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Limitations on electromagnetic communication by vibrational resonances in biological systems
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Previous research in biology and physics speculates that high-frequency electromagnetic fields may be
an unexplored method of cellular and subcellular communication. The predominant theory for generating
electric fields in the cell is mechanical vibration of charged or polar biomolecules such as cell membranes or
microtubules. The challenge to this theory is explaining how high-frequency vibrations would not be overdamped
by surrounding biological media. As many of these suspected resonators are too large for atomistic molecular
dynamics simulations, accurately modeling biological resonators remains an ongoing challenge. While many
resonators have been studied and simulated, the general limitations on communication imposed by energy
transfer arguments have not been considered. Starting with energy transfer expressions from coupled-mode
theory, we derive expressions for the minimum quality factor (Q factor) required to sustain communication
for both near- and far-field interactions. We compare previous simulation studies and our theory. We determine
the flexing mode of microtubules as an identified resonance in the literature which meets our criteria. Our results
suggest the major obstacle to meeting our criteria for effective electromagnetic communication is the trade-off
between the Q factor and the plasma frequency: Resonators must be large enough to have a large Q factor, but
small enough to resonate at frequencies greater than the plasma frequency.
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I. INTRODUCTION

The orchestration of biological activities requires a great
deal of communication and coordination between and within
cells. To this end, cells have been shown to communicate
by various chemical, mechanical, and electrical mechanisms.
Various researchers have suggested, however, that known sig-
naling mechanisms might be insufficient to meet the needs of
biological coordination and that cells might exploit some type
of higher-frequency electromagnetic (EM) signaling [1,2].

The first of such theories dates back to when Gurwitsch
performed a series of experiments claiming to support the
theory of mitogenetic radiation. Monitoring two sets of chem-
ically separate onion root cells, he observed an increase
in mitosis if a quartz barrier separated detector roots from
actively dividing roots, but no such effect if the barrier was
glass. Because ultraviolet light can pass through quartz but not
regular glass, he suggested the existence of cellular radiation
[1]. Western researchers were unable to reproduce his results
using scientific methods [3]. Several experiments have since
used various electromagnetic barriers in a similar vein to
Gurwitsch’s studies to establish evidence of cell-to-cell com-
munication, though these studies are mixed in their findings
[1,4–6].

From a biophysical perspective, an open question is how
cells would ever purposefully generate an electromagnetic
field of sufficient strength such that a neighboring cell could
detect it. Fröhlich theorized that collections of electrically po-
lar proteins could exhibit coherent vibrations. His work even
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suggested that the vibrating structures could be condensed and
display macroscopic quantum coherence, in a manner similar
to Bose-Einstein condensation [7–9]. No examples of such
condensates have been found and further theoretical research
has concluded that such condensates are “inaccessible in a
biological environment” [10].

Even without the exotic quantum properties predicted by
Fröhlich, most hypotheses of cellular EM generation involve
some sort of electromechanical coupling. If a cell could
somehow deliver energy to charged or polar proteins and
induce high-frequency mechanical vibrations, the resulting
oscillation of charges would produce a time-varying field.
Various structures have been investigated as potential EM
receivers or transmitters, namely, the microtubules of the cy-
toskeleton [11–13], cell membranes [14], viruses [15–18], and
DNA [19,20]. While purely electromagnetic resonances have
also been investigated [21], in this work we limit ourselves
to structures where an electromagnetic field couples into a
mechanical mode.

Accurately modeling the many hypotheses of electrome-
chanical signaling remains a difficult problem. Fundamen-
tally, however, all these mechanisms can be distilled to
interactions with coupled resonators and electromagnetic
fields. In this work, instead of modeling specific mechanisms
and evaluating their ability to sustain communication, we
seek to abstractly model the problem of coupled resonator
communication.

While defining “purposeful communication” in a physi-
cally meaningful way is certainly challenging, in this work
we will consider an interaction significant if it imparts more
energy than the background thermal energy. This is a neces-
sary but not sufficient condition for communication to occur.
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Since most of the proposed hypotheses of biological EM
communication are concerned with intra- and intercellular
communication, we focus on structures with length scales
ranging from the molecular to the cellular level (up to 10 μm).
Larger structures such as cell aggregates and tissues will not
be considered.

