nature
to those of a microbead in a relatively weak steady optical
trap. This description only holds as long as Ltrap is moder-
ately shorter than the cell length. At shorter trap lengths, the
cell will significantly deviate from the horizontal orientation
(large α), leading to weaker trapping in the x direction and
correspondingly, to larger fluctuation in xcm. This regime is
not directly relevant to the stability of horizontal trapping
and therefore is beyond the scope of this study. In contrast,
when the trap length is larger than the cell length, the cell
can fluctuate freely in the x direction before it encounters the
walls of the trapping potential. In this case, one may assume
that the fluctuations in xcm are the sum of the same thermal
component as in the Ltrap < Lcell range and a fluctuation
uniformly distributed in the Ltrap–Lcell range. This description
leads to a simple dependence of the standard deviation, σx,t ,
on the trap length, Ltrap,

σx,t (Ltrap) =

⎧⎪⎨
⎪⎩

a Ltrap<Lcell√
a2 + ( Ltrap−Lcell

2
√

3

)2
Ltrap>Lcell

, (1)

which, in turn, is in good agreement with the data of Fig. 2(g)
when we use both a and Lcell as fitting parameters. The best
fit is obtained for a = 60 ± 3 nm and Lcell = 3.24 ± 0.03 μm.
The fact that the cell length obtained from the fit is larger
than the true cell length (3 µm) reflects the limited accuracy of
the uniform distribution assumption for the fluctuations in the
Ltrap–Lcell range. Since the average trapping beam intensity is
larger at the edges of the trap than at its center [Fig. 1(c)], cells
are also expected to prefer positions closer to the trap edges.

Within the accuracy of our experiment, the dynamics of
the cell center of mass in the y direction, ycm, is apparently
independent of the trap length (Fig. 3). This is precisely
the expected behavior in the case of a linear trap where the
trapping potential in the y direction is homogeneous all along
the trap. It shows that sinusoidally oscillating tweezers are
well approximated as a linear trap.

While the fluctuation behavior of the center of mass coordi-
nates is relatively straightforward, that of the angle of the cell
with respect to the focal plane, α, is slightly more complex
[Fig. 2(h)]. Specifically, α, displays a sudden increase in its
fluctuations when Ltrap becomes smaller than the cell length
[Fig. 2(h). In the range where Ltrap > Lcell, the linear trap
tends to confine the cell to the focal plane and fluctuations
in α are due to rotational Brownian motion around the α =
0 equilibrium. In contrast, when Ltrap < Lcell, the caps of a
horizontally aligned cell exceed the range of the trapping
potential and experience no significant restoring force. It is
therefore preferable for the cell to align at a finite α such
that the trapping potential will act on its entire volume. Since
the trapping force decreases as we move away from the

focal plane, the most stable trapping is achieved at about the
smallest α where the cell is fully within the trap, cos|α| ≈
Ltrap/Lcell. However, the cell is equally stable in both the α and
-α orientations. For small values of |α|, the cell will readily
hop between the α and -α orientations leading to fluctuations
in α that grow as the length of the trap decreases. Using a
similar argument as the one leading to Eq. (1), we describe
the fluctuations in α as being the result of two contributions,
one due to thermal fluctuations and the second in the form
of a uniformly distributed angle in the (-α, α) range. The
corresponding standard deviation,

σα,t (Ltrap) =
{√

c2 + 1
3

(
acos

( Ltrap

Lcell

))2
Ltrap<Lcell

c Ltrap>Lcell

, (2)

is expected to provide a good description of the σα (Ltrap)
data. Indeed, the best fit of σα,t (Ltrap) to the data with c
and Lcell as parameters corresponds to c = 9.6 ± 0.3◦ and
Lcell = 3.07 ± 0.02 μm and provides a good approximation to
the data. Although like in the case of the fluctuations along
the x direction, the Lcell value obtained from the fit is larger
than the true cell length (3 µm), here the two values are much
closer. This suggests that the uniform α-angle distribution
assumption leading to Eq. (2) is relatively accurate.

Understanding the fluctuation behavior of the angle ϕ

[Fig. 2(i)] requires that we move beyond the linear trap
approximation and consider the fact that for the sinusoidally
oscillating tweezers the trapping force is stronger at the
end sections of the trap than at its center [Fig. 1(c)].
Therefore, in the Ltrap > Lcell regime, the cell cannot si-
multaneously benefit from both regions of strong trapping
at the ends of the trap which, in turn, leads to larger
fluctuations in ϕ than for Ltrap ≈ Lcell [Fig. 2(i)]. Simi-
larly, when Ltrap < Lcell, at least one of the cell ends lies
off the focal plane experiencing a weaker trapping po-
tential than in the focal plane. Such inclined orientation,
|α| > 0, leads to an increased value of σϕ relative to the range
where α ≈ 0 [Fig. 2(i)].

