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We present analytical results for the structural evolution of random networks undergoing contraction processes
via generic node deletion scenarios, namely, random deletion, preferential deletion, and propagating deletion.
Focusing on configuration model networks, which exhibit a given degree distribution P0(k) and no correlations,
we show using a rigorous argument that upon contraction the degree distributions of these networks converge
towards a Poisson distribution. To this end, we use the relative entropy St = S[Pt (k)||π (k|〈K〉t )] of the degree
distribution Pt (k) of the contracting network at time t with respect to the corresponding Poisson distribution
π (k|〈K〉t ) with the same mean degree 〈K〉t as a distance measure between Pt (k) and Poisson. The relative
entropy is suitable as a distance measure since it satisfies St � 0 for any degree distribution Pt (k), while equality
is obtained only for Pt (k) = π (k|〈K〉t ). We derive an equation for the time derivative dSt/dt during network
contraction and show that the relative entropy decreases monotonically to zero during the contraction process.
We thus conclude that the degree distributions of contracting configuration model networks converge towards
a Poisson distribution. Since the contracting networks remain uncorrelated, this means that their structures
converge towards an Erdős-Rényi (ER) graph structure, substantiating earlier results obtained using direct
integration of the master equation and computer simulations [Tishby et al., Phys. Rev. E 100, 032314 (2019)].
We demonstrate the convergence for configuration model networks with degenerate degree distributions (random
regular graphs), exponential degree distributions, and power-law degree distributions (scale-free networks).
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I. INTRODUCTION

Complex network architectures and dynamical processes
taking place on them play a central role in current research
[1–3]. Since the 1960s, mathematical studies of networks
were focused on model systems such as the Erdős-Rényi (ER)
network [4–6], which exhibits a Poisson degree distribution
of the form π (k|c) = e−cck/k!, where c is the mean degree
[7]. In an ER network of N nodes, each pair of nodes
is connected with probability p, where p = c/(N − 1). In
fact, ER networks form a maximum entropy ensemble under
the constraint that the mean degree is fixed [8–11]. In the
1990s, the growing availability of data on large biological,
social, and technological networks revolutionized the field.
Motivated by the observation that the World Wide Web [12]
and scientific citation networks [13] exhibit power-law degree
distributions, Barabási and Albert (BA) introduced a simple
model that captures the essential growth dynamics of such
networks [14,15]. A key feature of the BA model is the
preferential attachment mechanism, namely, the tendency of
new nodes to attach preferentially to high degree nodes. Using
mean-field equations and computer simulations it was shown
that the combination of growth and preferential attachment
leads to the emergence of scale-free networks with power-law
degree distributions [15]. This result was later confirmed and
generalized using a more rigorous formulation based on the
master equation [16,17]. It was subsequently found that a
large variety of empirical networks exhibit such scale-free

structures, which are remarkably different from ER networks
[14,18].

In many of these networks the growth phase is not likely
to proceed indefinitely. Moreover, networks may be exposed
to node deletion processes due to node failures, attacks, and
epidemics, which may eventually halt the expansion phase
and induce the contraction and eventual collapse of the
network. Since network growth is a kinetic nonequilibrium
process, it is not a reversible process, namely, the contraction
process is not the same as the growth process when played
backwards in time. A particularly interesting example of the
contraction phase can be seen in the field of social networks.
Such networks may lose users due to loss of interest, concerns
about privacy, or their migration to other social networks
[19,20]. Another example of great practical importance is the
cascading failure of power grids [21,22]. Infectious processes
such as epidemics that spread in a network [23,24] lead to
the contraction of the subnetwork of uninfected nodes and
may thus be considered as network contraction processes.
Similarly, network immunization schemes [25] also belong
to the class of network contraction processes because they
induce the contraction of the subnetwork of susceptible nodes.

Three generic scenarios of network contraction were iden-
tified: the scenario of random node deletion that describes
the random, inadvertent failure of nodes, the scenario of
preferential node deletion that describes intentional attacks
that are more likely to focus on highly connected nodes,
and the scenario of propagating node deletion that describes
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viral and infectious processes that spread like epidemics. It
was found that scale-free networks are resilient to attacks
targeting random nodes, but are vulnerable to attacks that
target high-degree nodes or hubs. Using the framework of
percolation theory, it was shown that when the number of
deleted nodes exceeds some threshold, the network breaks
down into disconnected components [26–30]. However, the
evolution of the network structure throughout the contraction
phase was not addressed.

In a recent paper we analyzed the structural evolution of
networks during the contraction process [31]. To this end we
derived a master equation for the time dependence of the
degree distribution during network contraction via the ran-
dom deletion, preferential deletion, and propagating deletion
scenarios. Using the relative entropy and the degree-degree
correlation function we showed that the ER graph structure,
which exhibits a Poisson degree distribution, is an asymptotic
structure for these network collapse scenarios, in analogy to
the way in which the scale-free structure is an asymptotic
solution for the preferential attachment growth scenario.

In this paper we use the relative entropy to provide a rigor-
ous proof that the ER structure is an attractive solution for the
three contraction scenarios. This means that the ER structure
is a universal asymptotic structure for contracting networks.
For simplicity, we consider initial networks drawn from con-
figuration model network ensembles that exhibit a desired
degree distribution P0(k) and no degree-degree correlations.
During the contraction process the degree distribution of the
network evolves. We denote the degree distribution at time
t by Pt (k) and its mean degree by 〈K〉t . We use the relative
entropy St = S[Pt (k)||π (k|〈K〉t )] as a distance measure be-
tween the degree distribution Pt (k) of the contracting network
and the corresponding Poisson distribution π (k|〈K〉t ) with
the same mean degree 〈K〉t . Using this measure we obtain
rigorous results for the convergence of the degree distribution
of contracting networks towards a Poisson distribution. To this
end, we derive an equation for the time derivative dSt/dt of
the relative entropy during network contraction. This equation
can be expressed in the form dSt/dt = �A(t ) + �B(t ). We
show that �A(t ) < 0 for any degree distribution. We also
show that �B(t ) < 0 for degree distributions whose tails
decay more slowly than the tail of the Poisson distribution
with the same mean degree. This condition is generically sat-
isfied by the heavy-tail distributions that emerge from network
growth processes. In contrast, in networks that exhibit narrow
degree distributions the �B(t ) term turns out to be small
and has little effect on the convergence, which is dominated
by �A(t ). This implies that the relative entropy decreases
monotonically during the contraction process. Since the rela-
tive entropy satisfies St � 0 for any degree distribution Pt (k),
while equality is obtained only for Pt (k) = π (k|〈K〉t ) we
conclude that the degree distributions of contracting networks
converge towards a Poisson distribution. This conclusion is
corroborated by the fact that the relative entropy provides
an upper bound for the total variation distance, which is
a standard measure of the difference between probability
distributions. We demonstrate the convergence for configu-
ration model networks with a degenerate degree distribution
(random regular graphs), exponential degree distribution, and
power-law degree distribution (scale-free networks).

The paper is organized as follows. In Sec. II we present
the three generic network contraction scenarios studied in this
paper. In Sec. III we present the master equation and show that
the Poisson distribution is a solution of the master equation
for the three contraction scenarios. In Sec. IV we present
the relative entropy and express it in terms of the Shannon
entropy and the cross-entropy. In Sec. V we present rigorous
results showing that the relative entropy decays to zero in
any of the three contraction scenarios. In Sec. VI we present
analytical results and computer simulations for the contraction
of configuration model networks with a degenerate degree
distribution (random regular graphs), an exponential degree
distribution, and a power-law degree distribution (scale-free
networks). The results are discussed in Sec. VII and summa-
rized in Sec. VIII.

II. NETWORK CONTRACTION PROCESSES

We consider network contraction processes in which at
each time step a single node is deleted together with its links.
The initial network consists of N0 nodes, so at time t the
network size is reduced to Nt = N0 − t nodes. The deletion
of a node of degree k, whose neighbors are of degrees k′

i ,
i = 1, 2, . . . , k, eliminates the deleted node from the degree
sequence and reduces the degrees of its neighbors to k′

i − 1,
i = 1, 2, . . . , k. The node deleted at each time step is se-
lected randomly. However, the probability of a node to be
selected for deletion may depend on its degree, according to
the specific network contraction scenario. Here we focus on
three generic scenarios of network contraction: the scenario of
random node deletion that describes the random, inadvertent
failure of nodes, the scenario of preferential node deletion
that describes intentional attacks that are more likely to focus
on highly connected nodes, and the scenario of propagating
node deletion that describes cascading failures and infectious
processes that spread throughout the network.