The quality factor (Q factor) of a resonator is a parameter
that describes how strongly a resonator’s oscillations are
damped. We derive expressions for the minimum Q factor
required for an oscillator to interact with an incoming plane
wave and for interacting oscillators in each other’s near field.
We evaluate where past studies fit into our framework and
draw conclusions about the likelihood of these structures en-
gaging in electromagnetic communication between or within
cells.

Electric-field screening in electrolytic media

An important barrier to intercellular electric-field com-
munication is the impact of screening from counterions in
biological media. Charged or polar molecules attract a coun-
terion cloud around them, exponentially attenuating electro-
static fields after a few molecular layers. The Debye length
characterizes the size of the counterion cloud and is about 1
nm for cytosol [22]. For electromagnetic interactions to be
considered long distance, they must occur at length scales
larger than the Debye length.

Time varying fields, however, can overcome screening
from conductive media if the oscillation rate can exceed the
mobility of the counterions. Because our length scales of
interest are much smaller than relevant skin depths at these
frequencies, we can choose to ignore skin depth effects.
The conductive medium then acts as a high-pass filter with
a cutoff around the Maxwell, or plasma, frequency, given
by ωp = σ/ε, where σ is the conductivity of the medium
and ε is the permittivity [23]. This is often expressed as a
complex frequency-dependent permittivity given by ε = ε −
iσ/ω. Compared to fields in a lossless dielectric, fields are
attenuated by a factor of A given by

A(ω) = 1/ε

1/ε
= εω

εω − iσ
= 1

1 − iωp/ω
. (1)

For biological solutions such as cytosol, the conductivity is
approximately 1.1 S/m and the relative permittivity is about
the same as water, which is approximately 80 [24]. Therefore,
the Maxwell frequency is approximately 250 MHz, though
this will of course vary based on the conductivity of the
solution [24].

II. MINIMUM Q FACTOR FOR FAR-FIELD
INTERACTIONS

First we examine the possibility of cell-to-cell communi-
cation through far-field electromagnetic waves. Instead of fo-
cusing on how the fields would be generated in the first place,
we analyze the case of some resonant dipole protein being hit
with an incoming plane wave as depicted in Fig. 1(a). Our
analysis is similar to that of Adair in which he explored how
low-power microwaves might influence biological resonators
[25]. Unlike Adair, we model the system as an antenna and

FIG. 1. Illustration of resonators interacting with electromag-
netic fields. (a) Incident field with intensity I scattering off a res-
onator with scattering (radiative) quality factor Qs and absorption
quality factor Qa. (b) Two resonators with their own quality factors
coupled in the near field with coupling coefficient κ .

use the Wheeler-Chu limit to find a bound on our scattering Q
factor, thus allowing us to relate the Q factor to the resonator
size. We will define a minimum absorption Q factor required
for any resonator to absorb significant energy (greater than the
background thermal bath) from an incoming plane wave using
the absorption cross section given by coupled-mode theory.

A. Energy absorbed by the resonant scatterer

We can calculate the power absorbed by the resonator in
Fig. 1(a) by defining an absorption cross section. The power
absorbed (Pa) by the resonator when hit with an incoming
plane wave with intensity I is given by

Pa = σaI, (2)

where σa is the absorption cross section with units of area.
The absorption cross section of a resonant dipole hit with
an incident electromagnetic plane wave is given by Eq. (3),
which is a form of the Breit-Wigner formula and has also been
proven for more general cases using coupled-mode theory
[26,27]:

σa(ω) = 3λ2

2π

�s�a

(ω − ω0)2 + �2
. (3)

Here λ is the wavelength, �s is the scattering spectral half-
width at half maximum (units of frequency), �a is the absorp-
tion spectral half-width at half maximum, ω is the angular
frequency, ω0 is the resonant frequency, and the total width
� = �s + �a. The total width is the inverse of the corre-
sponding relaxation time of the resonator (� = 1/τ ). This
expression is valid for electrically small (much smaller than
λ) resonant dipoles near the resonant frequency.

