
PHYSICAL REVIEW E 101, 062310 (2020)

Structure of percolating clusters in random clustered networks
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We examine the structure of the percolating cluster (PC) formed by site percolation on a random clustered
network (RCN) model. Using the generating functions, we formulate the clustering coefficient and assortative
coefficient of the PC. We analytically and numerically show that the PC in the highly clustered networks is
clustered even at the percolation threshold. The assortativity of the PC depends on the details of the RCN. The
PC at the percolation threshold is disassortative when the numbers of edges and triangles of each node are
assigned by Poisson distributions, but assortative when each node in an RCN has the same small number of
edges, most of which form triangles. This result seemingly contradicts the disassortativity of fractal networks,
although the renormalization scheme unveils the disassortative nature of a fractal PC.
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I. INTRODUCTION

A number of studies on complex networks have reported
the structural characteristics of a real network ranging from
the World Wide Web to food webs [1–4]. Numerous real
networks are scale free; i.e., the distribution pk of degree
k obeys a power law. Most of the real networks are small
world, indicating that the mean shortest path length scales
with the logarithm of the number of nodes, and the clustering
coefficient, which is the mean probability that two randomly
chosen neighbors of a randomly chosen node are adjacent,
is high. Real networks would be classified by the degree-
degree correlation, i.e., the correlation between the degrees
of directly connected nodes. Social networks have a positive
degree-degree correlation in which similar degree nodes are
more likely to connect to each other while biological and
technological networks have a negative degree-degree corre-
lation indicating that dissimilar degree nodes are more likely
to connect to each other. Furthermore, Song et al. reported
on the fractality of real networks [5–7]: some real networks,
such as the World Wide Web and protein-protein interaction
networks, are fractal in the sense that the number of boxes for
tiling a network decreases with the radius of boxes in a power
law manner.

It is crucial to understand how structural characteristics are
related to each other. Yook et al. [8] discovered from real net-
work data that fractal networks have a negative degree-degree
correlation, namely, disassortativity. This empirical rule is
observed in the synthetic models of fractal networks [6,9],
critical branching trees [10], and connected components at
a critical state of an uncorrelated network model [11,12].
Furthermore, there are related works concerning the degree-
degree correlation of spanning trees in fractal and small-world
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networks [13–15] and the converse condition that disassorta-
tivity makes a network fractal [16]. However, it still remains
unclear why fractal networks possess disassortativity and how
robust the empirical rule is.

Site percolation on networks is known to exhibit a phase
transition concerning clusters, which are connected compo-
nents of occupied nodes. When the number of nodes is suffi-
ciently large, the largest cluster is small and finite for f < fc;
it occupies a finite fraction of the whole network and is called
the percolating cluster (PC) for f > fc, and it is a fractal at
f = fc [17]. Here f is a fraction of the occupied nodes and fc

is called the percolation threshold. The analysis of the largest
cluster at f = fc, which is called the fractal PC, leads us to
further examine the relation between the fractality and the
disassortativity in complex networks.

In a percolation process, a network splits into multiple
connected components. It should be noted that the struc-
tural properties of a connected component are different from
those of the whole network if the network is not singly
connected [11,12,18–20]. Recent studies have focused on the
methods to extract the infinitely large connected component
from uncorrelated networks and compute its properties (e.g.,
degree distribution pk , average degree k̄nn(k) of nodes ad-
jacent to degree k nodes [12], and assortative coefficient r
defined by Pearson’s correlation coefficient for degrees of
directly connected nodes [11]). Previous work [20] considered
a PC formed by site percolation on uncorrelated networks and
investigated the properties of the PC. For uncorrelated random
networks obeying an arbitrary degree distribution with a finite
third moment, the PC possesses a disassortativity above the
percolation threshold [20]: the assortative coefficient r is
always less than zero. Moreover, the average degree k̄nn(k)
of the nodes adjacent to the degree k nodes is proportional to
k−1 at f → fc. These indicate that the fractal PC is disassor-
tative when it is formed by site percolation on uncorrelated
networks.

The present study is a continuation of our previous
work [20] and discusses whether the disassortativity of PCs
is established in correlated networks. It is also interesting
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how other structural properties of the PC differ from those of
original networks: e.g., how is the PC in a clustered network
clustered? Newman [21] and Miller [22] independently intro-
duced a random graph model with clustering, many of whose
network properties can be well described via a generating
function analysis. This model is highly clustered and even
assortative (as shown below)—it is suitable for discussing
the above-mentioned question. In this study, we consider site
percolation on the random clustered network (RCN) model to
investigate the structural properties, the clustering coefficient
and the assortative coefficient, of the PC. Our generating func-
tion analysis describes the structure of the PC well: it perfectly
agrees with the corresponding Monte Carlo simulations. We
show that the PC formed by site percolation in highly clus-
tered networks is clustered even at the percolation threshold.
With respect to the assortativity, both analytical estimates and
simulation results seemingly contradict the disassortativity
of fractal networks: the fractal PC is assortative when the
nodes in an RCN have the same small number of edges, most
of which form triangles. Our discussion focuses on why a
positive assortativity is observed in a fractal PC.

The paper is organized as follows. In Sec. II, we introduce
the RCN model and recall the generating function approach
for deriving its clustering coefficient and assortative coeffi-
cient. In Sec. III, we analyze the structure of the PC formed by
site percolation on RCNs. We derive the clustering coefficient
(Sec. III A) and assortative coefficient (Sec. III B) of the PC,
applying our analysis to two types of RCNs (Sec. III C) in
order to investigate the structures of the PC. In Sec. IV, we
discuss the robustness of the fractal PC’s disassortativity.

