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Using correlation diagrams to study the vibrational spectrum of
highly nonlinear floppy molecules: The K-CN case

H. Párraga,1 F. J. Arranz ,1,* R. M. Benito ,1,† and F. Borondo 2,3,‡

1Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco–28049 Madrid, Spain

3Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco–28049 Madrid, Spain

(Received 16 September 2019; revised manuscript received 20 February 2020; accepted 18 May 2020;
published 26 June 2020)

The correlation diagrams of vibrational energy levels considering the Planck constant as a variable parameter
have proven as a very useful tool to study vibrational molecular states, and more specifically in relation to the
quantum manifestations of chaos in such dynamical systems. In this paper, we consider the highly nonlinear
K-CN molecule, showing how the regular classical structures, i.e., Kolmogorov-Arnold-Moser tori, existing in
the mixed classical phase space appear in the quantum levels correlation diagram as emerging diabatic states,
something that remains hidden when only the actual value of the Planck constant is considered. Additionally, a
quantum transition from order to chaos is unveiled with the aid of these correlation diagrams, where it appears
as a frontier of scarred functions.
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I. INTRODUCTION

The use of correlation diagrams, very often done in connec-
tion with the symmetry of the molecule [1], to rationalize the
knowledge on molecular rovibrational states has a long tradi-
tion in Molecular Spectroscopy; see, for example, Refs. [2,3].
Correlation diagrams have also been used in the study of
molecular orbitals [4], inelastic collisions [5], electronic states
[6], or chemical reactivity [7], as well.

Most often, correlation diagrams use a real magnitude
as the varying parameter, such as geometrical distances or
angles. However, nothing prevents the use of other more
daring alternatives. In particular, our group has been using
the value of the Planck constant, h̄, artificially taken as a
variable parameter, to elucidate the dynamical characteristics
of vibrational states of floppy triatomic molecules [8], and
more specifically in relation to the quantum manifestations of
chaos [9] in such dynamical systems.

The idea is fairly simple, and it is based on the semi-
classical argument put forward by Weyl [10], according to
which a quantum state spans a volume in the system N-
dimensional phase space proportional to h̄N , being the con-
stant of proportionality a linear function of the quantum
numbers. In this way, by making Planck’s constant h̄ → 0 we
can force the quantum states to “accommodate” in smaller and
smaller phase-space volumes, being them confined after some
point of this process into the regular classical region of the
molecular phase space, where the dynamical characteristics
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of the quantum state can be easily ascertained. In other words,
using h̄ as a parameter represents an ideal tool to imple-
ments a kind of microscope that focuses with varying reso-
lution on the classical regular structures embedded in chaotic
regions.

The method is fully explained in Sec. III B 1. In connection
to this, some aspects have to be taken into account.

Classically, the structure of the phase space associated to
molecular vibrations is well understood in terms of the ideas
of nonlinear dynamics [11]. From this perspective, molecules
can be viewed as Hamiltonian systems formed by collec-
tions of coupled nonlinear oscillators whose dynamics is
well explained by the celebrated Kolmogorov-Arnold-Moser
(KAM) and Poincaré-Birkhoff theorems [11,12]. At low ener-
gies, the intramolecular motion takes place around the stable
equilibrium geometrical configurations of the molecule. The
harmonic approximation is then valid, the Hamiltonian is very
close to separability, the dynamics is regular (normal modes),
and the trajectories are confined into N-dimensional invariant
tori. As the excitation increases, the KAM theorem dictates
that some invariant tori (those with “less irrational” frequency
ratios [12]) are destroyed, this giving rise to bands of stochas-
ticity, bounded by the distorted surviving tori. These bands
are ergodically explored by the corresponding trajectories.
At these values of the energy the coupling among normal
modes begins to be important, this marking a progressive
transition to local modes dynamics [13]. Prominent in the set
of destroyed tori are the resonant ones, in which zeroth-order
commensurate relations among frequencies exist. The KAM
theorem states that they are destroyed by minimal pertur-
bations, and their fate is dictated by the Poincaré-Birkhoff
theorem. According to it, an even number of periodic orbits
(PO) survive the destruction [12]. Half of them are stable,
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and the other half unstable. Around the former stable motion
takes place, which is organized in resonant invariant tori. In
phase space these structures give rise to a chain of islands,
where much intramolecular vibrational energy transfer takes
place [13]. The latter originate chaos which is nevertheless
organized in homoclinic tangles with a horseshoe structure
[14]. The stochasticity bands originated by the destruction
of KAM tori grow in size with the perturbation, and even-
tually overlap, this giving rise to an scenario of widespread
chaos [15].

Quantum mechanically, the dynamical characteristics of
the vibrational states are usually ascertained by examining the
topology and nodal patterns [16] of the corresponding wave
functions in configuration space. This method works remark-
ably well for near integrable system even for sizable values
of the perturbation parameter [17] but gives little clue in the
case of strong mixing or ergodic cases [18]. Important in the
later case is the phenomenon known as scarring [19], which
refers to the localization of quantum density probability along
the less unstable POs of a classically chaotic system in a set
of measure zero of their eigenfunctions. This concept has been
fruitfully [20,21] extended to the case of nonstationary scarred
wave functions, as shown in Refs. [22–24]. Also, phase-space
pictures of the quantum states can be constructed by means of
quasiprobability density functions, such as the Wigner [25] or
Husimi functions [26]. The position of the maxima of these
functions contains information on the phase-space structures
relevant in the dynamics of the state [9] and also the zeros of
the Husimi functions do the same job efficiently [27].