The total Q factor is defined as the ratio of the peak energy
stored in the resonator to the energy lost (absorbed) per cycle.
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This can also be expressed in terms of the resonant frequency
and the relaxation time of the resonator

Q ≡ ω0Umax

Pa
= ω0τ

2
. (4)

The maximum energy the resonator can store is therefore

Umax = Paτ/2 = σaI/2�. (5)

The absorption cross section, and therefore the power
absorbed, is largest at the resonant frequency,

σa(ω0) = 3λ2

2π

�s�a

�2
. (6)

The lowest anticipated frequencies of cell-to-cell communi-
cation are around 100 MHz. At lower frequencies, the electric
fields are attenuated by Debye screening as discussed in Sec. I.
This means that the smallest wavelength of interest in free
space is approximately 3 mm (or about 340 μm in water). As
mentioned previously, our length scale of interest in expected
biological resonators is at most on the order of 10 μm; there-
fore, we can safely assume that the resonator is much smaller
than the wavelength. It follows that the absorption width is
much larger than the scattering width (�a � �s). In antenna
physics terms, this is the same conclusion one would draw for
an electrically small antenna. The resonant cross section can
therefore be approximated as

σa(ω0) ≈ 3λ2

2π

�s

�a
. (7)

The maximum energy the resonator can store can therefore be
approximated as well,

Umax(ω0) = σa(ω0)I/2� ≈ 3Iλ2�s

2π�2
a

. (8)

In order for an interaction to be considered biologically
significant, the resonator must be able to store more than
thermal energy (kBT , where kB is the Boltzmann constant
and T is temperature) from the interaction. For N resonators
acting coherently, that restriction may be relaxed to kBT/

√
N

[25]. By setting Eq. (8) equal to this minimum energy, we can
solve for the maximum absorption width for which significant
interaction could occur,

�a <

√
3Iλ2�s

√
N

2πkBT
. (9)

B. Limiting the scattering width using the Wheeler-Chu limit

In order to set bounds on Eq. (9), we need to set a bound
on the scattering width. From Eq. (4) we see that the resonant
widths are related to Q factors by �i = ω/2Qi. The absorption
width can be shown to be related to the internal loss of
the resonator (energy absorbed by the resonator) and the
scattering width is related to the radiative loss of the resonator
(energy reflected back into the surroundings).

By analyzing the resonator as a small antenna, we can set
bounds on the Q factor based on only frequency and size. The
Wheeler-Chu limit sets a lower limit on the scattering Q factor

of any small antenna [28],

Qs �
1

k3a3
, (10)

where k = 2π/λ and a is the radius of the smallest sphere
enclosing the resonator. The wavelength is given by λ =
c0/ f

√
εr , where εr is the relative permittivity of the medium

and c0 is the speed of light in a vacuum. Achieving the
Wheeler-Chu limit is difficult in most small antenna designs,
so it is unlikely that a biological resonator would even ap-
proach this limit.

C. Minimum absorption Q factor

First, we replace the widths in Eq. (9) with their corre-
sponding Q factors. To assume the best case scenario, we
set the scattering Q factor Qs = 1/k3a3 from Eq. (10). This
gives us the following expression for the lower bound of the
absorption Q factor required to store more than background
thermal energy from an incoming plane wave:

Qa �
√

c0kBT

6π Ia3
√

εrN
. (11)

Note that Eq. (11) is dependent only on the temperature,
the plane-wave intensity, the permittivity of the medium, the
number of resonators, and the size of the resonator. So long
as the resonator is much smaller than the wavelength, the
requisite Qa is independent of frequency.

One upper limit of the plane-wave intensity can be derived
from the power generated by a single cell. From thermody-
namic arguments, a single human cell generates on the order
of 10−12 W [29]. It should be noted that, given the wide variety
of cell types in biology, the actual power consumption of any
given cell may deviate from this figure significantly, though
we believe it to be a reasonable average. If we assume a
relatively small cell with a 1-μm radius, we can estimate the
maximum possible radiation intensity as I = P/4πr2, giving
us 0.08 W/m2, or 8 × 10−3 mW/cm2. Note that this is much
smaller than the maximum intensity allowed by the FCC for
general population EM exposure between 1.5 and 100 GHz,
which is 1 mW/cm2 [30].

