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Dynamical phase separation on rhythmogenic neuronal networks
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We explore the firing-rate model of excitatory neurons with dendritic adaptation (the Feldman–Del Negro
model [J. L. Feldman and C. A. Del Negro, Nat. Rev. Neurosci. 7, 232 (2006); D. J. Schwab et al., Phys.
Rev. E 82, 051911 (2010)] interacting on a fixed, directed Erdős-Rényi network. This model is applied to the
dynamics of the pre-Bötzinger complex, the mammalian central pattern generator with N ∼ 103 neurons, which
produces a collective metronomic signal that times inspiration. In the all-to-all coupled variant of the model,
there is spontaneous symmetry breaking in which some fraction of the neurons becomes stuck in a high-firing-
rate state, while others become quiescent. This separation into firing and nonfiring clusters persists into more
sparsely connected networks. In these sparser networks, the clustering is influenced by k cores of the underlying
network. The model has a number of features of the dynamical phase diagram that violate the predictions of
mean-field analysis. In particular, we observe in the simulated networks that stable oscillations do not persist in
the high-sensitivity limit, in contradiction to the predictions of mean-field theory. Moreover, we observe that the
oscillations in these sparse networks are remarkably robust in response to killing neurons, surviving until only
approximately 20% of the network remains. This robustness is consistent with experiment.
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I. INTRODUCTION

Networks of connected neurons, or neuronal microcircuits,
play a variety of roles [1]. Their collective dynamical proper-
ties depend upon both their network structure, i.e., the pattern
of which neurons are synaptically coupled to each other,
and the neurons’ individual properties, i.e., the relationship
between input and output at the level of a single neuron.
A case of particular interest is the network demonstrating
regular oscillatory, or rhythmogenic, behavior that emerges
from collective properties of the network rather than from the
properties of single neurons. Excitation only is not enough
to obtain the desired oscillations; inhibition is also required.
Inhibition can be realized either by adding inhibitory neurons
to the network or by introducing an internal variable for each
neuron, modulating its sensitivity [2,3]. The latter approach
was used to model the pre-Bötzinger complex (preBötC)
[2,3], the central pattern generator establishing the inspiratory
rhythm in mammals [4–6].

Specifically, the slow internal variable (identified by ex-
periment to be dendritic calcium concentration [7]) leads to
the oscillatory behavior in the following way. The calcium
concentration increases with each excitatory postsynaptic po-
tential (EPSP). In the proposed model, when the calcium
concentration is below a threshold, the neurons are sensi-
tive to external voltage signals (EPSPs) and, through mutual
excitatory interactions, they collectively increase their firing
rate. This collective high-firing-rate period represents the
inspiratory signal. When many neurons have a high firing rate,
however, the total input voltage to a typical neuron becomes
sufficiently high that its dendritic calcium concentration rises
above threshold, rendering that neuron insensitive to further

input. As a result, the neurons’ firing rate rapidly decreases
and remains low until the next period of mutual excitation
that occurs once the dendritic calcium concentration of a
typical neuron has fallen below the threshold, restoring those
neurons’ sensitivity to input.

In addition to the stably oscillating phase of the network,
the model was shown to admit two other phases: a quiescent
phase, characterized by a steady-state low-firing rate through-
out the network, and a high-activity phase, characterized by a
high firing rate [3]. A dynamical phase diagram of this system
was obtained as a function of network size and basal (low
calcium) neuronal excitability both in a mean-field analysis
and numerically on a set of Erdős-Rényi (ER) graphs [3]. In-
triguingly, the numerically obtained phase boundary between
the stably oscillating and high-activity phases demonstrates
significant deviations from the mean-field theory predictions,
with discontinuous jumps whose position on the phase di-
agram corresponds to the number of neurons at which the
highest-k k core [8] of the network vanishes [3].

In this paper we continue to explore the rhythmogenic
properties of the model. In order to understand the underlying
mechanism leading to the breakdown of mean-field behavior
and the emergence of k cores affecting the dynamical phase
boundaries, we study broadly the phase behavior of the model
over a wide parameter range that includes the current under-
standing of physiological preBötC. As a result, we observe a
type of dynamical permutation symmetry breaking in which
neurons dynamically separate into high- and low-firing-rate
groups on a network that maintains the permutation symmetry
of the neurons’ connectivity. This dynamical symmetry break-
ing, i.e., spontaneous activity phase separation, is responsible
both for the unexpected roughness of the phase boundaries
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and for the emergence of k cores in locating the steps in those
boundaries. Moreover, we observe that the dynamical phase
space of the model is much richer than previously thought. In
particular, we find that the region of phase space consistent
with stable oscillations is bounded in both network size and
neuronal basal excitability. This is inconsistent with the mean-
field predictions. We analyze activity phase separation on
random networks both numerically and analytically, showing
that the connectivity disorder of the random networks guides
the separation process. After having broadly investigated the
model over a wide range of parameters, we present results for
systems with the expected physiological parameters. We note
that the current bonds on these physiological parameters are
rather large. Consequently, we mention which of our results
are robust with respect to changing those parameters. Finally,
we note that the model system is remarkably robust to point
(i.e., neuron) damage; this robustness is in semiquantitative
agreement with experimental observations.

We organize the rest of the paper as follows. In Sec. II
we demonstrate spontaneous activity separation using a small
network to elucidate the process. We show how activity phase
separation generates the observed roughness of the phase
boundaries, a feature not captured by mean-field theory. For
the special case of an all-to-all coupled network, one can
analytically derive activity phase separation. We do so and
compare these results to numerical simulations on all-to-all
coupled networks in Sec. III. From that analysis we learn
that the steepness of the neuronal firing rate function (as
a function of somatic potential) controls this spontaneous
symmetry breaking on the network. In Sec. IV we move to the
case of more sparsely connected networks, chosen from the
ensemble of ER networks, where we prove that the activity
separated solution, if it exists, is stable for sufficiently sharp
neuronal firing-rate functions. The cases where such activity
separated solutions do not exist is reminiscent of converse
symmetry breaking [9], where symmetric solutions can be
paradoxically stabilized by system asymmetry.

In Sec. V we consider the role of k cores in determining
which neurons fall into the high-activity state in sparsely
connected networks. We prove that, when setting the low
somatic voltage firing rate to zero, activity phase separation
is exactly controlled by the k cores. We suggest that k cores
remain relevant in controlling the phase boundary between the
quiescent and high-activity phases of the disordered system,
but these topological features cannot alone account for the
roughness of the high-activity–stable-oscillation phase bound-
ary.