II. RANDOM CLUSTERED NETWORK MODEL

The RCN model introduced by Newman [21] generalizes
the configuration model to incorporate clustering. We assume
that the joint probability, ps,t , for the mean fraction of nodes
with s single edges and t triangles is given and assign si edge
stubs and ti triangle stubs to each node i according to ps,t

under the constraint that
∑

i si and
∑

i ti are multiples of 2
and 3, respectively. Given these stubs, we create a network
by randomly selecting pairs of edge stubs and joining them
to make single edges and by randomly selecting triples of
triangle stubs and joining them to form triangles whose edges
are referred to as triangle edges. This results in a random
network in which the number of single edges incident to
each node and the number of triangles it participates in are
distributed according to ps,t . Note that the total degree k of a
node with s single edges and t triangles is k = s + 2t (Fig. 1).

The clustering coefficient C0 of the RCN is given by the
generating functions [21]. First, we introduce the generating
function Gp(x, y) for the joint probability ps,t ,

Gp(x, y) =
∞∑

s=0

∞∑
t=0

ps,t x
syt . (1)

Because the full degree distribution pk is written as pk =∑
s,t ps,tδk,s+2t using the Kronecker delta δi j , the generating

function Gtot (z) for the full degree distribution pk is presented

FIG. 1. Node i in this figure has three single edges and two
triangles. The solid lines and dashed lines represent the single edges
and triangle edges, respectively. Triangles are filled in with gray. The
degree of node i is ki = 3 + 2 × 2 = 7.

as follows:

Gtot (z) =
∞∑

k=0

pkzk = Gp(z, z2). (2)

The average degree 〈k〉 is obtained from Gtot (z) as follows:

〈k〉 = ∂Gtot (z)

∂z

∣∣∣∣
z=1

= 〈s〉 + 2〈t〉, (3)

where 〈s〉 = ∑
s,t sps,t and 〈t〉 = ∑

s,t t ps,t . For the RCN with
N nodes, the number N3 of the connected triplets and the num-
ber N� of the triangles are given by the generating functions
Gp(x, y) and Gtot (z) [21]:

N3 = N
∑

k

k(k − 1)

2
pk = 1

2
N

∂2Gtot (z)

∂z2

∣∣∣∣
z=1

(4)

and

3N� = N
∑
s,t

t ps,t = N
∂Gp(x, y)

∂y

∣∣∣∣
x=y=1

. (5)

We can then write the clustering coefficient C0 of the RCN as
follows:

C0 = 3N�

N3
= 2

∂Gp(x, y)

∂y

∣∣∣∣
x=y=1

/∂2Gtot (z)

∂z2

∣∣∣∣
z=1

. (6)

Moreover, the assortative coefficient r0 of the RCN is
formalized using the generating functions. We consider two
types of excess degree distributions [21]: qs,t , which is the
probability that a node reached by traversing a single edge
has s + 1 single edges and t triangles, and rs,t , which is the
probability that a node reached by traversing a triangle has
s single edges and t + 1 triangles. These probabilities are
naturally derived as follows:

qs,t = s + 1

〈s〉 ps+1,t (7)

and

rs,t = t + 1

〈t〉 ps,t+1. (8)
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We then introduce the generating functions for qs,t and rs,t as

Gq(x, y) =
∞∑

s=0

∞∑
t=0

qs,t x
syt = 1

〈s〉
∂Gp(x, y)

∂x
(9)

and

Gr (x, y) =
∞∑

s=0

∞∑
t=0

rs,t x
syt = 1

〈t〉
∂Gp(x, y)

∂y
, (10)

respectively. Here we denote the probability of choosing a
single edge by

Ps = 〈s〉
〈s〉 + 2〈t〉 , (11)

and the probability of choosing a triangle edge by

Pt = 1 − Ps = 2〈t〉
〈s〉 + 2〈t〉 . (12)

Introducing the probability Q0(k, k′) that two ends of a
randomly chosen edge have degrees k + 1 and k′ + 1 and
the probability Q0(k)[= ∑

k′ Q0(k, k′)] that an edge reaches
a node with degree k + 1, we can calculate the assortative
coefficient r0 of the RCN from the following equation:

r0 = ∂x∂yB0(x, y) − (∂xS0(x))2

(x∂x )2S0(x) − (∂xS0(x))2

∣∣∣∣
x=y=1

, (13)

where B0(x, y) is the generating function for Q0(k1, k2),

B0(x, y) =
∞∑

k1=0

∞∑
k2=0

Q0(k1, k2)xk1 yk2

= PsGq(x, x2)Gq(y, y2) + Pt xyGr (x, x2)Gr (y, y2),

(14)

and S0(x)[= B0(x, 1) = B0(1, x)] is the generating function
for Q0(k),

S0(x) =
∞∑

k=0

Q0(k)xk = PsGq(x, x2) + Pt xGr (x, x2). (15)

We note that the RCN model reduces to the configura-
tion model when no triangle stubs exist, i.e., ps,t = ps,
qs,t = (s + 1)ps+1/〈s〉, and rs,t = 0. The generating functions
are then written as Gp(x, y) = Gtot (x) = G0(x), Gq(x, y) =
G1(x), Gr (x, y) = 0, B0(x, y) = G1(x)G1(y), and S0(x) =
G1(x), where G0(x) = ∑

k pkxk and G1(x) = G′
0(x)/G′

0(1). It
is easily confirmed from Eqs. (6) and (13) that the configura-
tion model is unclustered and uncorrelated; i.e., C0 = 0 and
r0 = 0 [23].