In Fig. 2 we plot the minimum Q factor for both of
these power intensities as a function of resonator size. We
assume that the dielectric of the medium will be similar to
water and have a relative permittivity of 80. The temperature
will be assumed to be 300 K. We see that as the resonator
becomes larger, the Q factor required decreases. The requisite
Q factor also decreases as the power intensity increases. We
also see that increasing the number of coherent resonators can
decrease the minimum Q factor, though not dramatically. As
suggested by Eq. (11), it requires 10 000 coherent resonators
to result in a factor of 10 decrease for the minimum Q factor.
The Q factors required for subcellular resonators (10–100
nm) are quite large (greater than 100) given the low-power
intensity. The Q factors required for larger resonators are
smaller, though maintaining many large resonators in co-
herence would require significant volume. This is consistent
with past works which have evaluated far-field coupling of
biological resonators to be insignificant at nonthermal levels
[25,31,32].
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FIG. 2. Minimum Q factor required for an incoming plane wave
of intensity I to impart more energy than kBT on a dipole resonator,
plotted as a function of the radius of the smallest sphere enclosing the
resonator. The temperature is assumed to be 300 K and the relative
permittivity of the media is 80 (water).

III. MINIMUM Q FACTOR FOR NEAR-FIELD
INTERACTIONS

We can make similar arguments to construct a minimum
Q factor for two resonators with a coupled near field, corre-
sponding to the case in Fig. 1(b). Energy transfer between
coupled resonators can be described by two dimensionless
parameters: the Q factor of each resonator and the coupling
coefficient κ between the resonators. For the remainder of
our analysis we will refer to the absorption Q factor Qa as
simply the Q factor since the scattering Qs does not play
a role in the near-field analysis. The coupling coefficient is
a normalized, dimensionless mutual energy metric ranging
from zero to one. Strongly interacting resonators will have
a coupling coefficient near one, whereas weakly interacting
ones will be closer to zero.

Analyzing resonators in terms of Q factors and couplings
is used often in microwave filter theory, where the coupling
coefficient represents electrical or magnetic coupling between
resonators [33]. In this biological context, we are concerned
with electrically coupled mechanical resonators. First we will
will derive an expression for the coupling coefficient for a
simple case of a charged mass spring resonator to gain some
intuition about the nature of the coupling. Then we will derive
the minimum Q factor needed based on the power transfer
efficiency between the resonators.

A. Electrically coupled mechanical resonators

In order to gain insight into the electromechanical coupling
coefficient, we analyze the simple case of two coupled mass
spring resonators, as depicted in Fig. 3. Each mass carries a
charge; therefore, interaction between resonators occurs via
the electric field. The resonators are submerged in a fluid
medium resulting in drag for each mass.

Let us define 
x(t ) = x1(t ) − x2(t ). The force induced on
resonator 2 by the electric field generated by resonator 1 is
given by

F21 = q2E1 = q1q2

4πε[r − 
x(t )]2
, (12)

FIG. 3. Coupled spring mass resonators submerged in fluid. Each
resonator has mass m, charge q, spring constant k, and damping
coefficient c. The medium has permittivity ε and conductivity σ . At
rest, both resonators are separated by a distance r.

where q1 and q2 are the charges of resonators 1 and 2,
respectively, r is the distance between the resonators when

x(t ) = 0, and ε = ε − iσ/ω.

Assuming that the amplitude variables are much smaller
than the distance between the resonators [r � 
x(t )], we can
expand Eq. (12) using a Taylor series expansion

F21 = q1q2

4πεr2
− 2q1q2
x(t )

4πεr3
+ O(
x(t )2). (13)

We note that the first term is constant over time. This DC
offset goes to zero because of Debye screening, as explained
in Sec. I. Assuming that the oscillations will be very small,
we ignore higher powers of 
x and leave ourselves with
the dipole approximation. We see that this interdipole force
is dependent on the position of both resonators much like a
spring connecting both masses. We define this interresonator
mutual spring constant as

km = q1q2

2πεr3
. (14)

For a mass spring system, the coupling coefficient is defined
as [34]

κ = km√
(k1 + km)(k2 + km)

. (15)

We see that this definition of the coupling coefficient main-
tains the scaling of the coefficient from 0 to 1. If we assume
that both resonators are identical (q1 = q2 = q and k1 = k2 =
k) then we can combine Eqs. (14) and (15) to get an expression
for κ . If we assume the weak-coupling regime (km � k), then
we can also approximate κ as a convenient ratio of electrical
to mechanical properties

κ = q2

q2 + 2πεr3k
≈ q2

2πεr3k
. (16)