In Sec. VI we summarize our main results on activity phase
separation and discuss the implications of our analysis for
the physiological preBötC. The reader primarily interested in
our predictions for the in vitro preBötC system may choose
to turn to that section. Readers interested in simulations will
find a reference to our software and appropriate parameters in
Appendix E.

II. THE FELDMAN–DEL NEGRO MODEL

Following Ref. [3], we describe the two-compartment neu-
ron model of preBötC neurons. The ith neuron is characterized
by two dynamical variables, its somatic potential Vi and its

dendritic calcium concentration Ci. Their dynamics is con-
trolled by the equations

dVi

dt
= 1

τV
(Veq − Vi ) + �V (Ci )

∑
j

Mi jr(Vj ), (1)

dCi

dt
= 1

τC
(Ceq − Ci ) + �C

∑
j

Mi jr(Vj ), (2)

where �V (C) and r(V ) are defined by

�V (C) = �Vmaxσ

(
C∗ − C

gC

)
(3)

and

r(V ) = (rm − rb)σ

(
V − V ∗

gV

)
+ rb. (4)

In Eqs. (3) and (4) we have introduced the standard sigmoid
(Fermi) function

σ (x) = 1

1 + e−x
. (5)

Here and throughout the paper we work in dimensionless
calcium concentration units obtained by setting Ceq = 0 and
C∗ = 5.

Equation (1) is typical of a leaky integrate and fire model
for an excitatory neuron. The principal addition in the two-
compartment model is dendritic adaptation, which is built
into �V (Ci ) defined in Eqs. (3) and (5). An incoming EPSP
produces an increase in both dendritic calcium concentration
�C and somatic potential �V (C); however, above a thresh-
old concentration C∗, �V (C) becomes small, rendering the
neuron insensitive to subsequent EPSPs. In the absence of
incoming EPSPs, the dendritic calcium concentration returns
to Ceq on a timescale of τC at which point the neuron is once
again sensitive to EPSPs.

The parameter space of the neuron model is controlled by a
small set of physiological constants. There are the steady-state
dendritic calcium concentration and somatic potential Ceq and
Veq, respectively. The voltage-dependent firing rate is deter-
mined by the basal and maximal firing rates rb and rm as well
as gV , which controls the steepness of the transitions around
the threshold voltage V ∗. Dendritic adaptation is parametrized
by the maximum voltage increment associated with an EPSP
�Vmax, a calcium concentration threshold C∗, and a steepness
parameter gC , analogous to gV discussed above. In addition to
the two timescales τV < τC for the relaxation of the somatic
potential and dendritic calcium, there is a fixed calcium con-
centration increment �C associated with the response to an
EPSP. Table I provides the currently available values of the
model parameters.

The model also depends on the size and connectivity of
the underlying network of synaptic connections between the
neurons. The network’s structure can be encoded by an ad-
jacency matrix M whose matrix elements Mi j = 1 if neuron
i synapses on neuron j and equal to zero otherwise. In this
paper we consider only networks built from uncorrelated
stochastic connections, i.e., Erdős-Rényi directed graphs [13].
An ensemble of such networks is determined by a single
probability p that any nondiagonal matrix element is equal
to one. We exclude the possibility of a neuron synapsing on
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TABLE I. Model parameters known from experiment.

Parameter Approximate value Reference

Veq −65 mV [1]
V ∗ −50 mV [1]
τV 20 ms [10,11]
rm 40 Hz [10,11]
rb 0.1 Hz [11]
�Vmax 2.8 mV [10,11]
p 0.065 [10]
N 103 [10,12]

itself. The all-to-all network is simply the case of such an ER
graph with p = 1.

Dynamical phase diagram

For a given set of parameters and given network of N
neurons, the dynamical system evolves deterministically from
a set of 2N initial conditions leading to a fixed point, limit
cycle, or chaotic dynamics at long times. We find multiple
fixed points, which can be further distinguished as quiescent,
where the somatic potential averaged over the network of
neurons 〈V 〉 lies below the transition to the high-firing state
V ∗, or high activity (HA), where 〈V 〉 > V ∗ [3]. Similarly, we
can distinguish three classes of stable limit cycle oscillations:
below-threshold oscillations (BTOs), where the oscillatory
average voltage remains below the threshold for a high firing
rate; above-threshold oscillations (ATOs), where the oscilla-
tory average voltage remains above the threshold for a high
firing rate; and true metronomic activity (TMA), where the
stable limit cycle oscillations carry the system between high
and low firing rates, producing the physiologically observed
inspiratory rhythm. While these three oscillatory phases were
not distinguished in [3], we do so here to give a more precise
picture of the model’s dynamical states.

To examine the dynamical phase behavior of the system,
we vary the basal excitability of the neurons �Vmax and
the size of their network N while fixing the rest of the
parameters. We study a range of network sizes 10 � N � 103,
using the smaller networks (N ≈ 102) for their computational
efficiency1 and the larger networks (N ≈ 103) to approach the
size of the physiological preBötC. We find that our principal
results, i.e., activity phase separation and phase boundary
roughness, appear in both small networks and larger ones. In
Sec. VI we return to the question of the model’s large-N limit,
where we demonstrate that one can explore arbitrarily-large-N
networks via a scaling relation.

Typical results for dynamical phase diagrams of the net-
works are shown in Fig. 1 for three different choices of the
fixed variables. We observe in Fig. 1(a) the numerically deter-
mined phase diagram for all-to-all coupled networks, which
agrees with the mean-field solution of the model shown in
Appendix C. In general, we find that the numerically deter-
mined phase diagram agrees with the mean-field approxima-

1The simulation time scales as N2 for a single network and as N3

to map the phase diagram for a particular set of network parameters.