To test the dependence of the trapping stability on the
cell length we analyzed the behavior of σx (Ltrap), σy (Ltrap),
σα (Ltrap), and σϕ (Ltrap) for cells of different length, Lcell =
2.52 μm (cell I), 3.15 µm (cell III), 3.28 µm (cell IV),
3.45 µm (cell V), 3.57 µm (cell VI), 3.99 µm (cell VII), and
4.53 µm (cell VIII) (Figs. S3–S9). While the overall behavior
of the fluctuations in these 7 cells is similar to that in cell
II, one also finds some deviations from the expected depen-
dence on Ltrap. The main discrepancy is that the behavior of
σϕ (Ltrap) observed in Fig. 2(i) showing a minimum in the
Ltrap ≈ Lcell range, does not manifest in any of the other cells
being probably smaller than the experimental noise [Figs.
S3(d)–S9(d)]. It is therefore a good approximation to assume
that σϕ is practically independent of Ltrap. Further unexpected
behavior is found for cell V where σα (Ltrap) at Ltrap > Lcell

grows toward large values instead of remaining at about the
same value as in the Ltrap ≈ Lcell range [Fig. S5(b)]. However,
considering that our data is obtained from measurements on
individual cells, it is natural to expect some variability in the
trapping stability.

Since each of the four cell coordinates that we analyzed,
xcm, ycm, α, and ϕ, behaves differently as a function of Ltrap, it
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FIG. 5. Dependence of the stability variable, S, on Ltrap for the
same cell as in Figs. 2(g)–2(i) and 3 (cell II, Lcell = 3 μm, blue
squares). Error bars represent the error of S, �S, obtained from the
errors of σx , σθ , 〈σy〉, 〈σϕ〉 and Eq. (3). To guide the eye, a line
connects between the data points (red line). For comparison, the
theoretical behavior of S(Ltrap ) corresponding to the prediction of
Eqs. (1) and (2) with the corresponding parameters obtained from
the best fit of each of the four coordinates, xcm, ycm, α, and ϕ, is also
shown (black line).

is not straightforward to determine the trap length where the
cell is most stably trapped with respect to these coordinates.
In particular, while σx grows with Ltrap [Fig. 2(g)], σα displays
an opposite trend [Fig. 2(h)]. This requires finding an optimal
compromise between the behaviors of the different cell coor-
dinates where the cell fluctuations are minimal. To this end,
we define a composite coordinate, S,

S = σx

〈σy〉 + σα

〈σϕ〉 , (3)

where 〈σy〉 and 〈σϕ〉 are the standard deviations of the ycm and
ϕ coordinates, respectively, averaged over the entire range of
Ltrap that was scanned for a particular cell. In defining the S
variable, we have assumed that the trapping stability is mainly
determined by the variation of σx and σα , while both σy and
σϕ are either constant or do not significantly vary over the
relevant range of Ltrap values. Accordingly, we use the average
values of σy and σϕ to normalize the behavior of σx and σα ,
respectively. In Fig. 5 we show the behavior of S as a function
of the trap length for the same cell as in Figs. 2(g)–2(h)
and 3 (cell II) and compare it to the prediction of Eqs. (1)
and (2) with the corresponding parameters obtained from the
best fit of each of the four coordinates, xcm, ycm, α, and ϕ.
As expected, the experimental S(Ltrap) has a clear minimum
in the vicinity of Ltrap ≈ Lcell. Assuming that the S-variable
represents the proper measure of trapping stability, the value
of Ltrap corresponding to the minimum of S(Ltrap) corresponds
to the most stable configuration of the oscillating tweezers.
We note that for the S(Ltrap) obtained from Eqs. (1) and (2),
S is minimal within a relatively small interval of trap lengths
that contains the minimum of the experimental S(Ltrap).

Since the dependence of the S variable on Ltrap is not partic-
ularly smooth, we use polynomial interpolation to determine
the position of its minimum. To this end, we fit the data with
a third order polynomial to account for the asymmetry of
S(Ltrap). The values of Ltrap corresponding to the interpolated
minimum of S(Ltrap) were obtained for all the eight cells
that were analyzed [Figs. 5 and S3(e)–S9(e)] leading to a

FIG. 6. Dependence of the optimal trap length on the length of
the cell. For different cells we determine the trap length where the
trapping is most stable. It corresponds to the minimum of the stability
variable, S, as a function of Ltrap. The data for Ltrap(Lcell ) (blue
squares) is compared to the corresponding best linear fit (red line),
Ltrap = a Lcell + b, where a = 0.95 ± 0.07 and b = 0.4 ± 0.3 μm.
Here we use Ltrap to denote the particular trap length where the cell
is most stably trapped.

quantitative version of Fig. 4 (see Fig. 6). Here, the linear
approximation for the behavior of the optimal Ltrap with Lcell

is significantly more accurate than in Fig. 4 and the best
linear fit to the Ltrap(Lcell ) data is, Ltrap = a Lcell + b, where
a = 0.95 ± 0.07 and b = 0.4 ± 0.3 μm.