In the random deletion scenario, at each time step a random
node is selected for deletion. In this scenario each one of
the nodes in the network at time t has the same probability
to be selected for deletion, regardless of its degree. Since at
time t there are Nt nodes in the network, the probability of
each one of them to be selected for deletion is 1/Nt . In the
preferential deletion scenario the probability of a node to be
selected for deletion at time t is proportional to its degree
at that specific time. This means that the probability of a
given node of degree k to be deleted at time t is k/[Nt 〈K〉t ].
This is equivalent to selecting a random edge in the network
and randomly choosing for deletion one of the two nodes at
its ends. In the propagating deletion scenario at each time
step the node to be deleted is randomly selected among the
neighbors of the node deleted in the previous time step. In
the case that the node deleted in the previous time step does
not have any yet-undeleted neighbor we pick a random node,
randomly select one of its neighbors for deletion, and continue
the process from there.

Here we focus on the contraction of undirected networks
of initial size N , which are drawn from a configuration
model network ensemble with a given initial degree distri-
bution P0(k) and no degree-degree correlations. The degree
distribution is bounded from above and below such that
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kmin � k � kmax. For example, the commonly used choice of
kmin = 1 eliminates the possibility of isolated nodes in the
network. Choosing kmin = 2 also eliminates the leaf nodes.
Controlling the upper bound is important in the case of fat-tail
degree distributions such as power-law degree distributions.
The configuration model network ensemble is a maximum
entropy ensemble under the condition that the degree distribu-
tion P(k) is imposed [32–37]. In such uncorrelated networks
the deletion of a node at time t does not induce correlations
between the remaining Nt − 1 nodes. Thus, upon deletion of
a node from a configuration model network of size Nt , the
resulting network remains a configuration model network with
a suitably adjusted degree distribution Pt+1(k).

III. THE MASTER EQUATION AND ITS POISSON
SOLUTION

Consider an ensemble of networks of size N0 and degree
distribution P0(k), with mean degree 〈K〉0. At each time step
a single node is deleted from the network. In addition to the
primary effect of the loss of the deleted node, the damage to
the network also includes a secondary effect as each neighbor
of the deleted node loses one link. An intrinsic property of the
secondary effect is that it is always of a preferential nature.
This is due to the fact that the probability of a node of degree
k′ to be a neighbor of the deleted node is proportional to
k′. The number of nodes in the network at time t is Nt =
N0 − t . The number of nodes of degree k at time t is denoted
by Nt (k), where

∑
k Nt (k) = Nt . The time-dependent degree

distribution is given by

Pt (k) = Nt (k)

Nt
. (1)

The mean degree and the second moment of the degree
distribution at time t are denoted by 〈Kn〉t where n = 1 and
2, respectively.

The master equation [38,39] for the temporal evolution of
the degree distribution Pt (k) during network contraction pro-
cesses was derived in Ref. [31]. To demonstrate the derivation
of the master equation we consider below the relatively simple
case of random node deletion. The time dependence of Nt (k)
depends on the primary effect, given by the probability that
the node selected for deletion is of degree k as well as on
the secondary effect of node deletion on neighboring nodes of
degrees k and k + 1. In random node deletion the probability
that the node selected for deletion at time t is of degree k is
given by Nt (k)/Nt . Thus, the rate at which Nt (k) decreases
due to the primary effect of the deletion of nodes of degree k
is given by

Rt (k → ∅) = Nt (k)

Nt
, (2)

where ∅ represents the empty set. In case that the node deleted
at time t is of degree k′, it affects k′ adjacent nodes, which lose
one link each. The probability of each one of these k′ nodes
to be of degree k is given by kNt (k)/[Nt 〈K〉t ]. We denote by
Wt (k → k − 1) the expectation value of the number of nodes
of degree k that lose a link at time t and are reduced to degree
k − 1. Summing up over all possible values of k′, we find
that the secondary effect of random node deletion on nodes

of degree k amounts to

Wt (k → k − 1) = kNt (k)

Nt
. (3)

Similarly, the secondary effect on nodes of degree k + 1
amounts to

Wt (k + 1 → k) = (k + 1)Nt (k + 1)

Nt
. (4)

The time evolution of Nt (k) can be expressed in terms of the
forward difference

�t Nt (k) = Nt+1(k) − Nt (k). (5)

Combining the primary and the secondary effects on the time
dependence of Nt (k) we obtain

�t Nt (k) = −Rt (k → ∅)

+ [Wt (k + 1 → k) − Wt (k → k − 1)]. (6)

Since nodes are discrete entities the process of node dele-
tion is intrinsically discrete. Therefore, the replacement of
the forward difference �t Nt (k) by a time derivative of the
form dNt (k)/dt involves an approximation. The error asso-
ciated with this approximation was evaluated in Ref. [31].
It was shown that except for the limit of extremely narrow
degree distributions the error is of order 1/N2

t , which quickly
vanishes in the large network limit. This means that the
replacement of the forward difference by a time derivative has
little effect on the results and a clear technical advantage.

Inserting the expressions for Rt (k → ∅), Wt (k → k − 1),
and Wt (k + 1 → k) from Eqs. (2), (3), and (4), respectively,
into Eq. (6) and replacing �t Nt (k) by dNt (k)/dt we obtain

d

dt
Nt (k) = (k + 1)[Nt (k + 1) − Nt (k)]

Nt
. (7)

The derivation of the master equation is completed by taking
the time derivative of Eq. (1), which is given by

d

dt
Pt (k) = 1

Nt

d

dt
Nt (k) − Nt (k)

N2
t

d

dt
Nt . (8)

Inserting the time derivative of Nt (k) from Eq. (7) into Eq. (8)
and using the fact that dNt/dt = −1, we obtain the master
equation for the random deletion scenario, which is given by

d

dt
Pt (k) = 1

Nt
[(k + 1)Pt (k + 1) − kPt (k)]. (9)

The derivation of the master equations for the preferential
deletion and the propagating deletion scenarios can be per-
formed along similar lines [31]. Interestingly, the resulting
master equations for these three network contraction scenarios
can be written in a unified manner, in the form

d

dt
Pt (k) = FA(t ) + FB(t ), (10)

where

FA(t ) = At

Nt
[(k + 1)Pt (k + 1) − kPt (k)] (11)
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accounts for the secondary effect on the neighbors of the
deleted node, which lose one link each, while

FB(t ) = −Bt (k)

Nt
Pt (k) (12)

accounts for the primary effect, namely, the loss of the deleted
node [31]. The coefficients At and Bt (k) are given by

At =

⎧⎪⎨⎪⎩
1 random deletion
〈K2〉t

〈K〉2
t

preferential deletion
〈K2〉t −2〈K〉t

〈K〉2
t

propagating deletion

(13)

and

Bt (k) =

⎧⎪⎨⎪⎩
0 random deletion
k−〈K〉t

〈K〉t
preferential deletion

k−〈K〉t

〈K〉t
propagating deletion

. (14)

The master equation consists of a set of coupled ordinary
differential equations for Pt (k), k = 0, 1, 2, . . . , kmax, or in
other words it is a partial difference-differential equation. In
order to calculate the time evolution of the degree distribution
Pt (k) during the contraction process one solves the master
equation using direct numerical integration [40], starting from
the initial network that consists of N0 nodes whose degree
distribution is P0(k). For any finite network the degree distri-
bution is bounded from above by an upper bound denoted by
kmax, which satisfies the condition kmax � N0 − 1. Since the
contraction process can delete edges only from the remaining
nodes and cannot increase the degree of any node, the upper
cutoff kmax is maintained throughout the contraction process.

The FA(t ) term of the master equation, given by Eq. (11), is
referred to as the trickle-down term [41]. This term represents
the step by step downwards flow of probability from high
to low degrees. This process is illustrated in Fig. 1(a). The
coefficient At of the trickle-down term depends on the network
contraction scenario according to Eq. (13). In the case of
random node deletion At = 1, because the probability of a
node to be selected for deletion does not depend on its degree.
In the case of preferential node deletion At is proportional
to 〈K2〉t because the probability of a node to be deleted
is proportional to its degree k while the magnitude of the
secondary effect is also proportional to k.

The FB(t ) term of the master equation, given by Eq. (12),
is referred to as the redistribution term. As can be seen in
Eq. (14), this term vanishes in the random deletion scenario.
However, in the preferential and propagating deletion sce-
narios the redistribution term is negative for k > 〈K〉t and
positive for k < 〈K〉t . Thus the redistribution term decreases
the probabilities Pt (k) for values of k that are above the
mean degree and increases them for values of k that are
below the mean degree, as illustrated in Fig. 1(b). The size
of the redistribution term is proportional to the absolute value
|k − 〈K〉t |, which means that nodes of degrees that are much
higher or much lower than 〈K〉t are most strongly affected by
this term.