FIG. 1. Dynamical phase diagram of the model as a function of
the size of the network N and basal neuronal excitability �V . (a) An
all-to-all coupled network with large gC = 3 produces phase behav-
ior consistent with mean-field predictions, but (b) sharp sigmoid
functions (small gC = 0.01) produce a disordered diagram in which
all dynamical phases are strongly mixed and the network dynamics
is highly dependent on initial conditions. Finally, (c) randomly con-
nected networks (p = 0.2) with large gC = 3 have initial-condition-
independent results with a modified dynamical phase diagram. In all
three panels the phases are quiescent [light blue (lightest gray)], BTO
[blue (light gray)], HA [dark red (darkest gray)], ATO [purple (dark
gray)], and TMA [green (medium gray)]. All parameter values are
listed in Appendix E.

tion in all-to-all networks (for arbitrary initial conditions) as
long as the transition in dendritic sensitivity is sufficiently
smooth, i.e., gC � 1 (see Appendix B). In this limit we ob-
serve all five dynamical phases: quiescent [light blue (lightest
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gray)], BTO [blue (light gray)], ATO [purple (dark gray)],
TMA [green (medium gray)], and HA [dark red (darkest
gray)].

There are two ways to invalidate the mean-field predic-
tions. The first is to make the dendritic calcium adaptation
more abrupt, i.e., decrease gC � 1 while retaining the all-to-all
coupling. In that case, we encounter a much more complex
phase space as shown in Fig. 1(b), where the phases mix
on a small scale in the parameter space. We also observe a
dependence upon initial conditions. We discuss the quasiperi-
odic pattern arising in this case in Appendix D. In effect, not
only is the dynamical phase diagram highly heterogeneous,
but also the regions that we associate with a particular phase
may depend on the choice of initial conditions. The mean-
field analysis is nonpredictive, and one may say that even
the introduction of a dynamical phase diagram is not as well
defined as in the mean-field case.

The second way to invalidate the mean-field predictions is
more interesting. We maintain the smooth neuronal sigmoid
functions, but reduce the number of network connections. In
that case, as shown in Fig. 1(c), the phase behavior of the
network is once again insensitive to initial conditions. More-
over, the general structure of the mean-field phase diagram
is preserved, but the phase boundaries are distorted. Both the
HA [dark red (darkest gray)] and quiescent [light blue (lightest
gray)] phases expand, while the physiologically relevant TMA
(green) phase shrinks. Both the TMA and BTO [blue (light
gray)] phases are now bounded, whereas they extended to ar-
bitrarily large �V in the mean-field prediction. In this regime,
we do not see chaotic dynamics, unlike in the cases where gC

is small. Changing other parameters of the model changes the
shape of the phase boundaries, but does not introduce new
dynamical phases. Both routes to the breakdown of mean-
field theory (small gC and more sparsely connected networks)
are related to an inherent instability toward activity phase
separation. We discuss this in more detail below.

Before discussing the phase separation, we note that the
roughness of the phase diagram in the non-mean-field regime,
as shown in Fig. 1(c), implies that the physiologically desir-
able stably oscillating phase (TMA) admits a type of reentrant
behavior in which one can remove neurons (decrease N) from
a network in the high-activity state to render it in the stably
oscillating TMA phase. In Fig. 2 we see examples of such
possible transitions at �V = 18 mV (indicated by the vertical
dashed line) where by decreasing the number of neurons from
N = 90 to N = 65 one encounters TMA-HA-TMA-HA tran-
sitions, before remaining in the HA phase below N = 72. This
suggests a specific experimental test of the fundamental model
that can be made by looking for these reentrant dynamical
transitions upon killing neurons in the network. In this figure
we also show with black horizontal lines the values of N at
which various k cores of the network vanish. The positions
of the tongues of extra stability of the oscillating TMA phase
appear to be bounded by these k-core transitions, suggesting
that the disappearance of high-k k cores changes the stability
of the oscillatory (TMA) phase. We return to this point in
Sec. V, where we show that k cores play a dominant role in the
phase stability of a somewhat simplified version of the model.

The fact that removing neurons from the network can
enhance its ability to maintain stable oscillations seems to

FIG. 2. Reentrant behavior along the TMA-HA phase boundary.
The k-core transitions are shown as black lines, and colors are the
same as in Fig. 1. All parameter values are listed in Appendix E.

be counterintuitive. This reentrant behavior appears at many
phase boundaries in the system, including the one between
the high-activity and quiescent phases. An example of such
reentrant behavior at this phase boundary is shown in Fig. 3.
To understand how this behavior emerges, it is simpler to
study this case where the neurons’ dynamics reaches a fixed
point rather than a limit cycle. Consider a fixed point of the
system; setting the time derivatives on the left-hand sides of
Eqs. (1) and (2) equal to zero, we obtain

Vi = Veq + �V (Ci )τV

∑
j

Mi jr(Vj ), (6)

Ci = Ceq + �CτC

∑
j

Mi jr(Vj ). (7)

For neuron i to be rapidly firing, it must receive a number
of EPSPs consistent with both Vi > V ∗ and Ci < C∗. In this
way, its somatic voltage is maintained above the threshold and
it remains sensitive to EPSPs. Too many EPSPs will drive
Ci > C∗, resulting in the neuron’s somatic potential falling

FIG. 3. Phase diagram showing reentrant behavior at the
quiescent- [light blue (lightest gray)] HA [dark red (darkest gray)]
phase boundary. There are also small regions of the oscillatory
phases: TMA [green (medium gray)], ATO [purple (dark gray)], and
BTO [blue (light gray)]. The black vertical dashed line shows the
reentrant behavior. The moving along this line is shown in Fig. 4. All
parameter values are listed in Appendix E.
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FIG. 4. Example of reentrant high activity on a small network. Red (dark gray) neurons have V > V ∗ and dark yellow (light gray) V < V ∗.
The neurons are numbered and the last neuron in each network is removed when going from A to B to C to D. With the removal of neuron
16 (from A to B), the somatic potential of neuron 11 drops below the threshold, as it has insufficient voltage input, and the average network
voltage falls below V ∗ too. Going from B to C, neuron 15, which synapses to neuron 4, is removed, which lowers its calcium concentration. As
a consequence, the somatic potential of the neuron 4 increases as well as its firing rate, resulting in increasing the firing rate and voltage input
to neuron 7. The somatic potential of neuron 7 then goes above the threshold too. The increasing firing rate of neuron 4 also raises the somatic
potential of neuron 0, which raises the somatic potential of neuron 13, which in turn raises it for neuron 11. Although somatic potentials of
neurons 0 and 13 do not exceed V ∗, that of neuron 11 does. As a result, the average voltage of the network rises above V ∗. Finally, when
neuron 14 is removed (from C to D), all neurons are deactivated and �V must increase to restore high activity. All parameter values are listed
in Appendix E.

below that threshold, while too few EPSPs will allow Vi < V ∗
even while maintaining dendritic sensitivity. As a result, the
stable configuration of Vi > V ∗ and Ci < C∗ can be destroyed
by either adding or removing neurons that synapse on neuron
i. We can see precisely how this works in an example of a
small network of 17 neurons poised near the HA-quiescent
boundary.