On the qualitative level, the behavior found in Fig. 6 is
similar to that of Fig. 4. However, here we find that the best
linear fit to the Ltrap(Lcell ) data has an approximately unit slope
and the value of Ltrap(0) is sufficiently small to be consistent
with a vanishing Ltrap(0) considering that the shortest cell we
measured was 2.52 µm long. One may therefore conclude that,
within the accuracy of our experimental approach, the optimal
trap length is equal to the cell length, Ltrap ≈ Lcell.

B. Cell trapping stability in oscillating tweezers–Dependence
on the trapping beam power

Another important factor that determines the trapping ef-
ficiency of our setup is the power of the trapping beam, P.
To understand the dependence of the trapped cell fluctuations
on P in oscillating tweezers, we first analyzed the fluctuations
of trapped polystyrene beads in the nonoscillating trap [27].
Using Stokes force calibration, we obtain that the parameter
characterizing the OT trapping efficiency, β [see Eq. (S2)],
is 0.17 ± 0.02 μm−1 for microbeads of 0.8 µm radius. More-
over, we show that the thermal fluctuations of the microbeads,
e.g., σ 2

x , are inversely proportional to P [27].
Next, analyzing the thermal fluctuations of trapped cells

in oscillating tweezers in each of the four coordinates that
we measure using cell contours, we find that these are also
inversely proportional to P. Although a 3 µm long E. coli cell
has about the same volume as a 0.8 µm radius polystyrene
bead and using the trap length that minimizes the S coordinate
[Eq. (3)], the trapping of the cells is significantly weaker.
First, this is due to the much smaller difference in refraction
index between the cell (1.388) and the medium (water, 1.323)
relative to the case of polystyrene, n = 1.578. Second, in
oscillating tweezers, on average, the beam power is spread
over the entire extent of the trap length, Ltrap. For example, the
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(a) (b)

(c) (d)

FIG. 7. Dependence of cell trapping stability on the inverse of the trapping beam power, P−1. The data represents averages over 10 cells
that are all around 3 µm long (〈Lcell〉 = 3.1 μm, σLcell = 0.3 μm). For each of the 10 cells, Ltrap is set to the value that minimizes the S(Ltrap )
function according to the prediction of the best fit in Fig. 6. Error bars correspond to the standard error of the 10-cell average. (a) The variance
of xcm, (σx )2, as a function of P−1 (blue squares) is shown together with the corresponding best linear fit (red line). (b) Same as in panel (a)
only for the variance of the angle α, (σα )2. (c) Same as in panel (a) only for the variance of ycm, (σy )2. (d) Same as in panel (a) only for the
variance of the angle ϕ, (σϕ )2.

maximal intensity in the beam image in Fig. 1(c) is 2.35 times
lower than the corresponding value for the nonoscillating
beam. Nevertheless, the thermal fluctuations of the center of
mass coordinates for a trapped cell in the oscillating tweezers
are also inversely proportional to the total trapping power,
P [Figs. 1(a) and 1(c)]. This allows us using Eq. (S4) to
define effective values of β for each of the xcm and ycm

coordinates, βx and βy, respectively. Specifically, fitting the
average σ 2

x (P−1) and σ 2
y (P−1) taken over 10 cells of about the

same length (∼3 µm) we obtain βx = 0.0041 ± 0.0004 μm−1

and βy = 0.062 ± 0.002 μm−1, respectively [Figs. 7(a) and
7(c)]. As expected, both βx and βy are much smaller than
the value for the polystyrene bead and, moreover, βx 	 βy.
The fact that βx is smaller that βy is due to both the softer
walls along the x axis and the larger freedom of rotation in α

relative to that in ϕ. The softer x wall manifests in the beam
intensity distribution of Fig. 1(c), where the intensity at the
extremes of the trap decays at a slower rate along the x axis
than along the y axis. Moreover, a large deviation in α leads
to a projected cell length along x that is smaller than the trap
length allowing the cell additional freedom to fluctuate in x
within the boundaries of the trap.

The discussion that leads to the power dependence of the
coordinate thermal fluctuation, σ 2

x (P) [see Eq. (S4)] [27] can
be readily generalized to describe the corresponding behavior
of rotational fluctuations of a rodlike object. The analogy

relies on the fact that, similar to the case of the bead-trapping
effective potential, for small rotations around the equilibrium
position, the angles will experience a linear restoring torque.
Accordingly, one expects that both σ 2

α and σ 2
ϕ are proportional

to the inverse trapping power, P−1, and may define βα and
βϕ , respectively. From the corresponding linear fits to the
averaged σ 2

α (P−1) and σ 2
ϕ (P−1) over 10 different cells of about

the same length [Figs. 7(b) and 7(d)] we obtain βα = (0.46 ±
0.07)10−6 deg−2 and βϕ = (5.5 ± 0.4)10−6 deg−2. The fluc-
tuations in α are significantly larger than those in ϕ due to
the much smaller trapping beam intensity gradient along the z
axis relative to that along the y axis.