In this paper, we present a theoretical study of the dy-
namical characteristics of the vibrational eigenstates of KCN,
which was presented in the past as the first example of early
onset of chaos in a bounded molecular systems [28], and was
also the subject of classical and quantum studies [29,30] (in
an inaccurate potential energy surface; see discussion in Ref.
[31]). Indeed, the corresponding classical dynamics is very
chaotic even at very low values of the excitation energy. For
this purpose we use energy levels correlation diagram using h̄
as varying parameter, as previously done in similar molecular
systems [8]. With this method the dynamical characteristics
of the different states can be easily unveiled, contrary to what
happens in the usual quantum mechanical calculations, in
which only the actual value of the Planck’s constant, i.e.,
h̄ = 1 a.u., is considered. We also establish the frontier for
the quantum transition from order to chaos in terms of scarred
functions and its validity for generic molecular systems with
mixed classical dynamics.

The organization of this paper is as follows. In Sec. II we
present the molecular model used and the calculations. First,
we describe the Hamiltonian and potential energy surface
used. Next, we indicate how the classical dynamics of the
molecule is described. And we finish by describing the meth-
ods used to compute the quantum vibrational states, the level
correlation diagram versus h̄, and the coupling among states
in this representation. in Sec. III we present our results. First,
we discuss Poincaré surfaces of section at different values of
the excitation energy, fully describing the evolution of the
KCN phase space with the energy, which show a very early
transition to widespread chaos. We continue by presenting the
quantum results, paying special attention to the description of

the adiabatic correlation diagram for the vibrational energy
levels and its characteristics. In particular, we discuss in detail
the diabatic states that emerge in it, and present a simple
model to explain their origin and dynamical properties. We
conclude the section by discussing the existence of a quantum
transition from order to chaos, which appears as a frontier
of scarred functions. Finally, we present some concluding
remarks in Sec. IV.

II. MOLECULAR MODEL AND CALCULATIONS

A. Hamiltonian molecular model

The vibrational dynamics of the KCN molecule can be ad-
equately studied [31] with a two degrees of freedom, in which
the C–N motion is kept frozen at its equilibrium distance
due to the existing adiabatic separation from the remaining
vibrational modes in the system [32].

The corresponding Hamiltonian function for the purely
vibrational, i.e., without rotation, dynamics of KCN molecule
is given in Jacobi coordinates by

H = P2
R

2μ1
+ P2

θ

2

(
1

μ1R2
+ 1

μ2r2
eq

)
+ V (R, θ ), (1)

where μ1 = mK(mC + mN)/(mK + mC + mN) and μ2 =
mCmN/(mC + mN) are reduced masses, being mX the
corresponding atomic masses, req = 2.22 a.u. is the frozen
C–N equilibrium length, R is the length from the C–N center
of mass to the K atom, and θ is the angle formed by the
corresponding R and req directions, with θ = 0 and θ = π rad
corresponding to the linear configurations K–CN and CN–K,
respectively. PR and Pθ are the associated conjugate momenta,
and V (R, θ ) is the potential energy function describing the
vibrational interactions in the K–CN molecular system.

For the potential energy function V (R, θ ), we use the
analytic expression, fitted to ab initio quantum calculations,
of Párraga et al. [31]. This potential energy function has
two minima: the deepest absolute minimum at θ � π/2 rad,
corresponding to the triangular molecular configuration K

C–N ,
and the shallow relative minimum at θ = 0, associated to the
colinear configuration K–C–N. The other colinear configura-
tion, i.e., C–N–K, corresponds to a saddle point rather than to
a minimum, which is quite flat in the angular coordinate.

As it was shown in Ref. [31], the dynamics of the K-CN
molecular system is highly nonlinear, so that broad chaotic
regions appear in its classical phase space even at the energy
of the quantum ground state E1 = 223 cm−1, and its quantum
eigenstates exhibit overlapped Fermi resonances, and a very
irregular nodal pattern starting at the second excited state, this
having an energy of a mere E3 = 491 cm−1.

B. Classical trajectories calculation

Classical trajectories for KCN are calculated by numer-
ically integrating the Hamilton equations of motion corre-
sponding to Eq. (1). Some POs relevant to our work have been
obtained by dynamical propagation of symmetry lines [33].
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C. Quantum calculations

The eigenenergies and eigenfunctions of KCN have been
obtained with the discrete variable representation–distributed
Gaussian basis (DVR-DGB) method of Bačić and Light [34]
applied to the Hamiltonian operator corresponding to Eq. (1).
In this way, and using a final basis set of approximately
1000 ray eigenvectors (on average for the different values
of h̄) lying in 50 angular rays. In this way, approximately
the 300 (on average) low lying eigenfunctions, 〈R θ |n〉 (n =
1, . . . , 300), for values h̄ = {0.10, 0.11, 0.12, . . . , 3.00} a.u.,
with its eigenenergies converged to within 1 cm−1 were ob-
tained. Let us indicate that for lower values of h̄, e.g., 0.5 a.u.
to 0.1 a.u., the number of rays needed to be increased to 120
to maintain accuracy. Let us remark that the results can be
strongly dependent on the value of h̄ used in the calculations.