In Fig. 4 we see that eliminating a low-firing-rate neuron
(number 16) from the network causes neuron 11 to change
from a high to a low firing rate. Removing an excitatory
neuron has the expected behavior of reducing the total activity
of the network; however, the subsequent removal of another
low-firing-rate neuron (neuron 15) results in neurons 7 and 11
once again returning to high firing rate. Finally, by removing
the low-firing-rate neuron 14, the entire network collapses into
the quiescent state.

III. SPONTANEOUS SYMMETRY BREAKING
ON ALL-TO-ALL NETWORKS

In this section we explore phase separation on all-to-all
coupled networks, i.e., those having an adjacency matrix of
the form Mi j = 1 for all i �= j and Mii = 0 for all i. The steady
state of the system spontaneously breaks the permutation
symmetry of the neurons. To explore this symmetry breaking,

we first investigate the symmetry-preserving solution, which
is obtained from the pair of differential equations

dV

dt
= 1

τV
(Veq − V ) + (N − 1)�V (C)r(V ), (8)

dC

dt
= 1

τC
(Ceq − C) + (N − 1)�Cr(V ), (9)

which results from setting Ci = C(t ) and Vi = V (t ) for all i in
Eqs. (1) and (2) and using the all-to-all adjacency matrix.

We demonstrated numerically that the dynamics of the full
system (1) and (2) evolves towards this permutation symmet-
ric solution for arbitrary initial conditions if the sigmoidal
functions P(V ) and �V (C) are smooth enough [see Figs. 5(c)
and 5(d)]. If, on the other hand, these sigmoid functions are
sharper, the system becomes unstable towards activity phase
separation (breaking the original permutation symmetry of the
underlying network) into time-independent subnetworks of
high- and low-firing-rate neurons, when the initial conditions
are not themselves identical across the network [see Figs. 5(a)
and 5(b)]. The phenomenon of activity phase separation in
all-to-all biological networks has been observed in a model
of cell regulatory networks [14,15].

The symmetry-broken state is of course not captured by
the mean-field analysis. To explore it, we need to analyze the
full system of equations. Defining the sum of firing rates over
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FIG. 5. Activity phase separation on an all-to-all connected network of N = 10 neurons. The traces show the somatic potential of individual
neurons as a function of time. (a) One neuron is at high voltage, nine are quiescent, gV = 0.3 mV, and gC = 0.5. (b) Two neurons oscillate,
eight are quiescent, gV = 0.3 mV, and gC = 0.5. (c) Synchronous oscillations of all neurons, gV = 0.1 mV, and gC = 1.1. (d) All neurons at
high voltage, gV = 1.8 mV, and gC = 10.8. All parameter values are listed in Appendix E.

the entire network as R = ∑
i r(Vi), we rewrite the dynamical

system as

dVi

dt
= 1

τV
(Veq − Vi ) + �V (Ci )[R − r(Vi )], (10)

dCi

dt
= 1

τC
(Ceq − Ci ) + �C[R − r(Vi )]. (11)

Now we can look for a self-consistent solution of this system,
i.e., we find Vi(R) such that R = ∑

i r(Vi). Studying the null-
clines of Eqs. (10) and (11), we see that it can have one to three
fixed points. The cases of one and three fixed points are shown
in Fig. 6, where we see the intersections of the nullclines of
Eqs. (10) and (11) in orange (light gray) and blue (dark gray),
respectively.

Since we are looking for a self-consistent solution, we
cannot analyze its stability directly from the graph; however,
we can find the fixed points and later analyze their stabil-
ity. For neuronal parameters consistent with smooth sigmoid
functions, there is only one fixed point (Vf ,Cf ) for a fixed
value of R. This self-consistent solution is both permutation
symmetric and consistent with our mean-field prediction. In
contrast, for sharp sigmoid functions, there is more than
one fixed point, so it is possible to find some fraction of
the network neurons at a high-voltage fixed point, while the
remainder is at a low-voltage fixed point. The number of
neurons in these two categories is determined by the condition
R = ∑

i r(Vi). There is also a range of parameters with gV > 0
and gC = 0 such that the self-consistent solution does not
exist. Therefore, there is no fixed point and only oscillations
are allowed. See Appendix D for the details of the analytical
calculation.

For the small values of gC (sharp sigmoid function), the
phase separation into firing and quiescent neurons is the only
stable state. For intermediate values of gC we still observe this

stable state shown in Fig. 5(a). We also show activity sepa-
ration into oscillating and quiescent subnetworks in Fig. 5(b).
Continuing to increase gC , we obtain synchronous oscillations
of the whole network in Fig. 5(c) and finally a fixed point with
constant uniform activity in Fig. 5(d).

For the case of the large physiological-like network of N =
1000 neurons we also observe phase separation in the case of
the sharp sigmoid function (Fig. 7), which demonstrates that
the separation is not the finite-size effect.

Step-function limit: All-to-all networks

To better understand activity phase separation on the net-
work, it is useful to consider a nonphysiological limit of
the model in which the sigmoidal functions describing both
the firing rate and the dendritic adaptation are taken to be
infinitely sharp, i.e., step functions gV = gC = 0. In this case,
neurons with above-threshold voltage V ∗ fire at the maximal
rate rm, while neurons below that threshold voltage fire at
the basal rate rb. If the number of high- and low-firing-rate
neurons are nh and nl , respectively (nh + nl = N), we find that

Vh = Veq + �V (Ch)τV [(nh − 1)rm + nlrb], (12)

Ch = Ceq + �CτC[(nh − 1)rm + nlrb]. (13)

Similarly, the low-firing-rate neurons have

Vl = Veq + �V (Cl )τV [(nl − 1)rb + nhrm], (14)

Cl = Ceq + �CτC[(nl − 1)rb + nhrm]. (15)

One can check that the rate of spikes received by a high-
firing-rate neuron Rhigh = [(nh − 1)rm + nlrb] is less than that
received by a low-firing-rate neuron Rlow = [(nl − 1)rb +
nhrm]. However, the condition for being at a high firing
rate is V ∗ < Vh and a low firing rate is V ∗ > Vl . For these
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(a)