Consider an ER network of Nt nodes with mean degree ct .
Its degree distribution follows a Poisson distribution of the

(a) (b)

FIG. 1. Illustration of the time dependence of the degree dis-
tribution Pt (k) during network contraction processes, described by
the master equation (10). (a) In the trickle-down term FA(t ), given
by Eq. (11), the probability flows downwards step by step from
degree k + 1 to k and from k to k − 1. This way high-degree nodes
become less probable and low-degree nodes become more probable
as the contraction process evolves. (b) In the redistribution term
FB(t ), given by Eq. (12), for values of k above the mean degree 〈K〉t

the probability Pt (k) decreases at a rate proportional to k − 〈K〉t ,
while for values of k below 〈K〉t the probability Pt (k) increases
at a rate proportional to 〈K〉t − k. Here the flow of probability is
nonlocal in the k axis, namely, probability is lost at high degrees and
instantaneously emerges at low degrees.

form

π (k|ct ) = e−ct ck
t

k!
. (15)

The second moment of this degree distribution is equal to
ct (ct + 1). To examine the contraction process of ER net-
works we start from an initial network of N0 nodes whose
degree distribution follows a Poisson distribution π (k|c0),
where c0 is the mean degree of the initial network. Inserting
π (k|ct ) into the master equation (10) we find that the time
derivative on the left-hand side is given by

d

dt
π (k|ct ) = −dct

dt

(
1 − k

ct

)
π (k|ct ). (16)

On the other hand, inserting π (k|ct ) on the right-hand side of
Eq. (10), we obtain

d

dt
π (k|ct ) = At

Nt
(ct − k)π (k|ct ) − Bt (k)

Nt
π (k|ct ). (17)

In order that π (k|ct ) will be a solution of Eq. (10), the right-
hand sides of Eqs. (16) and (17) must coincide. In the case of
random deletion this implies that

1

ct

dct

dt
= − 1

Nt
. (18)

Integrating both sides for t ′ = 0 to t , we obtain the solution
ct = c0Nt/N0. Repeating the analysis presented above for the
cases of preferential deletion and propagating deletion it is
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found that π (k|ct ) solves the master equation (10) for the
three network contraction scenarios, while the mean degree,
ct decreases linearly in time according to

ct = c0 − Rt, (19)

where the rate R depends on the network contraction scenario
and is given by

R =

⎧⎪⎨⎪⎩
c0
N0

random deletion
c0+2

N0
preferential deletion

c0
N0

propagating deletion

. (20)

This means that an ER network exposed to any one of
the three contraction scenarios remains an ER network at
all times, with a mean degree that decreases according
to Eq. (19).

IV. THE RELATIVE ENTROPY

In order to establish that networks exposed to these con-
traction scenarios actually converge towards the ER structure,
it remains to show that the Poisson solution is attractive. To
quantify the convergence of Pt (k), whose mean degree is 〈K〉t ,
towards a Poisson distribution, we use the relative entropy
(also referred to as the Kullback-Leibler divergence), defined
by [42]

St = S[Pt (k)||π (k|〈K〉t )] =
∞∑

k=0

Pt (k) ln

[
Pt (k)

π (k|〈K〉t )

]
, (21)

where π (k|〈K〉t ) is the Poisson distribution, given by Eq. (15),
with the same mean degree as Pt (k), namely, 〈K〉t . The relative
entropy St is a distance measure between the whole degree
distribution Pt (k) and the reference distribution π (k|〈K〉t ). It
also quantifies the added information associated with con-
straining the degree distribution Pt (k) rather than only the
mean degree 〈K〉t , as nicely shown in Refs. [35–37]. The
Poisson distribution is a proper reference distribution for the
relative entropy because it satisfies π (k|〈K〉t ) > 0 for all the
non-negative integer values of k. Using the log-sum inequality
[43], one can show that the relative entropy is always non-
negative and satisfies St = 0 if and only if Pt (k) = π (k|〈K〉t )
[44,45]. Therefore, St can be used as a measure of the distance
between a given network and the corresponding ER network
with the same mean degree.

The relative entropy S[P(k)||π (k|c)] of a degree distribu-
tion P(k) with mean degree 〈K〉 with respect to a Poisson
distribution π (k|c) with mean degree c can be decomposed
in the form

S[P(k)||π (k|c)] = −S[P(k)] + C[P(k)||π (k|c)], (22)

where

S[P(k)] = −
∞∑

k=0

P(k) ln[P(k)] (23)

is the Shannon entropy [46] of P(k), while

C[P(k)||π (k|c)] = −
∞∑

k=0

P(k) ln[π (k|c)] (24)

is the cross-entropy [47] between P(k) and π (k|c). The Pois-
son distribution π (k|c) satisfies

ln[π (k|c)] = −c + k ln(c) − ln(k!). (25)

Inserting ln[π (k|c)] from Eq. (25) into Eq. (24), we obtain

S[P(k)||π (k|c)] =
∞∑

k=0

P(k) ln[P(k)] + c − 〈K〉 ln(c)

+
∞∑

k=0

ln(k!)P(k). (26)

Equation (26) provides the relative entropy of any degree
distribution P(k) whose mean degree is 〈K〉, with respect
to a Poisson distribution with mean degree c. In order to
find the value of c for which S[P(k)||π (k|c)] is minimal we
differentiate S[P(k)||π (k|c)] with respect to c and solve the
equation

d

dc
S[P(k)||π (k|c)] = 1 − 〈K〉

c
= 0. (27)

We find that S[P(k)||π (k|c)] is minimized when the condi-
tion c = 〈K〉 is satisfied. This implies that for any degree
distribution P(k) with mean degree 〈K〉, the closest Poisson
distribution π (k|c), in terms of the relative entropy, is the
Poisson distribution with mean degree c = 〈K〉.

Using the result discussed above, one can express the
relative entropy S[P(k)||π (k|c)] in the form

S[P(k)||π (k|c)] = S[P(k)||π (k|〈K〉)] + δS(c, 〈K〉), (28)

where S[P(k)||π (k|〈K〉)] is the relative entropy of P(k) with
respect to a Poisson distribution whose mean is 〈K〉, and

δS(c, 〈K〉) = 〈K〉
[(

c

〈K〉 − 1

)
− ln

(
c

〈K〉
)]

(29)

is the added entropy due to the difference between c and 〈K〉.
Note that δS(c, 〈K〉) � 0 for any choice of 〈K〉 > 0 and c > 0,
while δS(c, 〈K〉) = 0 only in the case that c = 〈K〉.

Going back to Eq. (22), the relative entropy
S[P(k)||π (k|〈K〉)] can be expressed in the form

S[P(k)||π (k|〈K〉)] = −S[P(k)] + C[P(k)||π (k|〈K〉)], (30)

where S[P(k)] is given by Eq. (23) and

C[P(k)||π (k|〈K〉)] = 〈K〉 − 〈K〉 ln(〈K〉) +
∞∑

k=0

ln(k!)P(k).

(31)
To evaluate the last term in Eq. (31) we recall that ln(0!) =
ln(1!) = 0, while the k = 2 term is ln(2)P(2). For k � 3 we
use the Stirling approximation [48]

ln(k!) =
(

k + 1

2

)
ln(k) − k + 1

2
ln(2π ). (32)
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Inserting ln(k!) for k � 3 from Eq. (32) into Eq. (31) and
rearranging terms, we obtain

C[P(k)||π (k|c)] = −〈K〉 ln(〈K〉) +
∞∑

k=2

(
k + 1

2

)
ln(k)P(k)

+ 1

2
ln(2π ) − 1

2
ln(2π )P(0)

+
[

1 − 1

2
ln(2π )

]
P(1)

+
[

2 − 3

2
ln(2) − 1

2
ln(2π )

]
P(2), (33)

where the terms involving P(0), P(1), and P(2) result from
the adjustment of the summation due to the fact that Eq. (32)
is used only for k � 3. Note that in the case of distributions in
which kmin � 1, one assigns P(k) = 0 for 0 � k � kmin − 1.
Using Eq. (33), the relative entropy of the degree distribution
Pt (k) of a contracting network with respect to the correspond-
ing Poisson distribution πt (k|〈K〉t ) with the same mean degree
〈K〉t is given by

St =
∞∑

k=0

Pt (k) ln[Pt (k)] − 〈K〉t ln(〈K〉t )

+
∞∑

k=2

(
k + 1

2

)
ln(k)Pt (k)

+ 1

2
ln(2π ) − 1

2
ln(2π )Pt (0) +

[
1 − 1

2
ln(2π )

]
Pt (1)

+
[

2 − 3

2
ln(2) − 1

2
ln(2π )

]
Pt (2). (34)

Equation (34) is used in order to evaluate the relative en-
tropy during the contraction process, where Pt (k) is obtained
either from numerical integration of the master equation or
from computer simulations.