Let us apply the above-mentioned formulations to two
types of RCNs. The first example is the Poisson RCN, which
has a double Poisson distribution

ps,t = e−〈s〉 〈s〉s

s!
e−〈t〉 〈t〉t

t!
. (16)

In this case, ps,t = qs,t = rs,t and the generating func-
tions are simplified to Gp(x, y) = Gq(x, y) = Gr (x, y) =
e〈s〉(x−1)e〈t〉(y−1). The clustering coefficient and the assortative
coefficient are obtained from these generating functions as

C0 = 2〈t〉
2〈t〉 + (〈s〉 + 2〈t〉)2

= 2〈t〉
2〈t〉 + 〈k〉2

(17)

FIG. 2. Assortativity r0 of the Poisson RCN as a function of the
clustering coefficient C0. The solid red, dotted green, and dashed blue
lines represent r0 for the cases of 〈k〉 = 3, 4, and 5, respectively.

and

r0 = 2〈s〉〈t〉
(〈s〉 + 2〈t〉)3 + 2〈t〉(〈s〉 + 2〈t〉)2 + 2〈s〉〈t〉

= C0(1 − C0(1 + 〈k〉))

1 − C0(1 + (2C0 − 1)〈k〉)
� 0, (18)

respectively. Figure 2 plots r0 as a function of C0 for several
values of 〈k〉, showing that the Poisson RCN has a weak
assortativity in the sense that r0 takes a very small positive
value when 0 < C0 < 1/(〈k〉 + 1). It has been pointed out
in [22,24] that nodes assigned many triangles in the RCN
possibly have high degrees compared to those assigned few
triangles, although the edge and triangle stubs are randomly
connected to stubs of the same type; this bias causes a positive
correlation of the nearest degrees.

Another example is the delta RCN, which has a double δ

function,

ps,t = δs,s0δt,t0 , (19)

indicating that all nodes have s0 single edges and t0
triangles. One immediately finds that Gp(x, y) = xs0 yt0 ,
Gq(x, y) = xs0−1yt0 , and Gr (x, y) = xs0 yt0−1; thus, C0 =
2t0/(s0 + 2t0)(s0 + 2t0 − 1) and r0 = 0. The delta RCN is
clustered for t0 > 0; however, it has no degree correlation
because all nodes have the same degree s0 + 2t0.

III. STRUCTURE OF THE PERCOLATING CLUSTER
IN SITE PERCOLATION

We consider site percolation on the RCNs: each node
is occupied with probability f and is unoccupied (removed
from the original network) otherwise. For site percolation on
a network, the PC emerges at f = fc, which is called the
percolation threshold. The fraction S of nodes belonging to
the PC becomes S > 0 (S = 0) when f > fc ( f � fc).

The analytical treatment for site percolation on the RCN is
presented below. We denote by u the probability that a node
reached by traversing a single edge chosen randomly from
the original network is not a member of the PC and by v the
probability that a node reached by traversing a triangle edge
is not a member of the PC. Probabilities u and v are given as
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the solution of the following self-consistent equations,

u = f̃ + f Gq(u, v2) (20)

and

v2 = ( f̃ + f Gr (u, v2))2, (21)

where f̃ = 1 − f . The normalized PC size, S, is given as the
probability that a randomly chosen node is a member of the
PC; hence, we have the following equation:

S = f

(
1 −

∑
s,t

ps,t u
sv2t

)
= f (1 − Gp(u, v2)). (22)

To find the percolation threshold fc, we assume u = 1 − εu

and v2 = 1 − εv and consider the stability of the trivial solu-
tion (u, v) = (1, 1). Expanding Eqs. (20) and (21) to leading
order in εu and εv gives ε = Aε, where ε = [εu, εv]T and

A = f

[ ∑
sqs,t

∑
tqs,t

2
∑

srs,t 2
∑

trs,t

]
. (23)

The percolation threshold fc is then given from the condition
det |A − I| = 0 (I is the identity matrix). The following two
sections focus on the PC for f > fc, where Eqs. (20) and (21)
have a nontrivial solution of u and v, i.e., S > 0, deriving its
clustering coefficient and assortative coefficient.

A. Clustering coefficient of the percolating cluster

We derive the clustering coefficient of the PC by starting
with the conditional probability P(PC, s, t1, t2|m, n) that a
randomly chosen node belongs to the PC and has s single
edges, t1 triangles with one removed, and t2 triangles (i.e., the
node has t1 + 2t2 triangle edges) in the PC, given that it has
m single edges and n triangles in the original network. This
probability is given as

P(PC, s, t1, t2|m, n) = f

(
m

s

)
f s f̃ m−s

(
n

t2

)
f 2t2

(
n − t2

t1

)

× (2 f f̃ )t1 f̃ 2(n−t2−t1 )
(
1 − ũs

f ṽ
2t2+t1
f

)
,

(24)

where

ũ f = Gq(u, v2) and ṽ f = Gr (u, v2) (25)

are the probability that the occupied node reached by travers-
ing a single edge is not a member of the PC and the probability
that the occupied node reached by traversing a triangle edge is
not a member of the PC, respectively. Because the probability
P(PC, s, t1, t2) that a randomly chosen node belongs to the PC
and has s single edges, t1 triangles with one removed, and t2
triangles in the PC is

P(PC, s, t1, t2) =
∑
m,n

P(PC, s, t1, t2|m, n)pm,n

= f
∑
m,n

pm,n

(
m

s

)
f s f̃ m−s

(
n

t2

)
f 2t2

(
n − t2

t1

)

× (2 f f̃ )t1 f̃ 2(n−t2−t1 )
(
1 − ũs

f ṽ
2t2+t1
f

)
, (26)

and the probability P(PC) that a randomly chosen node be-
longs to the PC is

P(PC) =
∑
s,t1,t2

P(PC, s, t1, t2) = f (1 − Gp(u, v2)) = S,

(27)

we easily obtain the probability PPC(s, t1, t2) ≡ P(s, t1, t2|PC)
that a randomly chosen node has s single edges, t1 tri-
angles with one removed, and t2 triangles conditioned
on the node belonging to the PC, from PPC(s, t1, t2) =
P(PC, s, t1, t2)/P(PC).

Introducing the generating function FPC(x, y, z) for
PPC(s, t1, t2) as

FPC(x, y, z) =
∑
s,t1,t2

PPC(s, t1, t2)xsyt1 zt2

= 1

1 − Gp(u, v2)

(
Gp( f x + f̃ , f 2z + 2 f f̃ y + f̃ 2)

− Gp( f ũ f x + f̃ , f 2ṽ2
f z + 2 f f̃ ṽ f y + f̃ 2)

)
,

(28)

we obtain the degree distribution PPC(k) of the PC and the
clustering coefficient CPC of the PC as follows:

PPC(k) = 1

k!