(b)

FIG. 6. Nullclines of the all-to-all N = 10 network described by
Eqs. (10) [orange (light gray)] and (11) [blue (dark gray)]. There
are either three fixed points or one fixed point, depending on the
parameters. Assuming R is constant (and not fixed self-consistently),
two of the fixed points annihilate in a standard pitchfork bifurcation
[16]. (a) Three fixed points, gV = 0.5 mV, and gC = 0.3. (b) One
fixed point, gV = 5 mV, and gC = 3. All parameter values are listed
in Appendix E.

inequalities to hold simultaneously with the result that Rhigh <

Rlow, one needs the high-firing-rate neurons to be more sen-
sitive to incoming spikes than the low-firing-rate ones. Thus
we conclude that this state requires Cl > C∗ > Ch. From this
conclusion we find nl , the number of low-firing-rate neurons,
to be

nl =
⌊

(Nrm − rb)�CτC + Ceq − C∗

�CτC (rm − rb)

⌋
, (16)

where we have introduced the floor function: �x	 is equal to
the integer part of the real number x.

To observe the phase-separated state, we require that the
high-firing-rate neurons remain sufficiently sensitive to in-
coming spikes. The lower bound of their sensitivity �V (Ch)
is given by

V ∗ − Veq < �V (Ch)τV [(nh − 1)rm + nlrb]. (17)

While the number of neurons at low-firing-rate neurons nl

is fixed by Eq. (16), the identity of these neurons is determined
solely by the initial conditions on the all-to-all network. There

is a large number n!
nl !nh! of otherwise identical fixed points

that are related by permutation symmetry of the network. If,
however, the network is more sparsely connected and thus
does not have this permutation symmetry, there are fewer fixed
points, as is discussed in the following section.

IV. SYMMETRY BREAKING ON SPARSE NETWORKS

If we randomly remove edges from the all-to-all network,
we break the permutation symmetry of the neurons and pro-
duce an instance of a network selected from an ensemble of
ER networks with probability p < 1 of a directed connection
between neurons. This leads to a rapid reduction in the number
of stable fixed points with decreasing p, as shown in Fig. 8.

Below p ≈ 0.9 the number of stable fixed points drops
to just one or vanishes entirely, resulting in only an oscil-
latory or approximately chaotic solution. For the case of
the step-function neurons, or for sufficiently sharp sigmoidal
responses, we do not typically observe globally synchronized
oscillations. The asynchronous firing of different neurons
results in many self-crossing for the network averaged V vs
C graph, as shown in Fig. 9.

While for the smooth sigmoid functions the most common
case when oscillations occur is an unstable fixed point, this is
not possible when sigmoid functions are very sharp. Indeed,
any fixed point not exactly on the threshold in this case is sta-
ble, as shown in Appendix C. Therefore, the only opportunity
for the oscillatory or approximately chaotic behavior is the
absence of a fixed point.

Oscillations on star networks

In order to understand how all fixed points vanish in sparser
networks, we consider the special case of a star network, in
which one central neuron is bidirectionally coupled to N − 1
other neurons. Those other neurons are not coupled to each
other. Such a network is shown in Fig. 10.

We choose parameters such that the range of the central
neuron’s firing rate is large enough to take the peripheral
neurons across their firing-rate threshold:

�V (0)τV rb < V ∗ < �V (0)τV rm. (18)

Furthermore, we require that all the peripheral neurons firing
together at their basal rate are able to excite the central neuron
over the threshold. If, however, the central neuron’s dendritic
calcium is above threshold, then all the peripheral neurons
firing at their maximal rate are collectively insufficient to
excite the central neuron:

(N − 1)�V (C > C∗)τV rm < V ∗ < (N − 1)�V (0)τV rb.

(19)
We also demand two conditions on the calcium threshold.
First, a single neuron cannot fire rapidly enough to push
another neuron’s dendritic calcium over the threshold:

C∗ > �CτCrm. (20)

However, N − 1 neurons firing at their maximal rate can
induce calcium concentrations over threshold in the central
neuron,

(N − 1)�CτCrb < C∗ < (N − 1)�CτCrm, (21)
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FIG. 7. Activity phase separation on an all-to-all connected network of N = 1000 neurons: (a) and (b) nullclines as in Fig. 6; (c) and
(d) corresponding traces of voltage versus time, as in Fig. 5. (a) and (c) Activity separation is shown for gV = 0.05 mV and gC = 0.03.
(b) and (d) No such phase separation, but synchronous oscillation is shown with gV = 2 mV and gC = 1. All parameter values are listed in
Appendix E.

but they cannot do so when they are all firing at their basal
rate.

By obeying all of the above inequalities, the system cannot
reach a fixed point. Instead, the network with these step-
function neurons oscillates. The central neuron excites the
peripheral ones and then those neurons drive the central
neuron’s calcium concentration above threshold, rendering it
insensitive. As a result, the central neuron returns to its low
firing state and then so do the peripheral ones. At this point,
the cycle begins again.

Recall, however, that the step-function neurons on the all-
to-all coupled network do not oscillate; instead they reach

FIG. 8. Number of stable fixed points as a function of the net-
work connectivity probability p for N = 100 neurons. For p = 1 this
number coincides with n!

nl !nh! and rapidly falls to one or zero when
p � 0.9. All parameter values are listed in Appendix E.

one of many fixed points characterized by activity phase
separation. By breaking the permutation symmetry of the
network, the star network admits a new synchronous oscilla-
tory phase. This is reminiscent of an effect called converse
symmetry breaking [9], where the necessary condition for
synchronous activity of a coupled network of oscillators is
an asymmetry of this system. We observe a similar stability
of globally synchronous oscillations in random networks that
break the permutation symmetry such as the ER graphs dis-
cussed above.