B. Analyzing the coupling coefficient

In order to get a first-order estimate of what values of κ

to expect, we analyze the well-studied example of tubulin.
Tubulin is a dimer protein made of α and β tubulin monomers
and is the constituent building block of microtubules. In
physiological pH, each monomer carries a net charge of five
electrons and has a mass of 50 ku [35], though the net charge
can vary based on pH and whether the tail region is included
[36]. Simulations of the stiffness of tubulin suggest a spring
constant of approximately 3.5 N/m [37]. While any potential
resonance of the tubulin protein is likely much more complex
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than a simple spring mass oscillator, this at least provides a
first-order estimate of realistic values of κ . We assume that
the frequency is high enough to ignore the effects of conduc-
tivity in the medium and assume a relatively close separation
distance of 10 nm. Plugging k = 3.5 N/m, q = 8 × 10−19 C,
ε = 80ε0, and r = 10 nm into Eq. (16), we find κ = 4.12 ×
10−5. This small coupling would permit almost no energy
transfer between resonators. Potential biological resonators
therefore need a substantially greater charge density in order
to permit stronger coupling.

C. Energy transfer between coupled resonators

Coupled-mode theory provides an expression for the max-
imum possible power transfer efficiency between two coupled
resonators, which can also be solved from circuit theory
[38,39],

η = κ2Q1Q1

(1 +
√

1 + κ2Q1Q2)2
. (17)

For the rest of our analysis, we will assume that the resonators
are identical (Q1 = Q2 = Q). This means that for a system
transmitting power Pt , the power absorbed is given by Pa =
ηPt . This expression assumes optimal impedance matching
and represents the highest possible power transfer efficiency
between the two resonators. From Eq. (5) we know that the
energy absorbed is given by Umax = PaQ/ω. By setting the
maximum stored energy equal to the thermal energy (Umax =
kBT ), as done in Eq. (18), we can solve for Q to get an
expression for the minimum necessary Q factor,

kBT = ηPt Q

ω
. (18)

The explicit solution for Q in Eq. (18) is solvable, though
complicated because η is also a function of Q. For the sake
of intuition, we can take a Taylor expansion of Eq. (17) about
κ = 0 (for any significant interaction distance κ � 1) and
obtain an approximate solution

Qmin ≈ 3

√
4kBT ω

Ptκ
. (19)

Unlike the far-field case, this expression for the minimum Q
factor is frequency dependent.

The explicit (nonapproximate) form of Eq. (19) is plotted
in Fig. 4 for varying values of the coupling strength. The value
of the coupling coefficient in the legend is attenuated as a
function of frequency by a factor of |A(ω)|, where A(ω) is
defined in Eq. (1). The medium is assumed to have a relative
permittivity of 80 and a conductivity of 1.1 S/m. Using
the same logic from the far-field case, we limit the source
power to the average power output of a cell, Pt = 10−12 W
[29]. We see that the minimum Q factor is lowest near the
plasma frequency, where the oscillation period is longer but
the interacting fields are not yet screened.

IV. COMPARISON WITH SIMULATED RESONANCES

We have established general criteria for a resonator to have
the possibility of sustaining near- or far-field communication.
Far-field communication requires excessively high Q factors

FIG. 4. Minimum Q factor for two identical coupled resonators
as a function of frequency for different interresonator coupling
strengths κ . We assume that T = 300 K and Pt = 10−12 W. The value
of κ in the legend is attenuated as a function of frequency by a factor
of |A(ω)|.

at nonthermal power levels and seems unlikely as a communi-
cation modality in general. Near-field communication seems
likely at frequencies near the plasma frequency, but coupling
strengths would need to be particularly high to permit bi-
ologically realistic Q factors. To compare our criterion to
more practical scenarios, we compare our near-field limit to
previously studied biological resonances.

A. Microtubule vibrations

Microtubules have been extensively analyzed in terms
of normal modes and vibrations. Microtubules are a ubiq-
uitous component of the cytoskeleton and cilia of eukary-
otic cells. They are tubular protein complexes constructed
out of α and β tubulin monomers. A considerable amount
of research has been been spent studying the mechanical
vibrations of microtubules [12,40] and even the resulting
electric fields that would be generated by the vibrating po-
lar protein [11,13,41]. No experimental evidence to date
has confirmed these high-frequency vibrations. Various com-
putational studies calculate vibrational frequencies on the
order of 1–100 GHz, depending on length and material
properties [12].