∂k

∂xk
FPC(x, x, x2)

∣∣∣∣
x=0

, (29)

and

CPC = ∂

∂z
FPC(x, y, z)

∣∣∣∣
x=y=z=1

/1

2

∂2

∂x2
FPC(x, x, x2)

∣∣∣∣
x=1

. (30)

We note that for the case of ps,t = ps, FPC(x, y, z) is indepen-
dent of y and z, so CPC = 0. It means that the PC formed by
site percolation on the configuration model is unclustered.

B. Assortative coefficient of the percolating cluster

Next, we formalize the assortative coefficient of the PC.
Our derivation is an extension of [20] in which the assortative
coefficient of the PC formed by site percolation on uncorre-
lated networks was derived.

First, we consider the conditional probability
Qs(PC, s1, t1, s2, t2|m1, n1, m2, n2) that a single edge belongs
to the PC and its one end has s1 other single edges and t1
triangle edges and the other end has s2 other single edges
and t2 triangle edges in the PC, given that the two ends of
the selected single edge have m1 other single edges and n1

triangles and m2 other single edges and n2 triangles in the
original network, respectively. This probability is written as
follows:

Qs(PC, s1, t1, s2, t2|m1, n1, m2, n2)

= f 2

(
m1

s1

)
f s1 f̃ m1−s1

(
2n1

t1

)
f t1 f̃ 2n1−t1

(
m2

s2

)

× f s2 f̃ m2−s2

(
2n2

t2

)
f t2 f̃ 2n2−t2

(
1 − ũs1+s2

f ṽ
t1+t2
f

)
. (31)

Here, f 2 in the right-hand side represents the probability
that two ends of the focal edge are not removed and thus
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the edge remains. The probability Qs(PC, s1, t1, s2, t2) that a
single edge belongs to the PC and its one end has s1 other

single edges and t1 triangle edges and the other end has s2

other single edges and t2 triangle edges in the PC is

Qs(PC, s1, t1, s2, t2) =
∑

m1�s1

∑
m2�s2

∑
2n1�t1

∑
2n2�t2

Qs(m1, n1, m2, n2)Qs(PC, s1, t1, s2, t2|m1, n1, m2, n2). (32)

Here, Qs(m1, n1, m2, n2) is the probability that a single edge has two ends: one has m1 other single edges and n1 triangles and
the other has m2 other single edges and n2 triangles in the original network. This probability is written as Qs(m1, n1, m2, n2) =
qm1,n1 qm2,n2 in that the RCN is a random network. The corresponding generating function for Qs(PC, s1, t1, s2, t2) is as follows:

Hs(x1, x2, y1, y2) =
∞∑

s1=0

∞∑
t1=0

∞∑
s2=0

∞∑
t2=0

Qs(PC, s1, t1, s2, t2)xs1
1 xt1

2 ys2
1 yt2

2

= f 2(Gq(x1, x2)Gq(y1, y2) − Gq(ũ f x1, ṽ f x2)Gq(ũ f y1, ṽ f y2)), (33)

where

Gq(x, y) = Gq( f̃ + f x, ( f̃ + f y)2). (34)

We further introduce the conditional probability Qt (PC, s1, t1, s2, t2|m1, n1, m2, n2) that a triangle edge belongs to the PC and
one end of the edge has s1 single edges and t1 other triangle edges and the other end has s2 single edges and t2 other triangle edges
in the PC, respectively, given that the two ends of the selected triangle edge have m1 single edges and n1 other triangles (triangles
except the one including the selected edge) and m2 single edges and n2 other triangles in the original network, respectively, as

Qt (PC, s1, t1, s2, t2|m1, n1, m2, n2)

= f 2 f̃

(
m1

s1

)
f s1 f̃ m1−s1

(
2n1

t1

)
f t1 f̃ 2n1−t1

(
m2

s2

)
f s2 f̃ m2−s2

(
2n2

t2

)
f t2 f̃ 2n2−t2

(
1 − ũs1+s2

f ṽ
t1+t2
f

)

+ f 3

(
m1

s1

)
f s1 f̃ m1−s1

(
2n1

t1 − 1

)
f t1−1 f̃ 2n1−t1+1

(
m2

s2

)
f s2 f̃ m2−s2

(
2n2

t2 − 1

)
f t2−1 f̃ 2n2−t2+1

(
1 − ũs1+s2

f ṽ
t1+t2−1
f

)
. (35)

The two ends of a triangle edge have a common neighbor to form a triangle. The first and the second terms of the right-hand
side are the contributions when this neighbor is unoccupied and occupied, respectively. The probability Qt (PC, s1, t1, s2, t2) that
a triangle edge belongs to the PC and its ends have s1 single edges and t1 other triangle edges and s2 single edges and t2 other
triangle edges in the PC, respectively, is

Qt (PC, s1, t1, s2, t2) =
∑

m1�s1

∑
m2�s2

∑
2n1�t1

∑
2n2�t2

Qt (m1, n1, m2, n2)Qt (PC, s1, t1, s2, t2|m1, n1, m2, n2), (36)

where the probability Qt (m1, n1, m2, n2) that the ends of a triangle edge have m1 single edges and n1 other triangles and m2

single edges and n2 other triangles in the original network, respectively, is Qt (m1, n1, m2, n2) = rm1,n1 rm2,n2 for the RCN. The
corresponding generating function for Qt (PC, s1, t1, s2, t2) is as follows:

Ht (x1, x2, y1, y2) =
∞∑

s1=0

∞∑
t1=0

∞∑
s2=0

∞∑
t2=0

Qt (PC, s1, t1, s2, t2)xs1
1 xt1

2 ys2
1 yt2

2

= f 2(( f̃ + f x2y2)Gr (x1, x2)Gr (y1, y2) − ( f̃ + f ṽ f x2y2)Gr (ũ f x1, ṽ f x2)Gr (ũ f y1, ṽ f y2)), (37)

where

Gr (x, y) = Gr ( f̃ + f x, ( f̃ + f y)2). (38)