V. EFFECT OF NETWORK HETEROGENEITY
ON PHASE SEPARATION

We have established that the neuron model leads generi-
cally to activity phase separation. On permutation symmet-
ric all-to-all networks, this phase separation is a form of
spontaneously broken symmetry, but it exists on more sparse
networks too. This poses the following question: How does
the network topology modify phase separation? To address
this, we consider another simplified limit of the model by
setting rb = 0 (i.e., a neuron is either firing or not), using a
step-function firing rate (gV → 0), and eliminating dendritic
adaptation by taking C∗ → ∞. The system in this limit is
equivalent to the coarse-grained neuronal network considered
in [17] that was based on the mutualistic ecosystem network
studied in [18]. It was shown that in such a model the k
core exactly coincides with the most stable part of the system
(the active voxels in a subliminal state in [17] and surviving
species in [18]). We repeat below the derivation of this effect
in terms of the system at hand based on [17,18], demonstrating
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FIG. 9. Phase trajectories in the averaged V -C plane for networks
with step-function neurons. (a) Almost chaotic behavior. True chaos
is not observed since the number of possible states is finite, but the
voltage varies wildly. (b) Limit cycle with self-intersections, indicat-
ing asynchronous firing. (c) Standard limit cycle with synchronous
firing, corresponding to true metronomic activity, rarely observed in
the step-function limit.

that, in this case, the cluster of firing neurons will be a k core
of the network with k determined by neuronal parameters.

Consider ni actively firing input neurons synapsing on
neuron i. From the fixed-point condition V̇i = 0 we find

Vi

τV
= ni�V rm. (22)

For the ith neuron to be part of the group of actively firing
ones, Vi > V ∗, which implies that the number ni of firing
inputs exceeds a lower bound

ni �
V ∗

τV �V rmax
. (23)

We intend to relate the actively firing group with a topo-
logical feature of the network: a k core. This structure is
defined to be the maximal subnetwork such that within it each
neuron has k or more inputs from the other neurons in that

FIG. 10. Star network with N = 9 neurons. The peripheral neu-
rons are bidirectionally coupled to the central neuron, but not to each
other.

subnetwork. The k cores have been discussed in a variety of
applications in neuroscience, bioinformatics, ecology, and the
study of social networks [18–21]. The condition for a neuron
to be in the actively firing group [Eq. (23)] is equivalent to
membership within a k core with the integer k given by

k =
⌊

V ∗

τV �V rmax

⌋
. (24)

If a k core with some k given by Eq. (24) is absent from
the network, the dynamical system on that network relaxes
to the quiescent fixed point, but if such a k core is present, the
neurons making up the k core become fixed in the HA phase.
We note that for typical values of k, most of the network will
be part of that k core [8] because for k > 2 the probability of
a neuron being part of the k core has a discontinuous jump
from zero to a significant value as a function of the density
of synaptic connections (in the thermodynamic limit of large
networks).

We compare our predicted phase boundary of the system
and k cores in Fig. 11. The predicted k value for a particular
set of n and �V parameters corresponds exactly to the point
in phase space where the HA phase gives way to the quiescent
phase. For this restricted version of the Feldman–Del Negro
model, at least, there is a precise correspondence between
the neuronal network’s dynamical phase behavior and the
prediction made purely from the topology of the underlying
network. The k cores completely determine the dynamical
phase transition of the neurons interacting on them and how
the network phase separates into groups of high- and low-
activity neurons.

VI. DISCUSSION AND APPLICATIONS
TO THE PRE-BÖTZINGER COMPLEX

We have explored the Feldman–Del Negro model of oscil-
lations in the preBötC and found a form of dynamical phase
separation on the network in which groups of neurons sep-
arate into high- and low-firing-rate fixed points. This firing-
quiescent phase separation plays a crucial role in the termi-
nation of the TMA phase. One feature that emerges from this
work is that the permutation-symmetric system (the all-to-all
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FIG. 11. Phase diagram for the simplified model discussed in
Sec. V. There is no oscillatory phase, only quiescent [light blue
(lightest gray)] and HA [dark red (darkest gray)]. Black horizon-
tal lines correspond to k-core transitions. We see an almost exact
correspondence between k-core transitions and steps on the phase
boundary. Small deviations are due to the fact that the average
voltage of the whole network can be below V ∗ even in the presence
of the active k core due to the averaging over all neurons including
quiescent ones. All parameter values are listed in Appendix E.

coupled network) admits a type of spontaneous symmetry
breaking into these high- and low-activity phases. In more
sparse networks such as in the physiological preBötC, this
permutation symmetry is broken by the network. The details
of network connectivity modify the inherent instability of the
system toward phase separation into groups of high- and low-
firing-rate neurons. In one particular limit of the model, we
found that this interaction of neuronal dynamics and network
topology is particularly simple. By examining only the k-core
structure of the network, one can precisely predict both the
dynamical phase diagram and which neurons will end up in
the high- and low-firing-rate groups.

In the full model, the effect of the k cores in determining
the phase boundaries of the dynamical system remains, but
no longer does it completely control these dynamics. The
incomplete influence of k cores was observed earlier [3].
Here we believe we have better elucidated the underlying
mechanism and explained why their control of the dynamics
is not complete.

To assess the importance of these observations for the
physiological preBötC, we first present the numerically com-
puted phase diagram for 1000 neurons using parameters con-
sistent with physiological measurements. This is shown in
Fig. 12. See Appendix A for a discussion of how the neuronal
and network parameters were selected.

As discussed in Appendix A, there is a remaining uncer-
tainty in determining the value of �C. Moreover, the full
preBötC is somewhere between two to three times as many
neurons as used in the simulation. We note, however, a scaling
argument, based on the mean-field analysis of the model, that
allows us to shift �C as a way of effectively changing the
network’s size. In the mean-field theory, three parameters �C,
�V , and pN appear in only two combinations pN�V and
pN�C. As a result, if we change �C → �C

λ
, �V → �V

λ
, and

pN → pNλ the mean-field solutions are invariant. We can test
this scaling hypothesis in the full model by comparing the

FIG. 12. Phase diagram of the network with physiologically
relevant parameters. It shows three stable dynamical phases: true
metronomic activity [green (medium gray)] consistent with the pre-
BöC physiological dynamics, as well as a HA regime [dark red
(darkest gray)] and a quiescent regime [light blue (lightest gray)].
There is a narrow band of above-threshold oscillations [purple (dark
gray)]. The diagram corresponds to the part of the phase diagram in
Fig. 13 in the black frame under rescaling, and thus does not have
all the possible phases present. All parameter values are listed in
Appendix E.

phase diagram of the N = 1000 network with �C = 2.5 ×
10−2, shown in Fig. 13, to a much smaller network of N =
100 and �C = 0.1, shown in Fig. 1(c). Their correspondence
supports our exploration of larger networks using calcium
scaling.