Using the data obtained from this calculation a correlation
diagram of eigenenergies or vibrational energy levels is con-
structed. As varying parameter in this diagram we take Planck
physical constant. This may seem an awkward choice at first
sight, but this is not the case for the following reasons, which
are the justification for our election. When decreasing values
of h̄ are considered, the volume of phase space occupied by
the quantum states, in the sense of the Weyl’s semiclassical
prescription [10], also decreases. Accordingly, the regular
region of phase space in a generic Hamiltonian system, like
ours, can “accommodate” more states, and then a transition
from chaos to order will take place. Alternatively, changes in
h̄ can be considered equivalent to the same changes performed
in the value of the masses of the atoms forming the molecule.
Although nature does not allows a continuum range of isotope
masses, it certainly provides us with a limited number of
isotopic relations in the masses involved in the Hamiltonian
function Eq. (1). Let us also remark that, in our case and due
to numerical convergence problems, the correlation diagram
can only be accurately computed for values of h̄ > 0.10 a.u.

An additional quantity of interest in relation to correlation
diagrams are the coupling matrix elements 〈m|∂/∂ h̄|n〉, which
determine the interaction (or mixing) between eigenstates
when the parameter is varied. In our case, we evaluate these
couplings by applying the off-diagonal Hellmann-Feynman
theorem [35,36], in the following way:

〈m| ∂

∂ h̄
|n〉 = 1

En − Em
〈m|∂Ĥ

∂ h̄
|n〉, (2)

being the eigenvalues equation Ĥ |m〉 = Em|m〉, and Ĥ the
Hamiltonian operator corresponding to Eq. (1). Explicit math-
ematical expressions for the matrix elements 〈m|∂Ĥ/∂ h̄|n〉 in
Eq. (2) for the specific case of Bačić and Light’s DVR-DGB
wave functions can be found in Ref. [37].

III. RESULTS AND DISCUSSION

A. Classical dynamics: Poincaré surface of section

The classical dynamics of KCN can be studied by calcu-
lating composite Poincaré surfaces of section (PSOS) for a
selection of representative values of the excitation energy in
the way prescribed in Ref. [38].

Some results can be found in Refs. [31,39], where the route
to chaos is carefully discussed. First, the KCN regular dynam-

ics at very low energies, i.e., below 65 cm−1, is organized
around the triangular configuration (central 1:1 resonance)
and another 1:2 (asymmetric motion) resonance. Above that
energy, chaos quickly sets in, and by E = 250 cm−1 very few
traces of order remain. Later a very interesting phenomenon
occurs at 1200 � E � 5400 cm−1 since an important region
of order above the K-NC saddle appear in the middle of a sea
of chaos [39]. Even later, above 7500 cm−1 small islands of
regularity appear corresponding to the hinge motions around
the K-CN and K-NC linear configurations described below.

It will also be discussed in Sec. III B 2, that the stable
structures at the colinear configurations, and the stable struc-
tures corresponding to hinge POs are both relevant for the
emergence of diabatic states in our correlation diagrams of
eigenenergies.

B. Quantum results

1. Adiabatic correlation diagram for the
KCN vibrational energy levels

Figure 1 (left) shows the correlation diagram of KCN
vibrational energy levels versus h̄ (taken as a variable pa-
rameter) computed with the DVR-DGB program of Bačić
and Light described in Sec. II C. The eigenenergies have
been scaled with respect to h̄ in the vertical axis to obtain
a clearer graphical representation, which would otherwise
be too crowded near the origin. Notice that this particular
scaling transformation renders horizontal lines for completely
harmonic energy levels, that would otherwise accumulate as
h̄ → 0. Several comments are in order.

First, the curves in the correlation diagram on the left plot
of Fig. 1 present a very complicated “spaghettilike” structure.
Despite this fact, two relevant features are clearly observed
in it. For one thing, the eigencurves avoid crossing at many
places. This behavior is a consequence of the well-known
von Neuman noncrossing rule [40], and in this sense these
states are said to be adibatic with respect to changes in the
parameter. Also, the existence of a widespread important level
repulsion at the avoided crossings (ACs) can be seen, except
in the left bottom part of the correlation diagram. According
to the Bohigas-Giannoni-Schmit conjecture of random matrix
theory [41], this is a consequence of the underlying classical
chaotic behavior of the system, and it can be considered
accordingly as an indication of the existence of quantum chaos
[9,42]. Moreover, the region of regularity existing near h̄ → 0,
i.e., in the semiclassical limit, is very small in this case,
contrary to what has been previously observed in calculations
for other similar molecular systems; see, for example, Ref. [8].
We will return to this point, which in some sense can be
understood as a quantum order-chaos transition taking place
in the correlation diagram, later in Sec. III B 3.

