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Performance of weak species in the simplest generalization of the rock-paper-scissors
model to four species
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We investigate the problem of the predominance and survival of “weak” species in the context of the simplest
generalization of the spatial stochastic rock-paper-scissors model to four species by considering models in which
one, two, or three species have a reduced predation probability. We show, using lattice based spatial stochastic
simulations with random initial conditions, that if only one of the four species has its probability reduced, then
the most abundant species is the prey of the “weakest” (assuming that the simulations are large enough for
coexistence to prevail). Also, among the remaining cases, we present examples in which “weak” and “strong”
species have similar average abundances and others in which either of them dominates—the most abundant
species being always a prey of a weak species with which it maintains a unidirectional predator-prey interaction.
However, in contrast to the three-species model, we find no systematic difference in the global performance
of weak and strong species, and we conjecture that a similar result will hold if the number of species is further
increased. We also determine the probability of single species survival and coexistence as a function of the lattice
size, discussing its dependence on initial conditions and on the change to the dynamics of the model which results
from the extinction of one of the species.
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I. INTRODUCTION

Predator-prey models are a useful tool in the study of
population dynamics in biological systems (see [1–3] for the
pioneer work by Lotka and Volterra, and May and Leonard).
Among these, the spatial stochastic rock-paper-scissors (RPS)
model describes the space-time evolution of three competing
populations subject to cyclic nonhierarchical predator-prey
interactions as well as reproduction and mobility. In the
classical spatial stochastic RPS model [4–6], in which all the
species have the same strength, the stable coexistence of all
three species is generally possible if mobility is not too large.
Despite its simplicity, this model is able to successfully re-
produce key dynamical features observed in simple biological
systems with nonhierarchical selection [4,7,8].

The classical RPS model has been generalized to include
additional species and interactions [9–27]. Complex dynami-
cal spatial structures (such as spirals with an arbitrary number
of arms [13,24,28], domain interfaces with or without nontriv-
ial internal dynamics [29], and string networks with or without
junctions [30,31]), diverse scaling laws [13,22], and phase
transitions [32–40] have been shown to arise naturally in many
of these models. In most of them, every species has the same
strength, which results in the same average density for all
species (if coexistence prevails) and a survival probability
mainly dependent on initial conditions (in the absence of
additional biases).

In [41], it has been shown that “weak” species have a
competitive advantage in the context of a Lotka-Volterra

implementation of the RPS model in which one of the three
species—usually refereed to as the “weakest”—has a reduced
predation probability. This problem has recently been re-
visited in the context of Lotka-Volterra and May-Leonard
formulations of the spatial stochastic RPS model with random
initial conditions [42]. There, it has been shown that despite
the different population dynamics and spatial patterns, these
two formulations lead to qualitatively similar results for the
late time values of the relative abundances of the three species,
as long as the simulation lattices are sufficiently large for co-
existence to prevail, the weakest species generally having an
advantage over the others (especially over its predator). On the
other hand, in the case of small simulation lattices, a signifi-
cant dependence of the probability of species survival on the
lattice size has been found, associated to the relatively large
oscillations taking place at the early stages of the simulations.

Here we study the problem of the predominance and
survival of weak species in the simplest generalization of
the spatial stochastic RPS model to an arbitrary number
of species (NS) introduced in [13]. This model considers a
modification to cyclic predator-prey models which introduces
a bidirectional predation interaction of equal strength between
the pairs of species for which a predator-prey interaction was
absent. While in pure cyclic models parity effects have been
found to be important, both in terms of the structure of the
spatial patterns and of the overall dynamics [13,43,44], no
significant dependence on whether the number of species is
even or odd has been observed in the case of this extension
of the RPS model to an arbitrary number of species. In fact,
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this model has been shown to give rise to a population network
characterized by spiral patterns with NS arms, both for odd and
even NS , assuming that all the species have an equal strength.
In this paper, we relax this assumption and investigate whether
the positive impact of a reduced predation probability on
species performance remains significant when the number of
species is increased from three to four.