The scaling hypothesis suggests that if we were able to
expand the network size used in Fig. 12 to the preBötC’s true
physiological size, we would find that the region of stable
oscillations is bounded from above as well as for high and
low neuronal excitability. We see in Fig. 13 that the large-N
network has a rough phase boundary between the TMA and

FIG. 13. Phase diagram of large networks with N up to 1000.
All five phases are present: TMA [green (medium gray)], BTO [blue
(light gray)], ATO [purple (darker gray)], HA [dark red (darkest
gray)], and quiescent [light blue (lightest gray)]. The right TMA-
BTO and BTO-quiescent boundaries demonstrate the reentrant be-
havior. In general, the pattern is approximately the same as in
Fig. 1(c), supporting the scaling argument. The black frame shows
the part of the diagram that maps onto the phase diagram in Fig. 12
under rescaling. All parameter values are listed in Appendix E.
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quiescent phases on the right side of the bounded TMA do-
main, which is incompatible with the mean-field analysis and
reflects the role of dynamical phase separation on the network.
This result makes an interesting prediction in that there are
regions of the phase diagram in the physiological system
where increasing neuronal excitability can actually produce
globally quiescent networks, through calcium inhibition. This
feature cannot be reproduced by the mean-field model.

Another consequence of this large-N phase diagram is that
we can predict the robustness of the network to damage. From
Fig. 13 we see that under optimal conditions, one can destroy
about 80% of the network before causing the collapse of the
oscillating phase. This agrees with experimental observations
[12]. One may notice that the crucial condition for this ro-
bustness is the smoothness of the sigmoid functions. If we
make sigmoid functions sharper, the system becomes highly
sensitive not only to damage but also to the initial conditions
(see Appendix B for the influence of parameters gV and gC

controlling the sharpness of sigmoid functions).
We propose three types of experimental tests of the above

analysis. The first of these, alluded to above, is that the
network should be able to be silenced by increasing neu-
ronal excitability. Second we predict that the roughness of
the phase boundaries, particularly when N is large, suggests
the presence of multiple reentrant transitions in which the
network goes from being oscillatory to quiescent, and back
to oscillatory as neurons are removed from it. Third, one
should be able to directly observe dynamical phase separation
in the system. In either the high activity or quiescent phase,
one should be able to find neurons trapped at the other fixed
point so that the globally quiescent state of the network
should harbor some fixed fraction of high-firing-rate neurons.
Conversely, the network in its globally highly active state
should contain a subpopulation of neurons trapped in their
low-firing-rate state.
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APPENDIX A: DETERMINING PHYSIOLOGICAL
PARAMETERS FOR THE MODEL

To prepare Fig. 12 we must address the current under-
standing of the physiological parameters of the neurons as
well as the network connectivity parameters. Most of them
can be fixed using the experimental data shown in Table I.
(To obtain value for p from [10] we use the fact that out of
23 pairs of neurons, three were unidirectionally connected,
which gives 3/23 probability for the connection in any of two
directions and half as much for the connection in the particular
direction.) The exception is the set of parameters related to
the dendritic calcium concentration, which are not currently
as well known. We chose them to reproduce the observed
dynamics of the system.

Specifically, we set τC to reproduce the observed period of
stable oscillation. Taking into account that, for us, the units
for the calcium concentration are arbitrary as is the choice of
the zero for that concentration, we are left with only two inde-
pendent parameters: gC and �C. Here gC is chosen to be large
enough that we have reproducible phase behavior, avoiding
highly heterogeneous and initial-condition-dependent results
as shown in Fig. 1(b). We also require it to be small enough
to produce a true threshold for calcium inactivation of the
dendrite, i.e., Ceq−C∗

gC
> 1. The last parameter to be fixed is �C.

The proper choice of �C is facilitated by the scaling behavior
observed in the mean-field approximation of the model.

Indeed, consider Fig. 1(c). To quantitatively fit the in vitro
data, the network must support stable oscillations when �V ≈
2.8 mV, which is the average magnitude of an EPSP [10]. To
do that, we choose �C = 0.007 and find, with no remaining
fitting parameters, that stable oscillations occur for networks
of N ≈ 103 neurons (see Fig. 12). It is computationally dif-
ficult to study networks with N > 2000, but we can use the
rescaling property, observed in the mean-field approximation,
to qualitatively predict the behavior for larger N . If we choose
�C = 0.025 and p = 0.083, we obtain the phase diagram,
shown in Fig. 13. The result is quite similar to that shown
in Fig. 1(c), which describes a much smaller system.

APPENDIX B: MEAN-FIELD SOLUTION

The mean-field solution is obtained by assuming that
somatic potentials and dendritic calcium concentrations of
all the neurons are the same: Vi = V and Ci = C. Another
assumption is that the network is on average homogeneously
connected, i.e., each neuron on average has pN inputs and out-
puts, with N the total number of neurons and p the connection
probability. Then Eqs. (1) and (2) are rewritten as a pair of
equations for V and C,

dV

dt
= 1

τV
(Veq − V ) + �V (C)p(N − 1)r(V ), (B1)

dC

dt
= 1

τC
(Ceq − C) + �C p(N − 1)r(V ). (B2)

The phase diagram for such a system is shown in
Fig. 14(b). One may see that it is identical to the phase
diagram for the all-to-all coupled network in Fig. 14(a) in
the case of a smooth transition in dendritic sensitivity. The
mean-field approximation is valid for large gV and gC but
breaks down when they become smaller. More detailed results
are shown in Fig. 15.

APPENDIX C: STABILITY OF FIXED POINTS
ON SPARSE NETWORKS

For the smooth sigmoid neurons, we found in Sec. III that
there was only a single fixed point (see Fig. 6). When that
fixed point is unstable, the system executes limit cycle oscilla-
tions. To determine the parameter range of these oscillations,
here we investigate the stability of that fixed point. Expanding
the equations of motion near the fixed point {V f

i ,C f
i } in the
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FIG. 14. (a) Phase diagram for the all-to-all coupled network,
using arbitrary initial conditions and smooth sigmoid functions. It
is identical to (b) the mean-field phase diagram. Phases are quiescent
[light blue (lightest gray)], BTO [blue (light gray)], HA [dark red
(darkest gray)], ATO [purple (dark gray)], and TMA [green (medium
gray)]. All parameter values are listed in Appendix E.