The probability Q(PC, s1, t1, s2, t2) that an edge belongs to the PC and the ends of the selected edge have s1 single edges and
t1 triangle edges and s2 single edges and t2 triangle edges except the selected edge in the PC, respectively, is

Q(PC, s1, t1, s2, t2) = PsQs(PC, s1, t1, s2, t2) + Pt Qt (PC, s1, t1, s2, t2), (39)

in that an edge chosen randomly from the original network is either of a single edge (with probability Ps) or a triangle edge (with
probability Pt ). The corresponding generating function is given as follows:

H (x1, x2, y1, y2) =
∞∑

s1=0

∞∑
t1=0

∞∑
s2=0

∞∑
t2=0

Q(PC, s1, t1, s2, t2)xs1
1 xt1

2 ys2
1 yt2

2 = PsHs(x1, x2, y1, y2) + Pt Ht (x1, x2, y1, y2). (40)

The corresponding generating function for the probability Q(PC, k1, k2) that an edge belongs to the PC and has two ends with
degrees k1 + 1 and k2 + 1 in the PC is given as H (x, x, y, y). The probability Q(PC) that a randomly chosen edge belongs to a
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FIG. 3. Comparison with the analytical treatments and simulation results for the structures of the PC formed by site percolation:
(a) normalized size S, (b) clustering coefficient CPC, and (c) assortative coefficient rPC. The Poisson RCN with 〈k〉 = 4 is utilized as the
original network. The simulation results are for the cases of 〈s〉 = 0 and 〈t〉 = 2 (red circles), 〈s〉 = 2 and 〈t〉 = 1 (green squares), and 〈s〉 = 4
and 〈t〉 = 0 (blue triangles). The corresponding analytical estimates are represented by the solid lines, dotted lines, and dashed lines.

PC is given as follows:

Q(PC) = H (1, 1, 1, 1) = f 2
(
Ps(1 − ũ2

f ) + Pt (1 − ( f̃ + f ṽ f )ṽ2
f )

)
. (41)

Hence, we obtain the probability QPC(k1, k2) ≡ Q(k1, k2|PC) that an edge chosen from the PC has two ends with degree k1 + 1
and k2 + 1 in the PC from QPC(k1, k2) = Q(PC, k1, k2)/Q(PC).

Using the generating function BPC(x, y) for QPC(k1, k2) given as

BPC(x, y) =
∑
k1�0

∑
k2�0

QPC(k1, k2)xk1 yk2 = H (x, x, y, y)

Q(PC)
= f 2Ps

Q(PC)
[Gq(x, x)Gq(y, y) − Gq(ũ f x, ṽ f x)Gq(ũ f y, ṽ f y)]

+ f 2Pt

Q(PC)
[( f̃ + f xy)Gr (x, x)Gr (y, y) − ( f̃ + f ṽ f xy)Gr (ũ f x, ṽ f x)Gr (ũ f y, ṽ f y)], (42)

and the generating function SPC(x)[= BPC(x, 1) = BPC(1, x)] for the probability QPC(k) = ∑
k′ QPC(k, k′) of an edge in the PC

reaching a node with degree k + 1, given as

SPC(x) =
∑
k�0

QPC(k)xk = H (x, x, 1, 1)

Q(PC)

= f 2Ps

Q(PC)
[Gq(x, x) − ũ f Gq(ũ f x, ṽ f x)] + f 2Pt

Q(PC)
[( f̃ + f x)Gr (x, x) − ( f̃ + f ṽ f x)ṽ f Gr (ũ f x, ṽ f x)], (43)

we obtain the assortative coefficient rPC of the PC as

rPC = ∂x∂yBPC(x, y) − (∂xSPC(x))2

(x∂x )2SPC(x) − (∂xSPC(x))2

∣∣∣
x=y=1

. (44)

This is an extension of the formulation for uncorrelated
networks [20]. For the case of ps,t = ps, one finds, after
tedious but simple algebra, that the above formulation yields
the assortative coefficient of the PC on the uncorrelated
networks: rPC is given by Eq. (37) with BPC(x, y) = [G1( f̃ +
f x)G1( f̃ + f y) − G1( f̃ + f ũ f x)G1( f̃ + f ũ f y)]/(1 − ũ2

f )

and SPC(x) = [G1( f̃ + f x) − ũ f G1( f̃ + f ũ f x)]/(1 − ũ2
f ),

where ũ f = G1(u) and u is the solution of u = f̃ + f G1(u).

C. Examples with numerical check

In this section, we applied our analysis to two RCNs,
namely, the Poisson RCN and the delta RCN, discussing the
structural properties of the PC formed by site percolation.
Moreover, we performed Monte Carlo simulations to verify
the validity of our analytical estimates. In our simulations,
we generated ten network realizations consisting of N = 3 ×
106 nodes and carried out the Newman-Ziff algorithm [25]

for site percolation 103 times on each realization. On each
run, we specified the largest cluster corresponding to the PC
for f > fc and evaluated its size, clustering coefficient, and
assortative coefficient to compare each average value with the
corresponding analytical estimate.