The outline of this paper is as follows. We start by in-
troducing the generalization of the spatial stochastic RPS
model studied in the present paper, as well as its numerical
implementation, in Sec. II. In Sec. III, we present and discuss
the results of a large number of spatial stochastic numerical
simulations. Special emphasis is given to the way in which the
average densities are affected by the reduced predation prob-
abilities when coexistence prevails and to the dependence of
the survival probability on the size of the simulation lattices.
Finally, we conclude in Sec. IV.

II. SPATIAL STOCHASTIC RPS4 MODEL

In [13], it has been shown, in the context of the simplest
generalization of the spatial stochastic RPS model to NS

species, that spirals with NS arms may arise in the context
of competition models. Here, we shall focus on the May-
Leonard formulation of the four-species subclass of this fam-
ily of models, which we shall refer to as RPS4. To this
end, we shall consider a square lattice (see [45–48] for other
lattice configurations) with N2 sites and periodic boundary
conditions—N shall be referred to as its linear size. The
different species are labeled by i (or j), with i, j = 1, . . . , 4,
and modular arithmetic, where integers wrap around upon
reaching 1 or 4, is assumed (the integers i and j represent the
same species whenever i = j mod 4, where mod denotes the
modulo operation).

In the May-Leonard formulation, every site is either empty
or occupied by a single individual of one of the four species.
The number of individuals of the species i and the number
of empty sites will be denoted by Ii and I0, respectively—the
density of individuals of the species i and the density of
empty sites shall be defined by ρi = Ii/N2 and ρ0 = I0/N2,
respectively. The possible interactions are predation,

i j → i 0,

reproduction,

i 0 → i i,

and mobility,

i � → � i,

where j �= i, i − 1 and � represents either an individual of
any species or an empty site. Reproduction and mobility
interactions occur, respectively, with probabilities r and m
(assumed to be the same for all the species). On the other
hand, the predator-prey interactions of our baseline model are
represented in Fig. 1, where the one-sided arrows represent
one-directional predator-prey interactions between species i
and i + 1, while the double-sided arrows represent bidirec-
tional predator-prey interactions between species i and i + 2.
In our baseline model, the predation probability p is the same
for all species. However, in this paper, we shall investigate the

FIG. 1. Scheme of the predator-prey interactions of our baseline
RPS4 model.

dynamical impact of a reduction of the predation probability
by a factor of Pw ∈ [0, 1] of one, two, or three of the four
species.

At every simulation step, the algorithm randomly picks an
occupied site to be the active one, randomly selects one of its
adjacent neighbor sites to be the passive one, and randomly
chooses an interaction to be executed by the individual at
the active position: Predation, mobility, or reproduction with
probabilities p, m, and r, respectively—in this paper, we use
the von Neumann neighborhood (or 4-neighborhood) com-
posed of a central cell (the active one) and its four nondiagonal
adjacent cells (it has been shown in [42], in the context of a
three-species model, that a Moore neighborhood leads to the
same qualitative results). These three actions are repeated un-
til a possible interaction is selected—note that the interaction
cannot be carried out whenever predation is selected and the
passive is not a prey of the active, or if reproduction is selected
and the passive is not an empty site. A generation time (our
time unit) is defined as the time necessary for N2 successive
interactions to be completed.

III. RESULTS

In this section, we shall describe the results of spatial
stochastic numerical simulations of the spatial RPS4 model
in which one, two, or three species have a reduced predation
probability—again, these species shall be referred to as weak
and the others as strong.