2N-dimensional space of Vi and Ci, we define vi = Vi − V f
i

and ci = Ci − C f
i and obtain

dvi

dt
= − vi

τV
+ �V ′(C f

i

)
ci

∑
j

Mi jr
(
V f

j

)

+�V
(
C f

i

) ∑
j

Mi jr
′(V f

j

)
v j, (C1)

dci

dt
= − ci

τC
+ �C

∑
j

Mi jr
′(V f

j

)
v j . (C2)

Using r(V ) and �V (C) from Eqs. (3) and (4), we find

dvi

dt
= − vi

τV
− 1

gC
�Vmaxσ

′
(

C∗ − C f
i

gC

)
ci

∑
j

Mi jr
(
V f

j

)

+ 1

gV
(rm − rb)�V

(
C f

i

) ∑
j

Mi jσ
′
(

V f
j −V ∗

gV

)
v j (C3)

and

dci

dt
= − ci

τC
+ �C(rm − rb)

∑
j

Mi jσ
′
(

V f
j − V ∗

gV

)
v j . (C4)

Dynamical phase separation requires that neither C∗ − C f
i nor

V ∗ − V f
i vanishes. Therefore, if gV and gC are small, the

FIG. 15. Results of the simulations for different gV and gC .
Blue (light) region [red (dark) region] points correspond to the case
where the dynamics agree (disagree) with mean-field predictions,
as determined by a visual inspection of the numerically obtained
phase diagrams. The blue region exhibits both insensitivity to initial
conditions and robustness in the face of damage. Conversely, the red
region is highly sensitive to both the initial condition and damage.
All parameter values are listed in Appendix E.

FIG. 16. (a) Phase diagram for the all-to-all coupled network,
with gC = 0 and gV > 0. All five previously mentioned phases are
present. There is a quasiperiodic pattern on the BTO- [blue (light
gray)] quiescent [light blue (lightest gray)] boundary. This phase
diagram fits (b) the theoretical prediction where blue (lightest gray)
corresponds to the case that Eq. (D6) has a solution and dark red
(darkest gray) to the case that it does not. All parameter values are
listed in Appendix E.

062307-12



DYNAMICAL PHASE SEPARATION ON RHYTHMOGENIC … PHYSICAL REVIEW E 101, 062307 (2020)

TABLE II. Parameters used in the simulation.

Figure gC gV (mV) C∗ V ∗ − Veq (mV) τC (ms) τV (ms) rm (Hz) rb (Hz) �C �Vmax (mV) p N

1(a) 3 5 5 15 500 10 75 5 0.1 0–100 1 2–20
1(b) 0.01 5 5 15 500 10 75 5 0.1 0–100 1 2–20
1(c) 3 5 5 15 500 10 75 5 0.1 0–100 0.2 2–100
2 5 5 15 15 500 10 75 5 0.035 0–25 0.75 2–100
3 0 0 15 15 500 10 75 5 0.1 5–30 0.5 2–20
4 0 0 15 15 500 10 75 5 0.1 10 0.5 6–9
6(a) 0.3 0.5 5 15 500 10 75 5 0.1 50 1 10
6(b) 3 5 5 15 500 10 75 5 0.1 50 1 10
5(a) 0.3 0.5 5 15 500 10 75 5 0.1 50 1 10
5(b) 0.3 0.5 5 15 500 10 75 5 0.1 50 1 10
5(c) 1.1 0.1 5 15 500 10 75 5 0.1 50 1 10
5(d) 10.8 1.8 5 15 500 10 75 5 0.1 50 1 10
7(a),7(c) 0.03 0.05 5 15 500 10 75 5 0.001 2.5 1 1000
7(b),7(d) 1.0 2.0 5 15 500 10 75 5 0.001 2.5 1 1000
8 0 0 20 15 500 10 70 5 0.015 7.3 0.5–1 100
11 0 0 ∞ 15 500 10 70 5 0.1 1–5 0.5 1–50
13 3 5 5 15 500 10 75 5 0.025 1–50 0.083 1–1000
12 3 5 5 15 500 20 40 0.1 0.007 1–10 0.065 1–1000
14 3 5 5 15 500 10 75 5 0.1 0–100 1 2–20
15 0–3 0–20 5 15 500 10 75 5 0.1 0–100 1 2–20
16 0 5 5 15 500 10 75 5 0.025 0–15 1 2–50

terms with sigmoid functions are exponentially suppressed.
Neglecting these, we see that only the first terms on the
right-hand side of Eqs. (C3) and (C4) remain. This implies the
stability of the fixed point. For large gC and gV , however, we
cannot ignore the terms proportional to σ ′, which destabilize
the phase-separated fixed point.

APPENDIX D: QUASIPERIODIC PHASE DIAGRAMS

We consider the case gC = 0 and gV > 0, where the
quasiperiodic phase diagram can emerge. Following Sec. III A
by assuming activity phase separation to nh neurons with Vh

and Ch and to nl neurons with Vl and Cl , we write equations
for the fixed point

Vh − Veq = �V (Ch)τV [(nh − 1)r(Vh) + nlr(Vl )], (D1)

Ch − Ceq = �CτC[(nh − 1)r(Vh) + nlr(Vl )] (D2)

and

Vl − Veq = �V (Cl )τV [(nl − 1)r(Vl ) + nhr(Vh)], (D3)

Cl − Ceq = �CτC[(nl − 1)r(Vl ) + nhr(Vh)]. (D4)

In the case where gC = 0, we have �V (Cl ) = 0 and
�V (Ch) = �Vmax (for Ch < C∗ and Cl > C∗). Then, as in

Sec. III A, we obtain the number of neurons firing at a low
rate

nl =
⌊

[Nr(Vh) − r(Vl )]�CτC + Ceq − C∗

�CτC[r(Vh) − r(Vl )]

⌋
(D5)

and simplify the equations for the somatic potentials to get
Vl = Veq and

Vh − Veq

�VmaxτV
= Nr(Vl ) − r(Vh) +

⌈
C∗

�CτC
− (N − 1)r(Vl )

r(Vh) − r(Vl )

⌉
,

(D6)

where the ceiling function x� is the smallest integer that is
larger than or equal to x.

Equation (D6) does not have a solution for Vh for some
parameters. Due to the ceiling function on the right-hand side,
the changes happen when its argument is incremented by one,
which causes the quasiperiodic structure of the phase diagram
(see Fig. 16).

APPENDIX E: SIMULATION DETAILS

The code is published in [22]. We use the parameters for
all figures from Table II.
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