Second, when the correlation diagram of the left plot of
Fig. 1 is visually inspected from a distance, or somehow blur-
ring the fine details, a series of hyperbolic shaped “continuous
curves” seem to exist in the bottom left part of the plot, as
well as other group of “continuous lines” at the top right part,
which are asymptotically linear. However, when closely ex-
amined these apparent “continuous curves” are seen to consist
of series of narrow ACs among the different adiabatic states.
Nevertheless, Schmidt in 1969 [43] showed that the states
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FIG. 1. (Left) Correlation diagram for the KCN adiabatic vibrational energy levels vs. h̄. The emergence of diabatic states formed by
interaction between eigenstates at the avoided crossings is observed. Consider, for example, the hyperbolic “curves” especially visible in the
lower left part of the figure, and also the (approximately) straight lines at the top right of it (see text for details). (Right) Correlation diagram
for the KCN diabatic vibrational energy levels, obtained from Eq. (3) (solid lines) and Eq. (4) (dashed lines), vs. h̄. Magenta/lighter and
blue/darker curves correspond to states around the K-CN (θ = 0) and K-NC (θ = π rad.) linear configurations, respectively. All curves are
labeled by the corresponding diabatic quantum numbers (n1, n2). In both graphs energy in the vertical axis has been scaled with h̄ to obtain
clearer plots which would appear otherwise too crowded near the the origin (see text for details).

corresponding to the “continuous curves” can be constructed
as linear combinations of the adiabatic states, in such a way
that their interactions [44] vanish, so that the new states can
cross when they approach. He coined the term diabatic for
these states, and they have the property of maintaining some
sort of character [45] as the parameter of the correlation
diagram changes. This character can usually be defined in
terms of conserved physical characteristic magnitudes and
their corresponding quantum numbers [46], or actions if the
classical counterpart is considered.

Third, there are two kinds of such “continuous curves”
in the correlation diagram in Fig. 1 (left). Some of them
are more sharply defined since the energy separation at the
ACs are very small (actually not appreciable in the scale
of the figure), while the others are more diffuse, this group
corresponding to larger energy separations at the ACs. This
effect is most clearly seen in the first group of hyperbolic
“continuous curves” than in the second, where the correlation
diagram is much more crowded.

Diabatic states provides a great help in unveiling the physi-
cal characteristics of the involved adiabatic eigenstates, which
will be otherwise get lost due to the presence of numerous
overlapping interactions. Furthermore, it has also been shown
that these diabatic structures constitute the frontier in the
energy level correlation diagrams where the semiclassical
phenomena of scarring [19] first appears in energy [33,37,47].

2. Diabatic vibrational states for KCN and correlation diagram

To construct the diabatic vibrational states for KCN that
are observed emerging in the correlation diagram of Fig. 1
(left), we will use here the following model/approximation
for the corresponding energy levels. For simplicity, we will
only consider vibrational structures around the two linear
configurations, K–CN (θ = 0) and K–NC (θ = π rad). We
will also assume that in both of them the contributions from
each mode, i.e., K–CN/K–NC stretching corresponding to the
R coordinate, and K–C–N bending corresponding to θ , are
separable.

These two contributions are then computed using the har-
monic oscillator (HO) model with a quadratic potential energy
function, and the hindered rotor (HR) model [48] correspond-
ing to a sinusoidal potential function, respectively. For the
HO, the energy levels are given by εm = Vmin + h̄ω(m + 1/2),
where Vmin is the minimum of the potential energy function,
and ω and m correspond to the oscillator frequency and
the quantum number, respectively. For the HR we have two
possibilities. At low energy, i.e., well below the sinusoidal
energy barrier Vmax, the energy levels are also given in a
first approximation by a harmonic oscillator expression [48].
Accordingly, we can consider that, at low energies, the KCN
diabatic energies, ε, are given by the expression

εn1n2 = ε0 + h̄
[
ω1

(
n1 + 1

2 ) + ω2
(
n2 + 1

2

)]
, (3)
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TABLE I. Numerical values for the parameters entering in
Eqs. (3) and (4) for the harmonic oscillator (HO) and hindered rotor
(HR) models at the K–CN and K–NC linear configurations.

θ ε0 ω1 ω2 B
Model (rad) (cm−1) (cm−1/a.u.) (cm−1/a.u.) (cm−1/a.u.2)

HO K–CN 0 1376 275 80
HR K–CN 0 2900 275 0.55
HO K–NC π 940 305 37
HR K–NC π 2400 305 0.73

where ε0 is the absolute minimum of the potential function (at
the triangular configuration), and subscripts 1 and 2 refer to
stretching and bending motions, respectively [49]. However,
at high energies, i.e., well above the bending energy barrier
Vmax, the energies can be approximated by the free rotor
expression displaced by half energy barrier [48], i.e., εm =
Vmax/2 + h̄2Bm2, being B (defined h̄ free) the corresponding
rotational constant. Accordingly, at high energies, the KCN
diabatic energy levels are given by

εn1n2 = ε0 + h̄ω1
(
n1 + 1

2

) + h̄2Bn2
2, (4)

where the quadratic term (both in h̄ and the quantum number)
corresponds to the bending motion, the linear term to the
stretching motion, and the independent term ε0 gathers pos-
sible minimum energy from stretching and half energy barrier
from bending. Notice that in Eqs. (3) and (4) ε0, ω1, ω2, and B
have different values for HO, HR, and the two possible linear
configurations, K–CN and K–NC. Suitable values for these
parameters are given in Table I. They have been obtained
from the minimum potential energy path and normal mode
frequencies of KCN given in Ref. [31]. In the case of the
saddle point (θ = π rad.), the real modulus of the bending
frequency is taken instead of the original purely imaginary
one iω2.