Figures 2(a)–2(d) display the evolution of the densities of
the different species and empty sites (ρi and ρ0, respectively)
over time for single realizations of the spatial stochastic RPS4
model (May-Leonard formulation), starting from random ini-
tial conditions with ρ1 = ρ2 = ρ3 = ρ4 = 1/4. The model
parameters are m = 0.2, p = 0.4, r = 0.4, Pw = 0.5; p1 =
pPw, p2 = p3 = p4 = p (only species 1 is weak) [Fig. 2(a)];
p1 = p2 = pPw, p3 = p4 = p (species 1 and 2 are weak)
[Fig. 2(b)]; p1 = p3 = pPw, p2 = p4 = p (species 1 and 3
are weak) [Fig. 2(c)]; p1 = p2 = p3 = pPw, p4 = p (species
1, 2, and 3 are weak) [Fig. 2(d)], with the strong and weak
species being represented, respectively, by a filled circle and
a circumference. The lower panels of each graph show snap-
shots of the spatial distribution of the different species on a
10002 lattice at t0 = 0, t1 = 50, t2 = 100, t3 = 150, t4 = 200,
t5 = 250, t6 = 750, and t7 = 5000. Species 1, 2, 3, and 4
are represented in red, blue, green, and yellow, respectively,
while the empty sites are left in white. Notice the changes
in the background color at the early stages of simulations
associated to rapid changes in the densities of the four species
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FIG. 2. (a)–(d) The evolution of the densities of the different species and empty sites (ρi and ρ0, respectively) over time for single
realizations of the spatial stochastic RPS4 model (May-Leonard formulation), starting from random initial conditions with ρ1 = ρ2 = ρ3 =
ρ4 = 1/4. The model parameters are m = 0.2, p = r = 0.4, Pw = 0.5. The strong and weak species are represented, respectively, by a filled
circle and a circumference. The lower panels of each graph show snapshots of the spatial distribution of the different species on a 10002 lattice
at t0 = 0, t1 = 50, t2 = 100, t3 = 150, t4 = 200, t5 = 250, t6 = 750, and t7 = 5000. Notice the changes in the background color at the early
stages of simulations associated to rapid changes in the densities of the four species observed in graphs (a), (b), and (d).

observed in Figs. 2(a), 2(b), and 2(d), before the steady-state
configuration characterized by a distinctive spatial pattern
consisting of a network of four-armed spirals is attained.

Figure 2 shows two cases [Figs. 2(b) and 2(d)] in which
one of the weak species is the most abundant and another two
[Figs. 2(a) and 2(c)] in which that does not happen. The two
cases where there is a significant difference in the average
abundance of weak and strong species are the case shown
in Fig. 2(b), in which one of the weak species is the most
abundant, and the case shown in Fig. 2(c), in which there is

a significant advantage for both strong species. Nevertheless,
Fig. 2 already suggests that the average performance of weak
and strong species is, in general, not very different if the simu-
lations are sufficiently large for coexistence to prevail. Notice
that in the case shown in Fig. 2(c), due to the model symmetry,
the performance of the two weak species is identical (the same
holding for the two strong species).

In order to investigate this aspect further, we performed a
large number of simulations of the cases shown in Figs. 2(a)–
2(d) with m = 0.2, and p = r = 0.4, but variable Pw.
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FIG. 3. Average densities of the various species as a function of Pw assuming m = 0.2, p = r = 0.4. Each point results from an average
over the last 104 generations of 20002 simulations with a time span equal to 1.5 × 104 generations. Notice that in cases (a) and (c), the most
abundant species is strong, while in cases (b) and (d), the most abundant species is weak. Also, the most abundant species in all cases (the blue
species) is always a prey of a weak species with which it maintains a unidirectional predator-prey interaction.

Figure 3 shows the value of the average density of the
four species as a function of Pw. The data points result
from an average over the last 104 generations of simula-
tions with a time span equal to 1.5 × 104 generations per-
formed on a 20002 lattice, large enough to guarantee the
preservation of coexistence in all simulations. The results
for Pw = 1 were computed first, starting from random ini-
tial conditions. The final conditions of the simulations with
Pw = 1 were then taken as initial conditions of new simula-
tions with Pw = 1–0.01. The same procedure was repeated
until Pw = 0.35 was reached, thus ensuring a fast conver-
gence of the simulations for every value of Pw.