Figures 3(a)–3(c) show the f dependence of the normal-
ized PC size, S, the clustering coefficient of the PC, CPC,
and the assortative coefficient of the PC, rPC, respectively, for
site percolation on the Poisson RCN with 〈k〉 = 4 and several
combinations of 〈s〉 and 〈t〉. The solid, dotted, and dashed
lines given only for f > fc represent the analytical estimates
and the symbols (red circles, green squares, and blue triangles)
represent the Monte Carlo results. Our analytical estimates
perfectly matched with the simulation results for f > fc in
all cases. As shown in Fig. 3(a), the PC on the Poisson RCN
emerges at fc = 1/4, irrespective of the value of C0 [26].
(Note that for bond percolation fc depends on the value of
C0 [27], as shown in Fig. 8(a).) Figures 3(b) and 3(c) show
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FIG. 4. Dependence of (a) clustering coefficient CPC and (b) assortative coefficient rPC of the fractal PC formed by site percolation on 〈s〉
and 〈t〉 of the Poisson RCN. Here CPC and rPC at f � fc are obtained from analytical estimates. Blank areas reflect the absence of the PC.
(c) Scatter plot of CPC (color-coded values in (a)) and rPC (color-coded values in (b)) on the fractal PC.

that both the clustering coefficient CPC and the assortative
coefficient rPC of the PC exhibit no singular behaviors at and
around the percolation threshold fc. Moreover, we notice that
CPC > 0 at f = fc (i.e., the PC is already highly clustered
when it emerged), although it is a fractal (i.e., a fractal PC).
For the case of 〈t〉 = 0, the assortative coefficient, rPC, of the
PC is always negative [see the blue triangles in Fig. 3(c)]
and takes −1/5 at f = fc, as already derived in [20]. The
assortative coefficient of the PC becomes positive for a large
f if the original RCN is assortative [see the red circles and
green squares in Fig. 3(c)], although rPC always becomes
negative at and around fc, irrespective of the assortativity
of the original network. In Figs. 4(a) and 4(b), we plot the
clustering coefficient and assortative coefficient of the fractal
PC, i.e., CPC and rPC at f = fc, in the (〈s〉, 〈t〉) plane. The
clustering coefficient of the fractal PC becomes smaller at
larger 〈s〉 and larger 〈t〉 [Fig. 4(a)]. Figures 4(b) and 4(c)
clearly show that the assortative coefficient of the fractal PC is
negative for any 〈s〉 and 〈t〉. This supports the disassortativity
of the fractal PC, according with our previous work [20] for
uncorrelated networks.

The analysis of the RCN, however, does not necessarily
give the disassortativity of fractal PCs. Figure 5 shows the
results of S, CPC, and rPC, for the delta RCN of s0 + t0 = 4.
We again observe that CPC and rPC show no singular behaviors
at fc and CPC > 0 already at f = fc (if C0 > 0). However,

both analytical estimate and simulations yield a different
conclusion as regards the assortativity: rPC > 0 even at fc

if the delta RCN is clustered [see the red circles and green
squares in Fig. 5(c)]. In Fig. 6, we calculate CPC and rPC at
f = fc for the delta RCNs with changing s0 and t0 in the range
k = 3–12, and display their scatter plot. Figures 6(a) and 6(b)
show that CPC and rPC of the fractal PC tend to decrease as
degree k increases. Furthermore, in the delta RCNs with a
fixed value of k, CPC and rPC of the fractal PC decrease as
the number of triangles per node t0 decreases. As the blue
circles in Fig. 6(c) indicate, the fractal PC in the delta RCN
can be assortative when it is highly clustered or, equivalently,
the original delta RCN has small k and large C0.

IV. DISCUSSION

In this study, we derived the clustering coefficient CPC and
assortative coefficient rPC of the percolating cluster formed
by site percolation on the random clustered network, thereby
validating the disassortativity of fractal networks. Applying
our formulation to the RCN whose joint probability of sin-
gle edges and triangles obeys a double Poisson distribution
(Poisson RCN) and the RCN whose nodes have the same num-
bers of single edges and triangles (delta RCN), we confirmed
that our analytical estimates for CPC and rPC perfectly agree
with the simulation results. Our results signified that both

FIG. 5. Comparison with the analytical treatments and simulation results for the structures of the PC formed by site percolation:
(a) normalized size S, (b) clustering coefficient CPC, and (c) assortative coefficient rPC. The delta RCN with degree 4 is utilized as the original
network. The simulation results are for the cases of s0 = 0 and t0 = 2 (red circles), s0 = 2 and t0 = 1 (green squares), and s0 = 4 and t0 = 0
(blue triangles). The corresponding analytical estimates are represented by the solid lines, dotted lines, and dashed lines.

062310-7



TAKEHISA HASEGAWA AND SHOGO MIZUTAKA PHYSICAL REVIEW E 101, 062310 (2020)

FIG. 6. Result for (a) clustering coefficient CPC and (b) assortative coefficient rPC of the fractal PC formed by site percolation on the delta
RCN with degree k and (c) their scatter plot. Here CPC and rPC at f � fc are obtained from analytical estimates. All possible combinations of
s0 and t0 for given degree k(= 3, 4, . . . , 12) are considered. The blue circles (red crosses) represent data indicating rPC > 0 (rPC < 0).

the clustering coefficient and the assortative coefficient of the
PC do not exhibit any singular behavior near the percolation
threshold, and the PC at the percolation threshold, namely,
the fractal PC, is clustered as long as an underlying RCN is
clustered. As regards the assortativity of the PC, the result
seemingly contradicts the disassortativity of the fractal net-
works: the fractal PCs exhibit rPC < 0 for all Poisson RCNs
and most delta RCNs, but rPC > 0 for only a few delta RCNs.

The question remains as regards to whether the last re-
sult immediately denies the disassortativity of the fractal
networks. We should note that the positive assortativity of
the delta RCN is easily lost. For example, we revisit site
percolation on the delta RCN with ps,t = δs,0δt,2, in which
rPC > 0 for a fractal PC [red circles in Fig. 5(c)]. This
network consists of only triangles; triangles are a basic unit
giving a characteristic scale. Let us consider applying the box
covering scheme [5,6] to a fractal PC formed on this network
[Fig. 7(a)]. Tiling a fractal PC with the estimated minimum
number of boxes of a linear size lB = 4 and renormalizing
it so that each box is replaced as a supernode [Fig. 7(b)],
we recalculated the clustering coefficient and the assortative
coefficient of the renormalized ones. Renormalization breaks
the characteristic scale (triangle) and unveils a disassorta-
tive structure: the clustering coefficient and the assortative
coefficient are changed from CPC ≈ 0.333 and rPC ≈ 0.245
to CPC ≈ 0.112 and rPC ≈ −0.129, respectively, under renor-
malization [28]. It indicates that the assortativity of a fractal

FIG. 7. Snapshot of (a) the largest cluster at the percolation
threshold and (b) the renormalized one using the box counting
scheme with lB = 4. The numbers of nodes and triangles decrease
from 1913 and 480 in (a) to 509 and 37 in (b), respectively. The
assortative coefficient of the largest cluster is then changed from
0.215 to −0.126.