The corresponding results for the correlation diagram of
KCN diabatic vibrational levels obtained from Eqs. (3) (solid
lines) and (4) (dashed lines) both at the K–CN (θ = 0)
(magenta/lighter lines), and K–NC (θ = π rad.) (blue/darker
lines) linear configurations, are shown in the right plot of
Fig. 1. As can be seen, the diabatic level curves here appear
segregated into two different groups. The first one (solid ma-
genta and solid blue lines) presents a hyperbolic dependence
with h̄, which is due to the existence of the nonzero term ε0

in Eq. (3). A second group (dashed magenta and blue lines)
appears at the top right part of the figure, with a distorted
parabolic form, which is asymptotically linear.

Let us start by discussing the first group. When the cor-
responding (approximate) diabatic curves are compared with
those in the adiabatic correlation diagram on the left plot of
Fig. 1, one observes that the solid lines, obtained from Eq. (3),
nicely match the hyperbolic emerging diabatic states in the
adiabatic diagram. This provides a quantitative confirmation
of the existence and origin of these diabatic states in KCN.
This comparison can be extended further, to the more diffuse
diabatic states, some of which are clearly visible at the left-
most part of the adiabatic correlation diagram in Fig. 1, can
be assigned in our model as corresponding to states located

TABLE II. Characteristics, parameters, and adiabatic and dia-
batic quantum numbers identifying the eigenstates in Figs. 2, 3, and
4, corresponding to emerging diabatic harmonic oscillator and hinge
states around both linear K–CN and K–NC linear configurations in
the correlation diagram of Fig. 1.

Characteristics h̄ (a.u.) E (cm−1) n (n1, n2)

Harmonic on K–CN 0.621 1509 92 (0, 0)
0.525 1556 140 (0, 2)
0.628 1687 120 (1, 0)
0.590 1749 148 (1, 2)
0.606 1845 161 (2, 0)
0.644 1971 166 (2, 2)
0.658 2069 180 (3, 0)
0.632 2144 210 (3, 2)
0.836 2485 168 (4, 0)
0.825 2612 192 (4, 2)
0.664 2439 255 (5, 0)
0.680 2591 278 (5, 2)

Harmonic on K–NC 0.366 1006 99 (0, 0)
0.420 1127 100 (1, 0)
0.528 1347 97 (2, 0)
0.432 1406 160 (3, 0)
1.160 2557 93 (4, 0)
1.060 2719 127 (5, 0)
0.798 2524 191 (6, 0)
0.800 2756 230 (7, 0)
0.930 3311 247 (8, 0)

Hinge on K–CN 2.200 8854 277 (0, 46)
2.100 8790 300 (0, 48)
1.980 8570 322 (0, 50)

Hinge on K–NC 2.160 8750 282 (0, 42)
2.060 8720 308 (0, 44)
1.910 8330 331 (0, 46)

over the K–NC linear configuration (blue/darker lines), while
those which are more sharply defined are similar states but
located on the K–CN linear configuration (magenta/lighter
lines) of the potential. To make this comparison and the cor-
responding state assignment more precise, we have selected
some representative states of both classes, i.e., diffuse and
sharp diabatic states. The parameters defining their position
in the correlation diagram of Fig. 1 and their dynamical char-
acteristics are given in the first two groups of Table II, along
with the adiabatic eigenstate number, and the corresponding
diabatic quantum numbers in Eq. (3). The corresponding wave
functions are presented in Figs. 2 and 3 for eigenstates on
the K–CN and K–NC linear configurations, respectively. As
can be seen, in these two figures the selected eigenfunctions
clearly have a harmonic oscillator character, with a nodal
structure corresponding to the quantum numbers, predicted in
our discussion above.