V. CONVERGENCE OF THE RELATIVE ENTROPY

In each of the network contraction scenarios, the degree
distribution Pt (k) evolves in time according to the master
equation [Eq. (10)]. As a result, the relative entropy St of
the network also evolves as the network contracts. The time
derivative of St is given by

d

dt
St =

∞∑
k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
d

dt
Pt (k) +

∞∑
k=0

d

dt
Pt (k)

−
∞∑

k=0

Pt (k)

π (k|〈K〉t )

d

dt
π (k|〈K〉t ). (35)

Replacing the order of the summation and the derivative in the
second term on the right-hand side of Eq. (35), we obtain

∞∑
k=0

d

dt
Pt (k) = d

dt

[ ∞∑
k=0

Pt (k)

]
= 0. (36)

Inserting the derivative dπ (k|〈K〉t )/dt from Eq. (16) into the
third term on the right-hand side of Eq. (35), we obtain

∞∑
k=0

Pt (k)

π (k|〈K〉t )

d

dt
π (k|〈K〉t )

= −d〈K〉t

dt

∞∑
k=0

(
1 − k

〈K〉t

)
Pt (k) = 0. (37)

Since the second and third terms in Eq. (35) vanish, the
time derivative of the relative entropy is simply given by

d

dt
St =

∞∑
k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
d

dt
Pt (k). (38)

This is a general equation that applies to any network con-
traction scenario in which the Poisson distribution π (k|〈K〉t )
is a solution. The relative entropy satisfies St � 0 for any
degree distribution Pt (k). It vanishes if and only if Pt (k) =
π (k|〈K〉t ). Therefore, in order to prove the convergence of the
degree distribution Pt (k) towards a Poisson distribution in a
given network contraction scenario, one needs to show that
for this scenario dSt/dt < 0. To this end, we use Eq. (38),
where we replace the derivative dPt/dt by the right-hand side
of the master equation (10).

For the analysis below it is convenient to express the time
evolution of the relative entropy, given by Eq. (38), in the form

d

dt
St = �A(t ) + �B(t ), (39)

where �A(t ) emanates from the FA(t ) term (trickle-down
term) of the master equation and �B(t ) emanates from the
FB(t ) term (redistribution term). The contribution of the
trickle-down term to dSt/dt is given by

�A(t ) = At

Nt

∞∑
k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
[(k + 1)Pt (k + 1) − kPt (k)],

(40)
where At is given by Eq. (13), and the contribution of the
redistribution term is given by

�B(t ) = − B

Nt

∞∑
k=0

ln

[
Pt (k)

πt (k|〈K〉t )

](
k

〈K〉t
− 1

)
Pt (k), (41)

where

B =
⎧⎨⎩0 random deletion

1 preferential deletion
1 propagating deletion

. (42)

In order to show that the degree distribution of the contract-
ing network converges towards a Poisson distribution, one
needs to show that during the contraction process �A(t ) +
�B(t ) < 0. Below we consider each one of these terms sepa-
rately. We show that in all three network contraction scenarios
and for any initial degree distribution P0(k), the trickle-down
term satisfies �A(t ) < 0 at all times during the contraction
process. For the redistribution term �B(t ) we obtain a nec-
essary and sufficient condition on the instantaneous degree
distribution Pt (k) under which �B(t ) < 0. The condition es-
sentially states that �B(t ) < 0 for any degree distribution
whose tail decays more slowly than the tail of the Poisson
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distribution, which decays superexponentially. This condition
is generically satisfied by empirical networks, which are
formed via growth processes. The degree distributions of such
networks typically exhibit fat tails, which decay much more
slowly than Poisson.

A. Convergence due to the trickle-down term

To gain more insight on the structure of the �A(t ) term,
given by Eq. (40), it is useful to express it in the form

�A(t ) = At

Nt

{ ∞∑
k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
(k + 1)Pt (k + 1)

−
∞∑

k=1

ln

[
Pt (k)

π (k|〈K〉t )

]
kPt (k)

}
. (43)

Taking a factor of 〈K〉t out of the curly brackets and multiply-
ing the numerators and denominators in the arguments of the
logarithmic functions by k/〈K〉t (for k � 1), we obtain

�A(t ) = At

Nt
{〈K〉t + ln[Pt (0)]}Pt (1)

+ At 〈K〉t

Nt

{ ∞∑
k=1

ln

[
P̃t (k)

π (k − 1|〈K〉t )

]
P̃t (k + 1)

−
∞∑

k=1

ln

[
P̃t (k)

π (k − 1|〈K〉t )

]
P̃t (k)

}
, (44)

where

P̃t (k) = k

〈K〉t
Pt (k) (45)

is the degree distribution of nodes selected via a random edge
in a random network with degree distribution Pt (k). Similarly,
the distribution

π (k − 1|〈K〉t ) = k

〈K〉t
π (k|〈K〉t ) (46)

can be interpreted as the degree distribution of nodes selected
via a random edge in an ER network with a Poisson degree
distribution of the form π (k|〈K〉t ).

Rewriting P̃t (k + 1) in the form [P̃t (k + 1)/P̃t (k)]P̃t (k),
one can express the �A(t ) term as a covariance of the form

�A(t ) = At

Nt
(〈K〉t Pt (1) + ln[Pt (0)]Pt (1)

− Pt (1)

〈K〉t
S[P̃t (k)||π (k − 1|〈K〉t )]

+ Ẽt

{
P̃t (k + 1)

P̃t (k)
ln

[
P̃t (k)

π (k − 1|〈K〉t )

]}
− Ẽt

[
P̃t (k + 1)

P̃t (k)

]
Ẽt

{
ln

[
P̃t (k)

π (k − 1|〈K〉t )

]})
, (47)

where Ẽt [ f (k)] = ∑
k f (k)P̃t (k). In particular,

Ẽt

[
P̃t (k + 1)

P̃t (k)

]
=

∞∑
k=1

[
P̃t (k + 1)

P̃t (k)

]
P̃t (k) = 1 − Pt (1)

〈K〉t
. (48)

In order that the covariance will be negative, in domains in
which P̃t (k) is an increasing function [namely, P̃t (k + 1) >

P̃t (k)], it should be lower than the corresponding Poisson dis-
tribution [namely, P̃t (k) < π (k − 1|〈K〉t )], while in domains
in which P̃t (k) is a decreasing function it should be higher
than the corresponding Poisson distribution.

In order to prove that �A(t ) < 0 for any degree distribution
Pt (k) at all stages of the contraction process we rewrite
Eq. (40) in the form

�A(t ) = �P
A(t ) − �π

A(t ), (49)

where

�P
A(t ) = At

Nt

∞∑
k=0

ln [Pt (k)][(k + 1)Pt (k + 1) − kPt (k)] (50)

and

�π
A(t ) = At

Nt

∞∑
k=0

ln [π (k|〈K〉t )][(k + 1)Pt (k + 1) − kPt (k)].

(51)
Separating the sum in Eq. (50) into two sums and replacing
k + 1 by k in the first sum, we obtain

�P
A(t ) = At

Nt

{ ∞∑
k=1

ln [Pt (k − 1)]kPt (k)−
∞∑

k=1

ln [Pt (k)]kPt (k)

}
.