IV. CONCLUSIONS

We have shown that rod-shaped cells trapped in oscillating
tweezers fluctuate differently in each of the four cell coordi-
nates that we analyzed, xcm, ycm, α, and ϕ, both for a particular
set of trap parameters and as a function of the trap length, Ltrap.
While the fluctuations of the center of mass x coordinate, xcm,
grow as Ltrap increases [Figs. 2(g) and S3(a)–S9(a)], those in
the angle between the cell and the focal plane, α, decrease
as Ltrap grows [Figs. 2(h) and S3(b)–S9(b)]. In contrast, the
fluctuations in both ycm and ϕ are only weakly dependent on
Ltrap and may be regarded as practically constant [Figs. 2(i),
S3(c)–S9(c), 3, and S3(d)–S9(d)]. Moreover, the variances
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of these cell coordinates are apparently proportional to the
inverse of the trapping beam power (Fig. 7) and, as expected,
are independent of the oscillation frequency in the range
between 40 and 200 Hz (Fig. S2).

Optimizing the trapping of rod-shaped cells, we obtain that
the trap length should be about the same as the cell length
to minimize fluctuations in the four coordinates that we ana-
lyzed. Specifically, we find that whenever Ltrap = a Lcell + b,
where a = 0.95 ± 0.07 and b = 0.4 ± 0.3 μm, a variable that
sums up the fluctuations in xcm and α is minimized (Fig. 6).
One may conclude that, to a good approximation, cell trapping
in oscillating OT is most stable when Ltrap = Lcell.

We note that, in the optimized range, the fluctuations of
xcm and α are significantly larger than those of ycm and ϕ

[Figs. 2(g)–2(i), 3, and S3-S9], respectively. The standard de-
viation of xcm in this range, σx, is ∼80 nm, while σy ≈ 30 nm
for cell II [Figs. 2(g) and 3, Lcell = 3 μm]. Similarly, for cell
II, σα ≈ 10◦, while σϕ ≈ 2◦ [Figs. 2(h) and 2(i)]. Since along
the x axis the trap boundaries are not as steep as those in
the y direction, the xcm fluctuations are larger than those of
ycm. Like in the nonoscillating trap, the trapping potential is
weaker in the z direction than in the y direction. This results in
larger fluctuations in the angle with respect to the focal plane,
α, relative to those in the azimuthal angle, ϕ.

As discussed in Sec. II D, the trapping stability of the center
of mass in the z direction, zcm, and of the rotational angle
around the long cell axis, χ , cannot be obtained from the
analysis of the cell contours as in the case of the four cell
coordinates that were discussed in our study. To measure zcm,
one may analyze the extent of cell image defocusing, e.g.,
using the intensity gradient along the cell contour. Moreover,
one may attach small fluorescent microbeads (e.g., 0.1 µm
diameter) to the cell outer membrane to monitor the dynamics
of the χ angle. While we postpone these studies to future
work, results from imaging trapped E. coli cells in double

beam OT suggest that the fluctuations in χ may be negligible.
Diekmann et al. [12] imaged the nucleoids of trapped cells at
four consecutive time intervals of about 22 s and found prac-
tically the same fluorescence intensity distribution in all of
them. They proposed that the variation of the refraction index
within the cell is sufficient to break the apparent rotational
symmetry in χ as to trap the cell in a particular χ orientation.

For rod-shaped cells, trapping stability is not determined
by the fluctuations of the cell center of mass alone. Instead,
it is also affected by the rotational fluctuations of the trapped
cell. We have shown that the angular fluctuations in α and
ϕ are no less important for the cell trapping stability than
those of the center of mass. In particular, trapping is most
stable when a balance between the opposite trends of angular
and center of mass fluctuations is attained. Notably, a careful
generalization of the deconvolution approach to the imaging
of trapped cells introduced in Ref. [12] to include angular
fluctuations may lead to significantly improved imaging ac-
curacy. To allow monitoring live cells over long time intervals
it is necessary to reduce the extent of photodamage due to
the trapping laser beam. This can be achieved using free
radical scavengers, e.g., ascorbic acid, which were found to
preserve the growth rate of E. coli for times at least as long as
60 min [28].

Note added in proof. Another paper was recently published
presenting a related study on trapping rod-shaped bacteria
using oscillating optical tweezers [29].
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