One final point is worth discussing here. It concerns the
relationship existing between the diffuse/sharp character of
the diabatic states located, respectively, on the linear K–CN
minimum (θ = 0) and the linear K–NC saddle (θ = π rad.)
of the potential energy surface, and how much their densities
extend along the bending coordinate. Indeed, as can inferred
from a careful observation of the wave functions in Figs. 2
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FIG. 2. Some adiabatic eigenstates of KCN that can be assigned to harmonic oscillator states on the K–CN linear configuration at θ = 0.
The probability density is represented in a color/grayscale. The minimum energy path and the corresponding eigenenergy contour have also
been represented as blue thick line and black thin line, respectively. Appropriate diabatic quantum numbers (n1, n2) [as in Eq. (3)] are given in
each plot. The values of h̄ at which each of these states have been calculated is reported in Table II. The horizontal and vertical axis span the
ranges [0, π ] rad. and [4,8] a.u., respectively.

and 3, the latter, i.e., states located over the saddle, only
appear excited along the stretching coordinate, with n2 = 0,
and they give rise to diffuse diabatic states in the correlation
diagram. On the contrary, the former, i.e., states localized
on the linear minimum, are eventually excited, yet extended,
along the bending coordinate, i.e., with n2 �= 0, and they give
rise to the sharp diabatic states. Obviously, this effect can be
correlated with the stability of the corresponding phase-space
region investigated in Refs. [31,39]. In this respect, recall that
large region of regularity were found located around both the
K–CN and K–NC linear configurations. The quantization of
tori in this region should lead to the definition of diffuse and
sharp diabatic states.

Let us concentrate now in the discussion of the second
group of “continuous curves” which appear at the top right

(0,0) (1,0) (2,0)

(3,0) (4,0) (5,0)

(6,0) (7,0) (8,0)

FIG. 3. Same as Fig. 2 for harmonic oscillator states on the K–
NC colinear configuration at θ = π rad. The values of h̄ at which
each of these states have been calculated is reported in Table II.

of the correlation diagram in Fig. 1 (left). To obtain the
corresponding diabatic states, we apply the HR model of
Eq. (4), and the results are shown in dashed (magenta and
blue) lines in the correlation diagram on the right plot of
Fig. 1. Observe that in the E/h̄ versus h̄ representation,
the HR expression leads to rational function curves, with
hyperbolic behavior at low values of h̄ (and a vertical asymp-
tote at h̄ = 0, due to the independent term), and a linear
dependence for high h̄ values (and a oblique asymptote
E/h̄ = ω1/2 + h̄Bn2

2, due to the quadratic term). By com-
paring the diabatic HR curves and the adiabatic ones in the
right and left plots of Fig. 1, it is observed that diabatic
states emerging as mainly straight curves at the top right
of the figure match with the HR states for high h̄ values
(oblique asymptote).

Again, and similarly to what we did in the HO case, we can
make this comparison more precise, by selecting some curves
in the adiabatic correlation diagram at the top right of the left
plot in Fig. 1 which show an asymptotic linear behavior. The
identifying parameters corresponding to those curves are re-
ported in the two last groups of Table II, and the corresponding
eigenfunctions are given in Fig. 4. Surprisingly enough, the
selected eigenstates correspond to the so called hinge states,
i.e., states with the probability density highly localized over
stable periodic orbits with hinge motion (also depicted in the
figure), rather than o rotorlike states, as should be expected a
priori. Moreover, those states appear with two different values
of the asymptotic slope, corresponding to hinge states around
the two possible linear configurations of the molecule (see
values in Table I). Actually, true rotorlike states, correspond-
ing to mainly straight line diabatic states in the correlation
diagram E/h̄ versus h̄, had already been described in the
Li-CN molecular system [37]. This makes of this case, i.e., the
hinge states behavior described here, especially interesting.
In first approximation, hinge states can be considered as
belonging the system defined by the angular coordinate θ

subjected to the energy potential given by the energy profile
along the corresponding hinge periodic orbit. Under this
approximation, the motion around each linear configuration
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(0,42) (0,44) (0,46)

(0,46) (0,48) (0,50)

FIG. 4. Same as Fig. 2 for hinge eigenstates around K–NC (top)
and K–CN (bottom) linear configurations. The values of h̄ at which
each of these states have been calculated is reported in Table II. The
involved stable periodic orbits have been represented as red/lighter
thick lines.

(θ = 0 or θ = π rad), that is, in the range of the coordinate θ

bounded by the intersection between hinge periodic orbit and
minimum energy path, approximately reproduces a sinusoidal
hindered rotor. It is interesting to note that, in this case,
the corresponding half-energy barrier Vmax/2 of the hindered
rotor model is similar (albeit slightly smaller) to the fitting
parameter ε0.

3. Quantum transition from order to chaos in
the correlation diagram of KCN

One final point worth discussing in this work is in con-
nection with the (apparent) nonexistence of a clear regular
region in the lower left region of the correlation diagram of
KCN, as it is the case in other similar floppy molecules, such
as HCN, LiCN, or HO2 [8,37]. Actually, in the semiclassical
limit h̄ → 0 the quantum states “occupy” less and less phase-
space volume in the sense discussed by Weyl [10]. Since at
the same time the classical phase space remains unchanged,
a chaos–order transition is expected as the quantum states get
smaller and then migrate to the regular region of phase space.
As previously found, this transition takes place as the frontier
for the appearance of scarring [19] is crossed in the correlation
diagram [8,37,47].