(52)
Expressing the degree distribution Pt (k) in terms of P̃t (k),

�P
A(t ) = At 〈K〉t

Nt

{ ∞∑
k=1

ln [Pt (k − 1)]P̃t (k)

−
∞∑

k=1

ln[P̃t (k)]P̃t (k)

}

+ At

Nt

∞∑
k=1

ln

(
k

〈K〉t

)
kPt (k). (53)

Combining the first two terms in Eq. (53) and splitting the last
term, we obtain

�P
A(t ) = −At 〈K〉t

Nt

∞∑
k=1

P̃t (k) ln

[
P̃t (k)

Pt (k − 1)

]
+ At

Nt
〈K ln(K )〉t

− At

Nt
〈K〉t ln(〈K〉t ). (54)

In order to evaluate �π
A we insert

ln[π (k|〈K〉t )] = −〈K〉t + k ln(〈K〉t ) − ln(k!) (55)

into Eq. (51) and obtain

�π
A(t ) = At

Nt

∞∑
k=0

[−〈K〉t + k ln(〈K〉t )

− ln(k!)][(k + 1)Pt (k + 1) − kPt (k)]. (56)

Carrying out the summation and using the identity

ln(k!) = ln[(k + 1)!] − ln(k + 1), (57)
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we obtain

�π
A(t ) = At

Nt
〈K ln(K )〉t − At

Nt
〈K〉t ln(〈K〉t ). (58)

Inserting the results for �P
A and �π

A, from Eqs. (54) and (58),
respectively, into Eq. (49), we obtain

�A(t ) = −At 〈K〉t

Nt
S[P̃t (k)||Pt (k − 1)], (59)

where

S[P̃t (k)||Pt (k − 1)] =
∞∑

k=1

P̃t (k) ln

[
P̃t (k)

Pt (k − 1)

]
(60)

is the relative entropy of P̃t (k) with respect to Pt (k − 1). Note
that Eq. (60) is valid only if Pt (k − 1) > 0 for all values of k
for which P̃t (k) > 0. This means that the degree distribution
should not have any gaps, namely, values of k′ for which
Pt (k′) = 0 while Pt (k) > 0 for any k > k′. In practice, even
if there are such gaps in the initial degree distribution P0(k),
they are quickly filled up due to the trickle-down term FA(t )
of the master equation, given by Eq. (11).

Since the relative entropy must be positive, we find that
�A(t ) < 0 for any degree distribution Pt (k) that differs from
π (k|〈K〉t ). Actually, since the only distribution for which
S[P̃t (k)||Pt (k − 1)] = 0 is the Poisson distribution, this pro-
cess can converge only to the Poisson distribution. In the
random deletion scenario, only the �A(t ) term contributes
to the time evolution of St , while the �B(t ) term vanishes.
This means that in the random deletion scenario the distance
between Pt (k) and the corresponding Poisson distribution
π (k|〈K〉t ) with the same mean degree 〈K〉t decreases mono-
tonically at any stage during the contraction process. In the
preferential deletion and the propagating deletion scenarios
the convergence also depends on the �B(t ) term, which is
considered below.

B. Convergence due to the redistribution term

In order to gain insight on the �B(t ) term, we rewrite
Eq. (41) in the form

�B(t ) = − B

Nt

{ ∞∑
k=1

ln

[
Pt (k)

π (k|〈K〉t )

]
k

〈K〉t
Pt (k)

−
∞∑

k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
Pt (k)

}
. (61)

Taking the factor of 1/〈K〉t out of the curly brackets, we obtain

�B(t ) = − B

〈K〉t Nt

{ ∞∑
k=1

k ln

[
Pt (k)

π (k|〈K〉t )

]
Pt (k)

−〈K〉t

∞∑
k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
Pt (k)

}
. (62)

The expression in the curly brackets is, in fact, equal to
the covariance between k and ln[Pt (k)/π (k|〈K〉t )] under the

distribution Pt (k), namely,

�B(t ) = − B

〈K〉t Nt

{〈
k ln

[
Pt (k)

π (k|〈K〉t )

]〉
−〈K〉t

〈
ln

[
Pt (k)

π (k|〈K〉t )

]〉}
. (63)

Therefore, in the case of distributions for which the cor-
relation between k and ln[Pt (k)/π (k|〈K〉t )] is positive, the
term in the curly brackets is positive and �B(t ) < 0. In
this case the �B(t ) term contributes to the convergence of
Pt (k) towards a Poisson distribution. Such positive correlation
essentially implies that for large values of k, Pt (k) tends to be
larger than π (k|〈K〉t ), namely, it has a heavier tail than the
Poisson distribution with the same mean value. Since network
growth processes generically lead to fat tail distributions such
as the power-law distributions of scale-free networks, it is
expected that most empirical networks will exhibit a positive
correlation between k and ln[Pt (k)/π (k|〈K〉t )].

In those cases in which the correlation between k and
ln[Pt (k)/π (k|〈K〉t )] is negative, the term in the curly brackets
is negative and �B(t ) > 0. In this case the �B(t ) term works
against the convergence of Pt (k) towards a Poisson distribu-
tion. However, comparing the coefficients of �A(t ) and �B(t )
one finds that the coefficient of �A(t ) is effectively larger by
a factor of 〈K2〉/〈K〉 than the coefficient of �B(t ). Therefore,
it is expected that the �A(t ) term will be dominant and induce
the convergence of Pt (k) towards Poisson even in those cases
in which �B(t ) > 0.

To gain more insight into the sign of �B(t ) from a different
perspective, we use Eqs. (45) and (46) to express �B(t ) of
Eq. (61) in the form

�B(t ) = − B

Nt

∞∑
k=1

ln

[
P̃t (k)

π (k − 1|〈K〉t )

]
P̃t (k)

+ B

Nt

∞∑
k=0

ln

[
Pt (k)

π (k|〈K〉t )

]
Pt (k). (64)

The first sum in Eq. (64) is the relative entropy of the degree
distribution P̃t (k) with respect to the shifted Poisson distri-
bution π (k − 1|〈K〉t ). This is essentially a distance measure
between the degree distribution of nodes selected preferen-
tially in a network whose degree distribution is Pt (k) and
the degree distribution of nodes selected preferentially from
the corresponding Poisson distribution with the same mean
degree. The second term in Eq. (64) is the relative entropy
of the degree distribution Pt (k) with respect to the Poisson
distribution π (k|〈K〉t ), which is essentially a distance measure
between Pt (k) and π (k|〈K〉t ). Thus, Eq. (64) can be written in
the form

�B(t ) = − B

Nt
{S[P̃t (k)||π (k − 1|〈K〉t )]

− S[Pt (k)||π (k|〈K〉t )]}. (65)

In the case that the degree distributions obtained for the
preferential selection are farther apart than the degree distribu-
tions obtained for random selection, �B(t ) < 0, while in the
opposite case �B(t ) > 0.
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There is an important distinction between the two terms in
Eq. (65). The second term is the relative entropy of Pt (k) with
respect to the Poisson distribution π (k|〈K〉t ) with the same
mean degree 〈K〉t . In contrast, the first term is the relative
entropy of P̃t (k) with respect to the Poisson distribution
π (k − 1|〈K〉t ). The mean degree of P̃t (k) is

〈K̃〉t = 〈K2〉t

〈K〉t
, (66)

while the mean degree of π (k − 1|〈K〉t ) is 〈K〉t + 1. There-
fore, Eq. (65) can be written in the form

�B(t ) = − B

Nt
{S[P̃t (k)||π (k − 1|〈K̃〉t − 1)]

− S[Pt (k)||π (k|〈K〉t )]}
− B

Nt
δS(〈K̃〉t , 〈K〉t + 1), (67)

where δS(〈K̃〉t , 〈K〉t + 1) is given by Eq. (29). This implies
that �B(t ) < 0 as long as

S[P̃t (k)||π (k − 1|〈K̃〉t − 1)]

> S[Pt (k)||π (k|〈K〉t )] − δS(〈K̃〉t , 〈K〉t + 1). (68)

Since δS(〈K̃〉t , 〈K〉t + 1) is always positive and its value
increases as P(k) becomes broader, this condition is expected
to be satisfied for any degree distribution that exhibits a heavy
tail. From our experience, degree distributions for which
�B > 0 are very special, usually hand-crafted for the mission.
In those cases, �A, which is always negative, as proven above,
is much larger in absolute value than �B.

VI. CONTRACTION OF NETWORKS WITH GIVEN
INITIAL DEGREE DISTRIBUTIONS

Here we apply the framework presented above to three
examples of configuration model networks, with a degenerate
degree distribution (also known as random regular graphs),
an exponential degree distribution and a power-law degree
distribution (scale-free networks).

A. Random regular graphs

A random regular graph (RRG) is a configuration model
network in which all the nodes are of the same degree, k = c0,
namely,

P0(k) = δk,c0 , (69)

where c0 is an integer. Here we consider the case of c0 � 3, in
which the giant component encompasses the whole network.
In order to leave room for contraction into a nontrivial degree
distribution, we choose RRGs with c0 � 1. Since in node
deletion processes the degrees of nodes in the network are
only reduced and never increase it is clear that the range of
degrees of the contracted network will be limited to 0 � k �
c0. This means that in the case that the initial network is an
RRG the tail of the degree distribution of the contracted net-
work will be truncated above k = c0. Thus, the convergence
towards Poisson is expected to be relatively slow.