The Q factor of hypothetical microtubule resonances has
unfortunately been overlooked by some computational stud-
ies. Some work suggests vibrations would be entirely over-
damped by surrounding viscous media [42]. As a counterargu-
ment, Pokorný suggested that the ion layer around the charged
surface of the microtubule would create a slip boundary con-
dition, enhancing the Q factor [43]. Such slip boundaries have
been considered analytically in nanoresonators [44]. Only
recently has a computational study compared microtubule
vibrations with multiple boundary conditions: no damping, a
no-slip layer, and a slip layer [45]. Their results suggest that
with a no-slip boundary condition, all vibrational modes are
overdamped. With the slip layer, only the flexing radial mode
is underdamped because of its extremely low amplitude (less
than 0.1 Å). The Q factor of this radial mode was calculated
to be quite large: 177 at 53 MHz [46]. Because this is a radial
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FIG. 5. Minimum Q factor for near-field communication (blue
solid line) vs frequency for varying values of κ . The red circles rep-
resent the Q factor of calculated bacteria cell membrane resonances
for different bacterial species computed in [14]. The green dotted line
represents the calculated Q factor of bending microtubule vibrations
as a function of the microtubule length computed in [40]. The cyan
cross represents the Q factor of the slip layer radial mode calculated
in [45]. Finally, the magenta diamonds represent the Q factor of
dipolar modes in viruses [15,18].

mode, the resonant frequency is expected to be independent
of length, though molecular dynamics studies have suggested
this might not be a pure radial mode due to anisotropy [47].

Samarbakhsh and Tuszynski computed the Q factor of
the bending mode of microtubules with incident ultrasound
waves using analytical beam equation methods [40]. They
computed the resonant frequency and Q factor of the bending
mode vibration of a 10-m microtubule as a function of mode
number. It is expected that shorter microtubules should have
higher resonant frequencies. Their data are reproduced and
plotted alongside our minimum near-field Q factor in Fig. 5.

B. Cell membranes

Because of its negative charge, the cell membrane is also
a candidate for electromechanical coupling. To explore the
ultrasound destruction of bacteria, Zinin investigated the Q
factor of spherical bacterial cell membranes [14]. Using ex-
perimental data to inform cellular mechanical properties, they
used an analytical model to estimate the resonant frequency
and Q factor of several common bacteria. While some of these
Q factors are quite large, most of these resonances are below
the typical plasma frequency of cellular media. All of the
reported Q factors are plotted alongside our minimum near-
field Q factor in Fig. 5. It should be noted that these modes
were analyzed under the assumption of ultrasound excitation
and it is not guaranteed that EM fields would couple into those
modes.

C. Viruses

Many viruses are comprised of spherical or rod-shaped
capsid shells with negatively charged DNA or RNA inside.
Recognizing the charge concentration in the center of viruses,
work has been done investigating how microwaves could
couple into the natural vibrational frequencies of the spherical

FIG. 6. Diagram illustrating the fundamental trade-off of cell-
to-cell communication using electrically coupled mechanical res-
onators. Essentially, the resonator must be large enough to maintain
a large Q factor but not so large as to resonate at a frequency below
the plasma frequency.

or rodlike dipolar modes in viruses [16]. These resonances
have not only been modeled and simulated, but also mea-
sured experimentally and exploited to deactivate viruses at
low-power intensities [17,18]. These measured Q factors are
plotted in Fig. 5.

V. CONCLUSION

Starting with coupled-mode-theory relationships of en-
ergy transfer, we derived the minimum Q factors required
for electromagnetic communication to occur between an
incoming plane wave and resonator, as well as two res-
onators with coupled near fields. The key assumption is
that the resonator must be able to store more energy from
EM interactions than thermal energy. We identified a re-
gion where near-field communication would be most ef-
ficient and might be sustained, occurring roughly around
100 MHz.

We compared our model with previous studies of the
Q factor of microtubule, cell membrane, and virus vibra-
tions. For microtubules, the Q factor of the bending modes
is too low to meet our criteria for any coupling strength.
The slip-layer radial mode is much more likely to sus-
tain communication because of its large Q. The amplitude
of the vibration simulated, however, was very small (less
than 0.1 Å), suggesting that the mode might not be able to
store much energy and that our transmit power might be
an overestimate. Previous simulations on the flexing mode
of microtubules have suggested it would be the most elec-
trically active mode, but also that the mutual energy be-
tween vibrating microtubules would not exceed the thermal
energy [13].

Some cell membrane vibrations also have larger Q factors,
but typically occur at frequencies too low to meet our crite-
rion for anything other that maximum coupling. The dipolar
resonances of viruses, on the other hand, are at frequencies
too high to meet our criterion.