To examine this problem in detail, we will perform a
quantitative analysis by focusing our attention in the low-
est lying eigenstates presenting a nonregular (n1, n2) nodal
pattern (in the sense discussed in Ref. [16]) near the region
at h̄ = 0.1 a.u. This let aside the ground state |1〉, which is
mostly Gaussian, and first excited |2〉 state, which presents
a mostly (n1, n2) = (0, 1) regular wave function [31]), and
then we concentrate in the next eigenstates |3〉, |4〉, |5〉, and
|6〉. As shown in the two upper right panels of Figs. 5 and
6 the corresponding wave functions exhibit (for h̄ = 0.5 a.u.)
nonregular (n1, n2) nodal patterns. To unveil the vibrational
structure underlying that nonregular topology we will assume
for simplicity that it arises from the interaction between pairs
of eigenstates, i.e., |3〉 and |4〉, and |5〉 and |6〉, due to quantum
resonances between vibrational modes �n1 : �n2 [50], as it
is frequently the case [37]. The corresponding diabatic states
can be obtained by means of the following (orthogonal [51])

|4〉0.1

~(0,2)

c21|3〉0.5 + c22|4〉0.5

~(0,2)

|4〉0.5

(0,2)
|3〉0.1

~(1,0)

c11|3〉0.5 + c12|4〉0.5

~(1,0)

|3〉0.5

(0,2)

h (a.u.)−
〈3

|∂
/∂
h|

4〉
 (a

.u
.)

−

ξ = 0.016 π

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

FIG. 5. (Bottom) Coupling between eigenstates |3〉 and |4〉 in
the range h̄ ∈ [0.1, 0.5] a.u. The value of the mixing angle ξ ,
corresponding to the area under the curve, is also indicated. In the
upper panels, the wave functions corresponding to the eigenstates
|m〉h̄ at h̄ = 0.1 a.u. (left column), h̄ = 0.5 a.u. (right column), and
the unmixed states obtained from Eqs. (5) and (6) (middle column)
are represented in color/grayscale. The minimum energy path and
the potential contour corresponding to the eigenenergies (expectation
energy 〈Ĥ〉, in the unmixed cases) have also been represented as blue
thick line and black thin line, respectively. The involved 1:2 periodic
orbits have been represented as red/lighter thick lines. Appropriate
quantum numbers (n1, n2) are also indicated. Axes are the same as in
Fig. 7.

transformation(|χi〉
|χ j〉

)
=

(
cos ξ sin ξ

− sin ξ cos ξ

)(|m〉
|n〉

)
, (5)

where the mixing angle 0 � ξ � π/2 is determined by the
differential equation

dξ

dh̄
= 〈m| ∂

∂ h̄
|n〉, (6)

so that ξ is given by the area under the coupling curve
〈m|∂/∂ h̄|n〉 as a function of h̄.

In the bottom panel of Fig. 5 we present the coupling curve
between eigenstates |3〉 and |4〉 in the range from h̄ = 0.1 a.u.
to h̄ = 0.5 a.u. (recall that this range cannot be extended to
lower values of h̄ for numerical problems). It should have a
bell-shaped form, but in our calculation only the right tail of it
is visible, and the region around the maximum and the left tail,
necessarily to perform a complete analysis of the associated
diabatic states, are not available. We also present in the top
panels of the figure the involved eigenfunctions for h̄ = 0.1
a.u. (top left panels) and h̄ = 0.5 a.u. (top right panels),
where it can be observed that they both present a nonregular
probability density pattern, which is however localized along
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|6〉0.1

~(0,3)

c21|5〉0.5 + c22|6〉0.5

~(0,3)

|6〉0.5

(0,3)
|5〉0.1

~(1,1)

c11|5〉0.5 + c12|6〉0.5

~(1,1)

|5〉0.5

(0,3)

h (a.u.)−

〈5
|∂

/∂
h|

6〉
 (a

.u
.)

−

ξ = 0.067 π

0 0.1 0.2 0.3 0.4 0.5
0

0.4

0.8

1.2

FIG. 6. Same as described in the caption of Fig. 5 but for
eigenstates |5〉 and |6〉.

the two stable and unstable 1:2 classical POs (also plotted su-
perimposed in the panels) with quantum numbers (0,2) along
each PO path. These POs correspond to the two main 1:2
classical resonances discussed in Sec. III A. More specifically,
they are clearly recognizable in the PSOS for E = 250 cm−1

in Ref. [39]. Nevertheless, in the other extreme, i.e., h̄ = 0.1
a.u. (left panels), the eigenstates appear a little bit more
regular, although not very much, somewhat corresponding to
states (n1, n2) = (1, 0) and (0,2), respectively. Notice that this
quantum numbers assignment leads to a quantum resonance
order of |�n1|:|�n2| = 1 : 2, in correspondence with the ν2 :
ν1 = 1 : 2 classical resonance, according to the properties
shown by states like those that we are considering in the
scars frontier of scars as described in Refs. [8,37,47]. Similar
results are obtain, i.e., see top middle panels in Fig. 5, when
trying to unmix the eigenstates at h̄ = 0.5 a.u., by applying
the inverse orthogonal transformation to (5) with ξ = 0.016π .
Despite this inconclusive result, it seem reasonable to assume
that the coupling curve in Fig. 5 is the tail of the lowest lying
1:2 quantum resonance from the frontier of scars in the KCN
molecule.