PC in the delta RCN is attributed to the characteristic scale
of the triangles. The fractal PC formed by site percolation
on the delta RCN appears disassortative for larger scales. As
was shown in Fig. 6, the assortativity of the fractal PC is
observed in only five combinations of s0 and t0, i.e., (s0, t0) =
(1, 1), (2, 1), (0, 2), (1, 2), (0, 3). In these combinations, ev-
ery node has equally few edges, most of which form triangles.
As with the present example (ps,t = δs,0δt,2), it is likely that
the assortativity observed for delta RCNs is attributed to the
triangles giving a characteristic scale and is easily broken by
rescaling.

Moreover, the disassortativity of a fractal PC arises in the
delta RCN when it is formed by bond percolation. Similar
to site percolation, we can derive the clustering coefficient
and the assortative coefficient of the PC formed by bond
percolation on the RCN (see the Appendix). Figures 8 and 9
show the structural properties of the PC formed by bond
percolation on the Poisson and delta RCNs, respectively. The
triangles are easily broken in bond percolation in contrast to
the formation of the PC: the clustering coefficient of the fractal
PC is relatively small when compared with site percolation
[Figs. 8(b) and 9(b)]. As indicated by both analytical estimates
and simulation results, rPC is negative at f = fc for not only
the Poisson RCN but also for the delta RCN [Figs. 8(c)
and 9(c)]. The fractal PC is thus disassortative on the delta
RCN when formed by bond percolation.

Having considered these results, it can be presumed that the
fractal networks formed by percolation processes on networks
are disassortative in essence. Further studies on the disassorta-
tivity of fractal networks should be conducted. This study has
concentrated on the degree-degree correlation of networks,
but has not asked for higher-order degree correlations, such as
the long-range degree correlation [29–32]. Our formulation
in this study may be extended to compute the long-range
correlation, and it is expected to be provided by future work.
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APPENDIX: STRUCTURE OF THE PERCOLATING CLUSTER FORMED BY BOND PERCOLATION IN RANDOM
CLUSTERED NETWORK

In this Appendix, we treat bond percolation on the RCN: each edge is open (not removed) with probability f and closed
(removed from the original network) otherwise (probability f̃ = 1 − f ). The normalized PC size, S, is given by solving the
following equations [21]:

S = 1 − Gp(u, v2), (A1)

with

u = f̃ + f Gq(u, v2) (A2)

and

v2 = 1 − 2 f f̃ 2(1 − Gr (u, v2)) − f 2(3 f̃ + f )(1 − Gr (u, v2)2)

= f̃ 2 + 2 f̃ 2 f Gr (u, v2) + f 2(3 f̃ + f )Gr (u, v2)2. (A3)

Here v2 is the probability that the two adjacent nodes forming a triangle with a node are not members of the PC. The percolation
threshold fc is given as the point above which u < 1 and v < 1 are the solution of the above-mentioned equations. By linearizing
Eqs. (A2) and (A3) around (u, v) = (1, 1) and examining the condition det |A − I| = 0, where

A =
[

f
∑

sqs,t f
∑

tqs,t

2 f (1 + f f̃ )
∑

srs,t 2 f (1 + f f̃ )
∑

trs,t

]
(A4)

and I is the identity matrix, we obtain the percolation threshold fc. We hereafter assume f > fc, focusing on the PC.
First, we derive the clustering coefficient of the PC. A randomly chosen node has m single edges and n triangles in an original

network with probability pm,n. We consider the probability P(PC, s, t1, t2, t3, t4) that a randomly chosen node belongs to the PC
and has s single edges and t1, t2, t3, and t4 motifs (shown in Fig. 10) in the PC. This probability is presented as follows:

P(PC, s, t1, t2, t3, t4) =
∑
m,n

pm,n

(
m

s

)
f s f̃ m−s

(
n

t1, t2, t3, t4

)
f 3t4 ( f 2 f̃ )t3 (2 f 2 f̃ )t2 (2 f f̃ 2)t1 f̃ 2(n−t1−t2−t3−t4 )(1 − ũs

f ṽ
t1+2t2+2t3+2t4
f ),

(A5)

where ũ f = Gq(u, v2) and ṽ f = Gr (u, v2). We denote by FPC(x, y1, y2, z1, z2) the generating function for the probability
PPC(s, t1, t2, t3, t4) that a node randomly chosen from the PC has s single edges and t1, t2, t3, and t4 motifs in Fig. 10. Using
PPC(s, t1, t2, t3, t4) = P(PC, s, t1, t2, t3, t4)/P(PC), where P(PC) is the probability that a randomly chosen node is a member of
the PC,

P(PC) = 1 − Gp(u, v2) = S, (A6)

and after some transformations we obtain

FPC(x, y1, y2, z1, z2) =
∞∑

s=0

∞∑
t1=0

∞∑
t2=0

∞∑
t3=0

∞∑
t4=0

PPC(s, t1, t2, t3, t4)xsyt1
1 yt2

2 zt3
1 zt4

2

= 1

P(PC)
Gp

(
f̃ + f x, f̃ 2 + 2 f̃ 2 f y1 + 2 f̃ f 2y2 + f̃ f 2z1 + f 3z2

)
− 1

P(PC)
Gp

(
f̃ + f ũ f x, f̃ 2 + 2 f̃ 2 f ṽ f y1 + 2 f̃ f 2ṽ2

f y2 + f̃ f 2ṽ2
f z1 + f 3ṽ2

f z2
)
. (A7)