To evaluate the relative entropy of the initial RRG network
with respect to the corresponding Poisson distribution we

insert the degenerate distribution of Eq. (69) into Eq. (21).
We obtain the initial relative entropy

S0 = ln

[
1

π (c0|c0)

]
. (70)

Inserting the Poisson degree distribution into Eq. (70) we
obtain

S0 = c0 − c0 ln(c0) + ln(c0!). (71)

Using the Stirling approximation to evaluate ln(c0!), we ob-
tain

S0 = 1

2
ln(c0) + 1

2
ln(2π ). (72)

Below we analyze the convergence of a configuration
model network with a degenerate degree distribution towards
an ER graph structure upon contraction. In particular, we
calculate the time-dependent degree distribution Pt (k) during
contraction and examine its convergence towards π (k|〈K〉t ).
To this end we perform direct numerical integration of the
master equation (10) and computer simulations, starting from
a configuration model network with a degree distribution
given by Eq. (69), and evaluate the time-dependent relative
entropy St .

In Fig. 2 we present the relative entropy St as a function of
time (represented by Nt/N0 = 1 − t/N0) for a random regular
graph of size N0 = 104 with a degenerate degree distribution
in which all the nodes are of degree c0 = 10, that contracts
via (a) random node deletion, (b) preferential node deletion,
and (c) propagating node deletion. The results obtained from
numerical integration of the master equation (solid lines) are
in excellent agreement with the results obtained from com-
puter simulations, namely, direct simulations of contracting
networks (circles). In all three cases the relative entropy
quickly decays, which implies that the degree distribution
Pt (k) of the contracting network converges towards a Poisson
distribution. The decay rate of St is comparable in all the three
scenarios. This implies that for extremely narrow degree dis-
tributions such as the degenerate distribution the preferential
and the propagating deletion scenarios do not exhibit faster
convergence than the random deletion scenario.

In Fig. 3(a) we present the degree distribution P0(k) of a
random regular graph (solid line) of size N0 = 104 with a
degenerate degree distribution in which all the nodes are of
degree c0 = 10. The corresponding Poisson distribution with
the same mean degree 〈K〉0 = c0 is also shown (dashed line).
Clearly, it is highly dissimilar to the degenerate distribution.
The random regular graph undergoes a network contraction
process via the random node deletion scenario. In Fig. 3(b) we
present the degree distribution Pt (k) of the contracted network
at time t = 8000, where the contracted network size is Nt =
2000. The results obtained from the numerical integration of
the master equation (solid line) are in excellent agreement
with the results of computer simulations (circles). They are
very well converged towards the corresponding Poisson dis-
tribution π (k|〈K〉t ) with the same mean degree 〈K〉t (dashed
line).
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FIG. 2. The relative entropy St as a function of time for a random
regular graph of initial size N0 = 104 and initial degree c0 = 10
that contracts via random deletion (a), preferential deletion (b), and
propagating deletion (c), obtained from numerical integration of the
master equation (solid lines). In all three cases the relative entropy
quickly decays, which implies that the degree distribution of the
contracting network converges towards a Poisson distribution. The
master equation results are in excellent agreement with the results
obtained from computer simulations (circles). Also, the initial value
S0 � 2.08 is in perfect agreement with the result obtained from
Eq. (72).

B. Configuration model networks with exponential degree
distributions

Consider a configuration model network with an expo-
nential degree distribution of the form P0(k) ∼ e−αk , where
k � kmin and kmin is the lower cutoff of the initial degree distri-
bution. It is convenient to parametrize the degree distribution
using the mean degree 〈K〉0, in the form

P0(k) =
{

0 k < kmin

D
(

〈K〉0−kmin

〈K〉0−kmin+1

)k
k � kmin

, (73)

where D is the normalization constant, given by

D = 1

(〈K〉0 − kmin) + 1

( 〈K〉0 − kmin

〈K〉0 − kmin + 1

)−kmin

. (74)

Below we evaluate the relative entropy of an initial network
with an exponential degree distribution with respect to the
corresponding Poisson distribution. Inserting the exponential
degree distribution of Eq. (73) into Eq. (23) and carrying out
the summation, we obtain the Shannon entropy

S[P0(k)] = −
∞∑

k=kmin

P0(k) ln[P0(k)]

= −(〈K〉0 − kmin) ln(〈K〉0 − kmin)

+ (〈K〉0 − kmin + 1) ln(〈K〉0 − kmin + 1). (75)

In order to calculate the cross-entropy
C[P0(k)||π (k|〈K〉0)], we insert the exponential distribution
P0(k) of Eq. (73) into Eq. (33). We obtain

C[P0(k)||π (k|〈K〉0)]

= −〈K〉0 ln(〈K〉0) +
∞∑

k=kmin

(
k + 1

2

)

× ln(k)

[
D

( 〈K〉0 − kmin

〈K〉0 − kmin + 1

)k
]

+ 1

2
ln(2π ) − 1

2
ln(2π )P0(0) +

[
1 − 1

2
ln(2π )

]
P0(1)

+
[

2 − 3

2
ln(2) − 1

2
ln(2π )

]
P0(2). (76)

Carrying out the summation, we obtain

C[P0(k)||π (k|〈K〉0)]

= −〈K〉0 ln(〈K〉0) − 1

2(〈K〉0 − kmin + 1)

×
[

2
∂

∂γ
�

( 〈K〉0 − kmin

〈K〉0 − kmin + 1
, γ , kmin

)∣∣∣∣
γ=−1

+ ∂

∂γ
�

( 〈K〉0 − kmin

〈K〉0 − kmin + 1
, γ , kmin

)∣∣∣∣
γ=0

]

+1

2
ln(2π ) − 1

2
ln(2π )P0(0) +

[
1 − 1

2
ln(2π )

]
P0(1)

+
[

2 − 3

2
ln(2) − 1

2
ln(2π )

]
P0(2), (77)

where �(x, γ , k) is the Lerch transcendent [48]. The
relative entropy takes the form S0 = −S[P0(k)] +
C[P0(k)||π (k|〈K〉0)], where S[P0(k)] is given by Eq. (75)
and C[P0(k)||π (k|〈K〉0)] is given by Eq. (77).

Below we analyze the convergence of a configuration
model network with an exponential degree distribution to-
wards an ER graph structure upon contraction. In partic-
ular, we calculate the time-dependent degree distribution
Pt (k) during contraction and examine its convergence towards
π (k|〈K〉t ). To this end we perform direct numerical integra-
tion of the master equation (10) and computer simulations,
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FIG. 3. (a) The degree distribution P0(k) of a random regular graph (solid line) in which all the nodes are of degree c0 = 10. The circles
represent the degree sequence of a single network instance of N0 = 104 nodes, which was used in the computer simulations. The corresponding
Poisson distribution with the same mean degree is also shown (dashed line). The network contracts via random node deletion. (b) The degree
distribution Pt (k) of the contracted network at time t = 8000, when the network size is reduced to Nt = 2000. The results obtained from
numerical integration of the master equation (solid line) are in excellent agreement with the results obtained from computer simulations
(circles). They are both very well converged towards the corresponding Poisson distribution π (k|〈K〉t ) with the same mean degree 〈K〉t

(dashed line).

starting from a configuration model network with a degree
distribution given by Eq. (73) and evaluate the time-dependent
relative entropy St .

In Fig. 4 we present the relative entropy St as a function
of time for a configuration model network of initial size N0 =
104 and initial mean degree 〈K〉0 = 20 with an exponential de-
gree distribution that contracts via random deletion (a), prefer-
ential deletion (b), and propagating deletion (c), obtained from
numerical integration of the master equation (solid lines).
In all three cases the relative entropy quickly decays, which
implies that the degree distribution of the contracting network
converges towards a Poisson distribution. The convergence
is dramatically faster in the preferential and the propagating
deletion scenarios compared to random deletion scenario. The
master equation results are in very good agreement with the
results obtained from computer simulations (circles).

In Fig. 5(a) we present the degree distribution P0(k) of a
configuration model network of size N0 = 104 and an expo-
nential degree distribution with mean degree 〈K〉0 = 20 (solid
line). The corresponding Poisson distribution with the same
mean degree is also shown (dashed line). The network con-
tracts via preferential node deletion. In Fig. 5(b) we present
the degree distribution Pt (k) of the contracted network at time
t = 7000, when the network size is reduced to Nt = 3000,
obtained from numerical integration of the master equation
(solid line) and from computer simulations (circles). The
corresponding Poisson distribution π (k|〈K〉t ) with the same
mean degree is also shown (dashed line). The master equation
results, the computer simulation results and the corresponding
Poisson distribution are found to be in very good agreement
with each other.