Similar results and conclusions are obtained for the eigen-
states |4〉 and |5〉, as shown in Fig. 6, but in this case the
transition to regularity as h̄ decreases is more clear (although
still not totally conclusive). Here, the nonregular eigenstates
|5〉 and |6〉 at h̄ = 0.5 a.u. (right panels) are localized over
the stable and unstable, respectively, 1:2 classical resonances
with quantum numbers (0,3) along each periodic orbit path,
and for h̄ = 0.1 a.u. (left panels) tend to regular states with
approximate quantum numbers (n1, n2) = (1, 1) and (0,3),
leading to the order of resonance |�n1|:|�n2| = 1:2 for the
quantum resonance. So that we can assume that this case
corresponds to the second lowest lying 1:2 quantum reso-

TABLE III. Parameters identifying the eigenstates depicted in
Figs. 5 and 6, corresponding to the transition from order to chaos.
The symbol “∼” has been used with the meaning of “approximately.”

h̄ (a.u.) E (cm−1) n (n1, n2) Characteristics

0.1 50.19 3 ∼(0, 2) ∼regular
0.1 53.57 4 ∼(1, 0) ∼regular
0.1 65.80 5 ∼(0, 3) ∼regular
0.1 69.88 6 ∼(1, 1) ∼regular
0.5 250.57 3 (0, 2) localized
0.5 272.33 4 (0, 2) scar
0.5 322.64 5 (0, 3) localized
0.5 353.99 6 (0, 3) scar

nance states from the frontier of scars. The parameters and
characteristics identifying both pairs of eigenstates discussed
above have been summarized in Table III for informative
purposes.

To further check our assumption that the coupling curves
in Figs. 5 and 6 are the tails of the lowest lying 1:2
quantum resonance from the frontier of scars in the KCN
molecule, we can extend the unmixing beyond h̄ = 0.1 a.u.
by heuristically increasing the mixing angle value ξ until
obtaining a regular nodal pattern. The results, i.e., the cor-
responding diabatic (regular) states, are presented in Fig. 7,
and they prove that the eigenstates localized on the sta-
ble and unstable (scarred states) 1:2 classical resonances

R
 (

a.
u.

)

−sin(−ξ)|3〉 + cos(−ξ)|4〉

(0,2)
4.5

5.0

5.5
−sin(−ξ)|5〉 + cos(−ξ)|6〉

(0,3)

R
 (

a.
u.

)

θ (π rad)

cos(−ξ)|3〉 + sin(−ξ)|4〉

(1,0)

0.4 0.5 0.6 0.7
4.5

5.0

5.5

θ (π rad)

cos(−ξ)|5〉 + sin(−ξ)|6〉

(1,1)

0.4 0.5 0.6 0.7

FIG. 7. Regular wave functions corresponding to the complete
unmixing of the eigenstates |3〉 and |4〉 where ξ = 0.17π rad (left
column), and the eigenstates |5〉 and |6〉 where ξ = 0.23π rad (right
column), both at h̄ = 0.5 a.u., represented in color/grayscale. The
minimum energy path and the corresponding expectation energy 〈Ĥ〉
contour have also been represented as blue thick line and black thin
line, respectively. Appropriate quantum numbers (n1, n2) are also
given.
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(POs) at h̄ = 0.5 a.u. are generated by the corresponding 1:2
quantum resonances, that constitute the frontier of scars be-
tween the order region and the mixed-chaos region in molec-
ular systems.

IV. CONCLUDING REMARKS

An analysis of the highly nonlinear dynamics of the KCN
molecular system has been carried out in the framework of
the quantum manifestations of chaos. For this purpose, a cor-
relation diagram of eigenenergies versus the Planck constant,
taken as a variable parameter, has been used as the analyzing
tool.

The classical dynamics of this system, as shown by means
of composite Poincaré surfaces of section at increasing ener-
gies, corresponds essentially to mixed-chaos behavior even at
very low values of the excitation energy (compared to the fun-
damental eigenenergy at h̄ = 1 a.u.). Accordingly, the phase
space appears mostly as a sea of chaos with some regular
emerging structures, i.e., Kolmogorov-Arnold-Moser tori. As
a direct consequence, the quantum correlation diagram shows
widely energy level repulsion, corresponding to this classical
sea of chaos. Additionally, the correlation diagram shows
groups of emerging diabatic states, which correspond to the
classical regular tori embedded in the sea of chaos. These
regular states, that have been characterized through its wave

functions and the quantum numbers assignment, are easily
identifiable in the correlation diagram, although they can be
found difficult to observe at fixed values of the Planck constant
(typically h̄ = 1 a.u.).

Moreover, we could establish the existence of the frontier,
marked by the appearance of scarring [19], between order and
chaos similarly to what happens in other similar molecular
systems. In this case, regularity is squeezed into the region
of very low h̄ values in the correlation diagram. However, by
analyzing the tails of the corresponding couplings, the two
lowest lying examples from the frontier of scars have been
identified. Thereby, it has been inferred that in this system the
frontier of scars arise due to a 1:2 quantum resonance, and
results in pairs of eigenstates localized on the corresponding
1:2 stable and unstable (scarred state) classical resonant orbits.
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