FIG. 8. Comparison with the analytical treatments and simulation results for the structures of the PC formed by bond percolation:
(a) normalized size S, (b) clustering coefficient CPC, and (c) assortative coefficient rPC. The Poisson RCN with 〈k〉 = 4 is utilized as the
original network. The simulation results are for the cases of 〈s〉 = 0 and 〈t〉 = 2 (red circles), 〈s〉 = 2 and 〈t〉 = 1 (green squares), and 〈s〉 = 4
and 〈t〉 = 0 (blue triangles). The corresponding analytical estimates, whose derivations are given in the Appendix, are represented by the solid
lines, dotted lines, and dashed lines.
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FIG. 9. Comparison with the analytical treatments and simulation results for the structures of the PC formed by bond percolation:
(a) normalized size S, (b) clustering coefficient CPC, and (c) assortative coefficient rPC. The delta RCN with degree 4 is utilized as the original
network. The simulation results are for the cases of s0 = 0 and t0 = 2 (red circles), s0 = 2 and t0 = 1 (green squares), and s0 = 4 and t0 = 0
(blue triangles). The corresponding analytical estimates, whose derivations are given in the Appendix, are represented by the solid lines, dotted
lines, and dashed lines.

The degree distribution of the PC, PPC(k), is given as

PPC(k) = 1

k!

∂k

∂xk
FPC(x, x, x, x2, x2)

∣∣∣∣
x=0

, (A8)

and the clustering coefficient of the PC, CPC, is given as CPC = 3N�/N3, where

3N� = ∂

∂z2
FPC(x, y1, y2, z1, z2)

∣∣∣∣
x=y1=y2=z1=z2=1

(A9)

and

N3 = 1

2

∂2

∂x2
FPC(x, x, x, x2, x2)

∣∣∣∣
x=1

. (A10)

Next, we formalize the assortative coefficient of the PC, rPC. The derivation of rPC for bond percolation is the same as that for
site percolation in Sec. III B.

The generating function for Q(PC, s1, t1, s2, t2), which is the probability that an edge belongs to the PC and its ends have s1

single edges and t1 triangle edges and s2 single edges and t2 triangle edges except the selected edge in the PC, respectively, is

H (x1, x2, y1, y2) = PsHs(x1, x2, y1, y2) + Pt Ht (x1, x2, y1, y2), (A11)

where

Hs(x1, x2, y1, y2) = f Gq(g1(x1), g2(x2))Gq(g1(y1), g2(y2)) − f Gq(h1(x1), h2(x2))Gq(h1(y1), h2(y2)) (A12)

and

Ht (x1, x2, y1, y2) = f ( f̃ 2 + f̃ f (x2 + y2) + f 2x2y2)Gr (g1(x1), g2(x2))Gr (g1(y1), g2(y2))

− f ( f̃ 2 + f̃ f ṽ f (x2 + y2) + f 2ṽ f x2y2)Gr (h1(x1), h2(x2))Gr (h1(y1), h2(y2)). (A13)

We used the following notations in Eqs. (A12) and (A13):

g1(x) = f̃ + f x, g2(x) = f̃ 2 + 2 f̃ f x + f 2x2 (A14)

and

h1(x) = f̃ + f ũ f x, h2(x) = f̃ 2 + 2 f̃ 2 f ṽ f x + 2 f̃ f 2ṽ2
f x + f 2ṽ2

f x2. (A15)

The generating function for the probability Q(PC, k, k′) that an edge belongs to the PC and has two ends with degrees k + 1
and k′ + 1 in the PC is then presented as

∑
k,k′ Q(PC, k, k′)xkyk′ = H (x, x, y, y) and the generating function for the probability

m edges

.... ....
or

t₁ t₂ t₃ t₄ n -t₁ -t₂ -t₃ -t₄ s m-s n triangles

FIG. 10. Motifs of the single edges and triangles in a cluster formed by bond percolation. The solid and dashed lines represent the open
and closed edges, respectively.
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Q(PC, k) = ∑
k′ Q(PC, k, k′) that an edge belongs to the PC and reaches a node with degree k + 1 is given as

∑
k Q(PC, k)xk =

H (x, x, 1, 1). The probability that a randomly chosen edge is open and belongs to the PC is

Q(PC) = H (1, 1, 1, 1)

= f Ps(1 − ũ2
f ) + f Pt

(
1 − ( f̃ 2 + f (2 f̃ + f )ṽ f )ṽ2

f

)
. (A16)

Then the assortative coefficient of PC, rPC, is given as

rPC = ∂x∂yBPC(x, y) − (∂xSPC(x))2

(x∂x )2SPC(x) − (∂xSPC(x))2

∣∣∣∣
x=y=1

, (A17)

where BPC(x, y) is the generating function for QPC(k, k′) = Q(PC, k, k′)/Q(PC),

BPC(x, y) = H (x, x, y, y)

Q(PC)

= f Ps

Q(PC)
[Gq(g1(x), g2(x))Gq(g1(y), g2(y)) − Gq(h1(x), h2(x))Gq(h1(y), h2(y))]

+ f Pt

Q(PC)
[( f̃ 2 + f̃ f (x + y) + f 2xy)Gr (g1(x), g2(x))Gr (g1(y), g2(y))

−( f̃ 2 + f̃ f ṽ f (x + y) + f 2ṽ f xy)Gr (h1(x), h2(x))Gr (h1(y), h2(y))], (A18)

and SPC(x) is the generating function for QPC(k) = ∑
k′ QPC(k, k′),

SPC(x) = H (x, x, 1, 1)

Q(PC)

= f Ps

Q(PC)
[Gq(g1(x), g2(x)) − Gq(h1(x), h2(x))ũ f ]

+ f Pt

Q(PC)
[( f̃ + f x)Gr (g1(x), g2(x)) − ( f̃ 2 + f̃ f ṽ f + f ṽ f x)Gr (h1(x), h2(x))ṽ f ]. (A19)
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