Figure 3 shows that the most abundant species is strong
in the cases shown in Figs. 3(a) and 3(c), and weak in the
cases shown in Figs. 3(b) and 3(d). Again, note that due to
the model symmetry, and except for the different labeling, the
two strong and the two weak species in the case shown in
Fig. 3(c) are indistinguishable. In order to verify whether the
species strength, on its own, is an advantage or disadvantage in
terms of the overall abundance, we define the average density
of weak and strong species as

〈ρw〉 = 1

#W

∑

i∈W

〈ρi〉, 〈ρs〉 = 1

#S

∑

i∈W

〈ρi〉, (1)

where W and S are, respectively, the sets whose elements
are the weak and strong species, and # is used to represent
the number of elements of each set. Let us also define the
parameter

Aw = 〈ρw〉 − 〈ρs〉
max(〈ρw〉, 〈ρs〉)

, (2)

whose absolute value represents the relative advantage (if
Aw > 0) or disadvantage (if Aw < 0) in being a weak species.
Figure 4 shows the value of Aw as a function of Pw for the
cases shown in Figs. 3(a)–3(d). It shows a case [case (a)]
in which there is, on average, no advantage or disadvantage
in being the weakest species, another [case (c)] in which the
weak species have a significant disadvantage over the others,
and another two in which the weak species have some advan-
tage over the strong species [case (d), especially for Pw � 0.5,
and case (b)]. Globally, these results show that the average
performance of weak and strong species is not significantly
different. Hence, we may conclude that the predominance of
the weak species observed in RPS models with three species

FIG. 4. The relative advantage in being a weak species Aw

(or disadvantage if Aw < 0) as a function of Pw for the cases
(a)–(d) considered in Figs. 2 and 3. Although the performance of
weak and strong species varies from case to case, their global average
performance is not significantly different.
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FIG. 5. Probability P of single species survival and coexistence as a function of the linear lattice size N assuming the same parameters
considered in Fig. 2. Each point was estimated from 103 simulations with a total simulation time equal to 2 × 104 generations, starting from
random initial conditions with ρ1 = ρ2 = ρ3 = ρ4 = 1/4. The error bars are always smaller than the size of the symbols.

no longer holds when the number of species is increased to
four, and we conjecture that a similar result will hold if the
number of species is further increased. Nevertheless, parity
effects may play a role, especially for low values of NS , which
we plan to investigate in future work.

Figure 5 displays the probability P of single species sur-
vival and coexistence as a function of the linear lattice size N
for a May-Leonard formulation of the spatial stochastic RPS4
model with m = 0.2, p = 0.4, r = 0.4, Pw = 0.5; and p1 =
pPw, p2 = p3 = p4 = p [Fig. 5(a)]; p1 = p2 = pPw, p3 =
p4 = p [Fig. 5(b)]; p1 = p3 = pPw, p2 = p4 = p [Fig. 5(c)];
and p1 = p2 = p3 = pPw, p4 = p [Fig. 5(d)]. Each point was
estimated from 103 simulations with a total simulation time
equal to 2 × 104 generations, starting from random initial
conditions with ρ1 = ρ2 = ρ3 = ρ4 = 1/4. The error bars
are always smaller than the size of the symbols, with the
one-sigma uncertainty in the value of P at each point being
approximately equal to [P(1 − P)/103]1/2, with a maximum
of approximately 1.6 × 10−2 for P = 0.5.

Figure 5 shows that the transient coherent oscillations of
the abundances of the four species in the early stages of
simulations [Figs. 2(a), 2(b), and 2(d)] are responsible for a
significant dependence of the survival probability on the linear
size of the lattices—a feature also observed in the context of
a three-species RPS model in which one of the species has
a reduced predation probability [42]. Also, it is interesting to
note that the species with the largest survival probability is not
necessarily the most abundant species in Fig. 3, even if the
probability of coexistence is high. In fact, in the cases shown
by Figs. 3(b) and 3(d), the red species is only the third and
fourth most abundant, respectively, as long as the linear size
of the simulations is large enough for coexistence to prevail.
However, for Nth > 100 and Nth > 200, respectively, the red

species is the one with the highest survival probability in
Figs. 5(b) and 5(d). The explanation of this apparent incon-
sistency resides in the fact that once one of the species disap-
pears, there is a significant change in the nature of the model.