In Fig. 6 we present the time derivative of the relative
entropy, dSt/dt = �A(t ) + �B(t ), as a function of time, for
a configuration model network of initial size N0 = 104 and
exponential degree distribution with mean degree 〈K〉0 = 20
that contracts via preferential node deletion, obtained from
numerical integration of the master equation (solid lines). The

terms �A(t ) (dashed line) and �B(t ) (dotted line), which sum
up to the derivative dSt/dt , are also shown. As expected,
both �A(t ) and �B(t ) are negative at all times during the
contraction process.

C. Configuration model networks with power-law degree
distributions

Consider a configuration model network with a power-
law degree distribution of the form P0(k) ∼ k−γ , where 1 �
kmin � k � kmax. Here we focus on the case of γ > 2, in
which the mean degree, 〈K〉0, is bounded even for kmax → ∞.
Power-law distributions do not exhibit a typical scale and are
therefore referred to as scale-free networks. The normalized
degree distribution is given by

P0(k) =
⎧⎨⎩0 k < kmin

D k−γ kmin � k � kmax

0 k > kmax

, (78)

where D is the normalization constant, given by

D = D(γ , kmin, kmax) = 1

ζ (γ , kmin) − ζ (γ , kmax + 1)
, (79)

and ζ (γ , k) is the Hurwitz zeta function [48]. For 2 < γ � 3
the mean degree is bounded while the second moment, 〈K2〉,
diverges in the limit of kmax → ∞. For γ > 3 both moments
are bounded. The mean degree is given by

〈K〉0 = ζ (γ − 1, kmin) − ζ (γ − 1, kmax + 1)

ζ (γ , kmin) − ζ (γ , kmax + 1)
. (80)

The second moment of the degree distribution, when finite, is

〈K2〉0 = ζ (γ − 2, kmin) − ζ (γ − 2, kmax + 1)

ζ (γ , kmin) − ζ (γ , kmax + 1)
. (81)

Below we evaluate the relative entropy of an initial network
with a power-law degree distribution with respect to the
corresponding Poisson distribution. In order to calculate the
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FIG. 4. The relative entropy St as a function of time for a con-
figuration model network of initial size N0 = 104 and mean degree
〈K〉0 = 20 with an exponential degree distribution in which kmin =
10, that contracts via random deletion (a), preferential deletion (b),
and propagating deletion (c), obtained from numerical integration
of the master equation (solid lines). In all three cases the relative
entropy quickly decays, which implies that the degree distribution
of the contracting network converges towards a Poisson distribu-
tion. The convergence is dramatically faster in the preferential and
the propagating deletion scenarios compared to random deletion
scenario. The master equation results are in very good agreement
with the results obtained from computer simulations (circles). Also,
the initial value S0 � 1.32 is in perfect agreement with the result
obtained from Eqs. (75) and (77).

Shannon entropy S[P0(k)] we insert the power-law distribu-
tion of Eq. (78) into Eq. (23). We obtain

S[P0(k)] = −
∞∑

k=kmin

P0(k) ln[P0(k)]

= − ln(D) + γ

∞∑
k=kmin

Dk−γ ln(k). (82)

Since ln(1) = 0 the summation in Eq. (82) actually starts
from the larger value between k = 2 and kmin, denoted by

kmin = max{2, kmin}. We thus obtain

S[P0(k)] = − ln(D) + γ

∞∑
k=kmin

Dk−γ ln(k). (83)

Carrying out the summation, we obtain

S[P0(k)] = − ln(D) + γ D[ζ ′(γ , kmax + 1) − ζ ′(γ , kmin)],
(84)

where ζ ′(γ , k) = ∂ζ (γ , k)/∂γ .
In order to calculate the cross-entropy

C[P0(k)||π (k|〈K〉0)], we insert the power-law distribution
P0(k) into Eq. (33). We obtain

C[P0(k)||π (k|〈K〉0)]

= −〈K〉0 ln(〈K〉0) +
∞∑

k=kmin

(
k + 1

2

)
ln(k)Dk−γ

+ 1

2
ln(2π ) +

[
1 − 1

2
ln(2π )

]
P0(1)

+
[

2 − 3

2
ln(2) − 1

2
ln(2π )

]
P0(2). (85)

Carrying out the summation, we obtain

C[P0(k)||π (k|〈K〉0)] = −〈K〉0 ln(〈K〉0) + D[ζ ′(γ − 1, kmin)

− ζ ′(γ − 1, kmax + 1)]

+ D

2
[ζ ′(γ , kmin) − ζ ′(γ , kmax + 1)]

+ 1

2
ln(2π ) +

[
1 − 1

2
ln(2π )

]
P0(1)

+
[

2 − 3

2
ln(2) − 1

2
ln(2π )

]
P0(2).

(86)

The relative entropy of the initial network with a power-law
degree distribution given by Eq. (78) takes the form S0 =
−S[P0(k)] + C[P0(k)||π (k|〈K〉0)], where S[P0(k)] is given by
Eq. (84) and C[P0(k)||π (k|〈K〉0)] is given by Eq. (86).

Below we analyze the convergence of a configuration
model network with a power-law degree distribution towards
an ER graph structure upon contraction. In particular, we
calculate the time-dependent degree distribution Pt (k) during
contraction and examine its convergence towards π (k|〈K〉t ).
To this end we perform direct numerical integration of the
master equation (10) and computer simulations, starting from
a configuration model network with a degree distribution
given by Eq. (78) and evaluate the time-dependent relative
entropy St .

In Fig. 7 we present the relative entropy St as a function
of time for a configuration model network with a power-
law degree distribution, of initial size N0 = 104 and initial
mean degree 〈K〉0 = 20, where kmin = 10, kmax = 100 and
γ = 2.65, that contracts via random deletion (a), preferential
deletion (b), and propagating deletion (c), obtained from
numerical integration of the master equation (solid lines).
In all three cases the relative entropy quickly decays, which
implies that the degree distribution of the contracting network
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FIG. 5. (a) The degree distribution P0(k) of a configuration model network with mean degree 〈K〉0 = 20 and an exponential degree
distribution, given by Eq. (73) with kmin = 10 (solid line). The circles represent the degree sequence of the N0 = 104 nodes in a single
realization of the initial network, which was used in the computer simulation. The corresponding Poisson distribution with the same mean
degree is also shown (dashed line). The network contracts via the preferential node deletion scenario. (b) The degree distribution Pt (k) of
the contracted network at time t = 7000, when the network size is reduced to Nt = 3000, obtained from numerical integration of the master
equation (solid line). The master equation results are in excellent agreement with the results obtained from computer simulations (circles).
The corresponding Poisson distribution π (k|〈K〉t ) with the same mean degree is also shown (dashed line). The master equation results and the
computer simulation results are in very good agreement with the corresponding Poisson distribution with the same mean degree.

converges towards a Poisson distribution. The convergence
is dramatically faster in the preferential and the propagating
deletion scenarios compared to random deletion scenario. The
master equation results are in very good agreement with the
results obtained from computer simulations (circles).

In Fig. 8(a) we present the degree distribution P0(k)
of a configuration model network of size N0 = 104 and a
power-law degree distribution with mean degree 〈K〉0 = 20
(solid line). The corresponding Poisson distribution with the
same mean degree is also shown (dashed line). The network
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FIG. 6. The time derivative of the relative entropy, dSt/dt =
�A(t ) + �B(t ), as a function of time, for a configuration model
network of initial size N0 = 104 and exponential degree distribu-
tion with mean degree 〈K〉0 = 20 and kmin = 10, that contracts via
preferential node deletion, obtained from numerical integration of
the master equation (solid lines). The terms �A(t ) (dashed line) and
�B(t ) (dotted line), which sum up to the derivative dSt/dt are also
shown. Note that both �A(t ) and �B(t ) are negative at all times
during the contraction process.

contracts via propagating node deletion. In Fig. 8(b) we
present the degree distribution Pt (k) of the contracted network
at t = 7000, when the network size is reduced to Nt = 3000,
obtained from numerical integration of the master equation
(solid line) and from computer simulations (circles). The
corresponding Poisson distribution π (k|〈K〉t ) with the same
mean degree is also shown (dashed line). The master equation
results, the computer simulation results, and the correspond-
ing Poisson distribution are found to be in very good agree-
ment with each other.

In Fig. 9 we present the time derivative of the relative
entropy, dSt/dt as a function of time, for a configuration
model network of initial size N = 104 and a power-law degree
distribution with mean degree 〈K〉0 = 20 that contracts via
propagating node deletion, obtained from numerical integra-
tion of the master equation (solid lines). The terms �A(t )
(dashed line) and �B(t ) (dotted line), which sum up to the
derivative dSt/dt are also shown. As expected, both �A(t )
and �B(t ) are negative at all times during the contraction
process.