Our analysis suggests that high Q resonances centered
around the plasma frequency have the greatest chance of
sustaining cellular communication through electromechanical
coupling. The simulated slip layer radial vibration in mi-
crotubules best meets our criterion. Our analysis also had
an implicit power budget of Pt = 10−12 W, which might be
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too large of an excitation to focus into a single microtubule
and still vibrate within the slip layer. More research into the
existence and properties of potential slip layers is required to
explore their impact on other resonances.

This study revealed a fundamental trade-off for cell-to-cell
communication via coupled resonators, which is illustrated in
Fig. 6. This relationship is further explored in a simplified
model in our Supplemental Material [48]. Essentially, the
resonator must be large enough to maintain a large Q factor,
but not so large as to resonate below the plasma frequency.
This suggests the optimal frequency range for this modality

of communication would be just above the plasma frequency
for the media.
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pattern in vibrating microtubule: Structural mechanics study
based on an atomistic approach, Sci. Rep. 7, 4227 (2017).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.101.062401 for an analysis estimating the
approximate Q factor of a generic biological resonator.

062401-8

https://doi.org/10.1016/j.jtbi.2011.07.007
https://doi.org/10.1016/j.jtbi.2011.07.007
https://doi.org/10.1016/j.jtbi.2011.07.007
https://doi.org/10.1016/j.jtbi.2011.07.007
https://doi.org/10.1016/0022-460X(66)90095-2
https://doi.org/10.1016/0022-460X(66)90095-2
https://doi.org/10.1016/0022-460X(66)90095-2
https://doi.org/10.1016/0022-460X(66)90095-2
https://doi.org/10.1016/j.mcm.2005.05.002
https://doi.org/10.1016/j.mcm.2005.05.002
https://doi.org/10.1016/j.mcm.2005.05.002
https://doi.org/10.1016/j.mcm.2005.05.002
https://doi.org/10.1038/s41598-019-46636-4
https://doi.org/10.1038/s41598-019-46636-4
https://doi.org/10.1038/s41598-019-46636-4
https://doi.org/10.1038/s41598-019-46636-4
https://doi.org/10.1016/j.bpj.2010.06.070
https://doi.org/10.1016/j.bpj.2010.06.070
https://doi.org/10.1016/j.bpj.2010.06.070
https://doi.org/10.1016/j.bpj.2010.06.070
https://doi.org/10.1109/TMTT.2017.2741963
https://doi.org/10.1109/TMTT.2017.2741963
https://doi.org/10.1109/TMTT.2017.2741963
https://doi.org/10.1109/TMTT.2017.2741963
https://witricity.com/wp-content/uploads/2016/12/White_Paper_20161218.pdf
https://doi.org/10.1007/s00249-011-0709-0
https://doi.org/10.1007/s00249-011-0709-0
https://doi.org/10.1007/s00249-011-0709-0
https://doi.org/10.1007/s00249-011-0709-0
https://doi.org/10.1371/journal.pone.0086501
https://doi.org/10.1371/journal.pone.0086501
https://doi.org/10.1371/journal.pone.0086501
https://doi.org/10.1371/journal.pone.0086501
https://doi.org/10.1023/A:1010306216654
https://doi.org/10.1023/A:1010306216654
https://doi.org/10.1023/A:1010306216654
https://doi.org/10.1023/A:1010306216654
https://doi.org/10.1081/JBC-120020349
https://doi.org/10.1081/JBC-120020349
https://doi.org/10.1081/JBC-120020349
https://doi.org/10.1081/JBC-120020349
https://doi.org/10.1209/0295-5075/115/44003
https://doi.org/10.1209/0295-5075/115/44003
https://doi.org/10.1209/0295-5075/115/44003
https://doi.org/10.1209/0295-5075/115/44003
https://doi.org/10.1063/1.5097204
https://doi.org/10.1063/1.5097204
https://doi.org/10.1063/1.5097204
https://doi.org/10.1063/1.5097204
https://doi.org/10.1038/s41598-017-04272-w
https://doi.org/10.1038/s41598-017-04272-w
https://doi.org/10.1038/s41598-017-04272-w
https://doi.org/10.1038/s41598-017-04272-w
http://link.aps.org/supplemental/10.1103/PhysRevE.101.062401