In fact, above a given linear size threshold, the first species
to become extinct is typically the least abundant in Fig. 3.
Once that happens, the remaining species may then be clas-
sified as a function of a strength parameter Sk , with the
subscript k = −1, 0, or 1 representing the number of preys
minus the number of predators (S−1 = i + 3, S0 = i + 2, and
S1 = i + 1, where i is the species that is the first to become
extinct). We verified that, in general, once species i vanishes,
species S−1 = i + 3 and S0 = i + 2 also become extinct (in
that order), with the species S1 = i + 1 (the prey of the
first species to become extinct) being the one surviving in
the end.

This correspondence between the first species to become
extinct and the surviving species may be confirmed by com-
paring Figs. 5 and 6—Fig. 6 displays the probability P∗ that
the species i is the first species to become extinct, or that the
coexistence of the four species is maintained, as a function of
the linear lattice size N for the same simulations considered in
Fig. 5. Again, the error bars are always smaller than the size
of the symbols, with the one-sigma uncertainty in the value
of P∗ at each point being approximately equal to [P∗(1 −
P∗)/103]1/2, with a maximum of approximately 1.6 × 10−2

for P∗ = 0.5. Under the transformation i → i + 1, Fig. 6
would become very similar to Fig. 5, thus confirming our
analysis. For example, in the case shown by Fig. 5(b), if the
coexistence probability is high, one would expect that species
4 [yellow: The least abundant species shown in Fig. 3(b)]
would be the one with the higher extinction probability [this
may be confirmed in Fig. 6(b) for N > 100], thus implying
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FIG. 6. Probability P∗ that the species i is the first species to become extinct, or that the coexistence of the four species is maintained, as a
function of the linear lattice size N . P∗ was estimated using the same simulations considered in Fig. 5.

that its prey (red species 1) should be the one with the highest
survival probability [this may be confirmed in Fig. 5(b) for
N > 100].

We have also considered a modification of our model
where there is no reduction to predation probabilities between
species with bidirectional predator-prey interactions, and ver-
ified that this change has no significant impact on our results.

IV. CONCLUSIONS

In this paper, we have added a dimension to the problem
of the predominance and survival of weak species by inves-
tigating the simplest generalization of the spatial stochastic
RPS model to four species in which one or more species has
a reduced predation probability. We have shown, using lattice
based spatial stochastic simulations of a May-Leonard model
formulation, that if only one of the four species has a reduced
predation probability, it is the prey of the weakest that is the
most abundant species, as long as the simulations are large
enough for coexistence to be maintained. This is in contrast
with the three-species model where the weakest species is
generally the most abundant. By considering cases with more
than one weak species, we have also found that unlike in
the case of the three-species model, there is no significant
average advantage or disadvantage associated to being “weak”
or “strong”. We have also shown that in the RPS4 model, once
one of the species becomes extinct, the surviving species is
typically its prey, this result being largely independent of the
number of weak and strong species and of the specific value
of the parameter characterizing the reduction of the predation
probability of the weak species.

Our results are consistent with those obtained in [6], where
the basins of attraction for species extinction and coexistence
have been investigated in the case of the standard spatial RPS

model with three species. In [6], it has been shown that the
coexistence basin, consisting of the set of initial conditions
which generate a final state in which all species survive and
coexist, shrinks as m/N is enhanced and vanishes above a
critical threshold value of m/N . On the other hand, outside
the coexistence basin, which species survives has been found
to be strongly dependent on initial conditions. In the present
paper, we have confirmed that for a fixed m, the fact that the
coexistence basin increases with N also holds in the context
of a four-species generalization of the standard spatial RPS
model even if one, two, or three of the species have a reduced
predation probability. Furthermore, we have characterized the
dependence of the late time average density of the various
species in the limit of large N as a function of the reduced
predation probability parameter Pw (in the case studied in [6],
all the species had the same strength and, therefore, the same
asymptotic average density inside the coexistence basin).
Furthermore, the strong dependence of the surviving species
on initial conditions outside the coexistence basin found in
[6] is perfectly consistent with the findings of the present
paper: The relatively large oscillations at the initial stages of
simulations with random initial conditions are responsible for
the strong dependence of the species survival probability on
the lattice size.
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