VII. DISCUSSION

In Ref. [31] we used direct numerical integration of the
master equation and computer simulations to show that the
degree distributions of contracting networks converge towards
the Poisson distribution. To this end, we used the relative
entropy as a distance measure between the degree distribu-
tion Pt (k) of the contracting network and the corresponding
Poisson distribution π (k|〈K〉t ), and showed that this distance
decreases as the network contracts.

A computer simulation of network contraction provides
results for a single instance of the initial network and a single
stochastic path of the contraction process. In order to obtain
statistically significant results for a given ensemble of initial
networks and given network contraction scenario one needs
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FIG. 7. The relative entropy St as a function of time for a
configuration model network with a power-law degree distribution of
initial size N0 = 104 and mean degree 〈K〉0 = 20, where kmin = 10,
kmax = 100 and γ = 2.65, that contracts via random deletion (a),
preferential deletion (b), and propagating deletion (c), obtained from
numerical integration of the master equation (solid lines). In all three
cases the relative entropy quickly decays, which implies that the
degree distribution of the contracting network converges towards
a Poisson distribution. The convergence is dramatically faster in
the preferential and the propagating deletion scenarios compared to
random deletion scenario. The master equation results are in very
good agreement with the results obtained from computer simulations
(circles). Also, the initial value S0 � 2.59 is in perfect agreement
with the result obtained from Eqs. (84) and (86).

to combine the results of a large number of independent runs.
The direct numerical integration of the master equation is
advantageous in the sense that a single run of the numerical
integration process provides results for a whole ensemble of
initial networks. However, a given network ensemble repre-
sents a single point in the high-dimensional parameter space
of possible network ensembles. Therefore, in order to explore
the general properties of network contraction processes one
needs to repeatedly apply the direct integration of the master
equation to a large sample of distinct network ensembles.

Our aim in this paper was to obtain rigorous analytical
results for the convergence of contracting networks towards
the ER network ensemble. To this end we devised a rigorous
argument, which is based on the master equation that de-
scribes the temporal evolution of the degree distribution Pt (k)
and the relative entropy St . Such an argument is advantageous
over the direct numerical integration of the master equation
or computer simulations in the sense that it is universally
applicable to all possible degree distributions.

The relative entropy S[P(k)||Q(k)] of a distribution P(k)
with respect to a distribution Q(k) is a special case of
the Rényi divergence Sα[P(k)||Q(k)], with α = 1 [49]. The
choice of α = 1 is advantageous in the sense that it has a nat-
ural information theoretic interpretation [35,36]. The relative
entropy is an asymmetric distance measure or quasidistance
[50]. Interestingly, the relative entropy is related to other
distance measures between discrete probability distributions.
For example, the total variation distance between probability
distributions P(k) and Q(k) is given by T [P(k), Q(k)] =∑

k |P(k) − Q(k)|, namely, the sum of the differences (in
absolute value) between the probabilities assigned to all
values of k by the two distributions. Clearly, for any two
distributions P(k) and Q(k), the total variation distance sat-
isfies 0 � T [P(k), Q(k)] � 2. The relative entropy provides
an additional upper bound on the total variation distance via
the Pinsker inequality, which takes the form [51–54]

T [P(k), Q(k)] �
√

1

2
S[P(k)||Q(k)]. (87)

This relation implies that whenever the relative entropy be-
tween P(k) and Q(k) vanishes, so does the total variation
distance between them, meaning that the two distributions
become identical in the L1 norm. This shows that when the
relative entropy vanishes the distributions become identical.

In this paper we focused on the case of configuration
model networks, which exhibit a given degree distribution
and no degree-degree correlations. The theoretical framework
presented here may provide the foundations for the study of
network contraction processes in a much broader class of
complex networks, which exhibit degree-degree correlations
as well as other structural correlations. This will require a
more general formulation of the relative entropy, expressed
in terms of the joint degree distributions of pairs or adjacent
nodes, which take into account the correlations between their
degrees.

The theoretical framework presented here may be relevant
in the broad context of neurodegeneration, which is the pro-
gressive loss of structure and function of neurons in the brain.
Such processes occur in normal aging [55] as well as in a
large number of incurable neurodegenerative diseases such
as Alzheimer’s, Parkinson’s, Huntington’s, and amylotrophic
lateral sclerosis, which result in a gradual loss of cognitive and
motoric functions [56]. These diseases differ in the specific
brain regions or circuits in which the degeneration occurs. The
characterization of the evolving structure using the relative
entropy may provide useful insight into the structural aspects
of the loss of neurons and synapses in neurodegenerative
processes [57].
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FIG. 8. (a) The degree distribution P0(k) of a configuration model network with a power-law degree distribution, given by Eq. (78), and
mean degree 〈K〉0 = 20 (solid line), where kmin = 10, kmax = 100 and γ = 2.65, is shown on a log-log scale. The circles represent the degree
sequence of the N0 = 104 nodes in a single realization of the initial network, which was used in the computer simulation. The corresponding
Poisson distribution with the same mean degree is also shown (dashed line). The network contracts via the propagating node deletion scenario.
(b) The degree distribution Pt (k) of the contracted network at time t = 7000, when the network size is reduced to Nt = 3000, obtained from
numerical integration of the master equation is shown on a linear scale (solid line). The master equation results are in excellent agreement
with the results obtained from computer simulations (circles). The corresponding Poisson distribution π (k|〈K〉t ) with the same mean degree is
also shown (dashed line). The master equation results and the computer simulation results are in very good agreement with the corresponding
Poisson distribution with the same mean degree.

It is worth mentioning that there is another class of network
dismantling processes that involve optimized attacks, which
maximize the damage to the network for a minimal set of
deleted nodes [29,30]. Such optimization is achieved by first
decycling the network, namely, by selectively deleting nodes
that reside on cycles, thus driving the giant component into a
tree structure. The branches of the tree are then trimmed such
that the giant component is quickly disintegrates. Clearly,
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FIG. 9. The time derivative of the relative entropy dSt/dt as
a function of time, for a configuration model network of initial
size N0 = 104 and a power-law degree distribution with mean de-
gree 〈K〉0 = 20, where kmin = 10, kmax = 100 and γ = 2.65, that
contracts via propagating node deletion, obtained from numerical
integration of the master equation (solid lines). The terms �A(t )
(dashed line) and �B(t ) (dotted line), which sum up to the derivative
dSt/dt , are also shown. Note that both �A(t ) and �B(t ) are negative
at all times during the contraction process.

these optimized dismantling processes do not converge to-
wards an ER structure.

VIII. SUMMARY

In summary, we have analyzed the structural evolution
of complex networks undergoing contraction processes via
generic node deletion scenarios, namely, random deletion,
preferential deletion, and propagating deletion. Focusing on
configuration model networks we have shown using a rig-
orous argument that upon contraction the degree distribu-
tions of these networks converge towards a Poisson distri-
bution. In this analysis we used the relative entropy St =
S[Pt (k)||π (k|〈K〉t )] of the degree distribution Pt (k) of the con-
tracting network at time t with respect to the corresponding
Poisson distribution π (k|〈K〉t ) with the same mean degree
〈K〉t as a distance measure between Pt (k) and Poisson. The
relative entropy is suitable as a distance measure since it satis-
fies St � 0 for any degree distribution Pt (k), while equality is
obtained only for Pt (k) = π (k|〈K〉t ). We derived an equation
for the time evolution of the relative entropy St during network
contraction and expressed its time derivative dSt/dt as a sum
of two terms, �A(t ) and �B(t ). We have shown that the first
term satisfies �A(t ) < 0 for any degree distribution Pt (k).
This means that the �A(t ) term always pushes the relative
entropy down towards zero, driving the convergence of Pt (k)
towards Poisson. For the �B(t ) term we provide a condition
that can be used for any given degree distribution Pt (k) to
determine whether this term would accelerate the convergence
to Poisson or slow it down. The condition implies that for
degree distributions Pt (k) whose tail falls more slowly than
the tail of the corresponding Poisson distribution, the �B(t )
term would accelerate the convergence to Poisson, while in
the case that the tail falls more quickly than Poisson the �B(t )
term would slow down the convergence. We analyzed the
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convergence for configuration model networks with degen-
erate degree distributions (random regular graphs), exponen-
tial degree distributions, and power-law degree distributions
(scale-free networks) and showed that the relative entropy de-
creases monotonically to zero during the contraction process,
reflecting the convergence of the degree distribution towards
a Poisson distribution. Since the contracting networks remain
uncorrelated, this means that their structures converge towards

an Erdős-Rényi graph structure, substantiating earlier results
obtained using direct integration of the master equation and
computer simulations [31].
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