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Effects of coherent dynamics of stochastic deep-water waves
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A method of windowed spatiotemporal spectral filtering is proposed to segregate different nonlinear wave
components and to calculate the surface of free waves. The dynamic kurtosis (i.e., produced by the free wave
component) is shown able to contribute essentially to the abnormally large values of the surface displacement
kurtosis, according to the direct numerical simulations of realistic sea waves. In this situation the free wave
stochastic dynamics is strongly non-Gaussian, and the kinetic equation for sea surface waves fails. Traces of
coherent wave patterns are found in the Fourier transform of the directional irregular sea waves; they may form
“jets” in the Fourier domain which strongly violate the classic dispersion relation.
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I. INTRODUCTION

Despite much effort and remarkable progress in the study
of the so-called rogue wave phenomenon [1–6], consensus
about its driving mechanisms in the open ocean has not
been achieved yet (e.g., Ref. [7] vs Ref. [8]). The hydro-
dynamic wave processes in the limit of small nonlinearity
and narrowband frequency and angle spectra may look much
similar to signals in optical fibers, and then they are both
governed by the nonlinear Schrödinger equation (NLSE). The
modulational instability caused by quasiresonant four-wave
interactions was suggested as a regular mechanism which
increases the probability of large waves [9]. The modulational
instability of deep-water waves (the Benjamin-Feir instability,
when talking in the hydrodynamic context) is captured by the
focusing NLSE and its more accurate extensions. In particular,
a number of exact solutions of the NLSE were proposed as
rogue wave prototypes. Many of them have been successfully
reproduced in hydrodynamic flumes and optical waveguides
(see the recent review [10]).

However, under realistic ocean conditions the efficiency of
the Benjamin-Feir instability is disputed. On the one hand,
besides theoretical grounds, the probability of high waves
in experimental tanks has been found to greatly exceed the
conventional laws, when the wave conditions are favorable
to the modulational instability [11,12]. On the other hand,
the results of the processing of large amounts of in situ
measurements presented in Refs. [8,13] do not show notice-
able deviation from the second-order statistical theory. Hence
the latter works conclude that the Benjamin-Feir instability
seemingly does not influence the real sea wave statistics.

So far the wave nonlinearity in operational probabilistic
models is taken into account solely through the second-order
Stokes wave corrections, which affect the wave shapes but
do not play any role in the dynamical sense. In the Fourier
representation the corresponding nonlinear components are
commonly called phase-locked modes or bound waves. Free

waves (the “true” waves) are responsible for the natural wave
modes of the dynamical system, and they may evolve due to
resonant or near-resonant interactions. This paradigm is fun-
damental for the present-day sea wave forecasting as it allows
the use of phase-averaged kinetic equations, which can be
simulated incomparably faster than the original equations of
hydrodynamics. Only very weak non-Gaussianity of the free
waves is admitted in the kinetic approach; in particular, the
wave coherence necessary for the Benjamin-Feir instability is
totally disregarded.

The probabilistic wave properties are often estimated in
terms of statistical moments, which for the water surface η

values are defined according to the following relations:

σ 2 = 〈η2〉, λ3 = 〈η3〉
σ 3

, λ4 = 〈η4〉
σ 4

− 3, (1)

having zero mean, 〈η〉 = 0. The moments of irregular deep-
water waves under stationary conditions were estimated ana-
lytically in Ref. [14] within the weakly nonlinear Hamiltonian
theory. The third statistical moment, skewness λ3, is always
small as its main contributor is proportional to the steepness
ε ≡ kpσ � 1 (kp is the peak wave number), λ3 = 3ε. The
fourth statistical moment, kurtosis λ4, was shown to consist of
two summands, λ4 = λb

4 + λd
4 . The first, λb

4 = 24ε2, is due to
bound waves and is a small number. The other, dynamic kur-
tosis λd

4 = π/
√

3BFI2, is due to nonlinear coupling between
free waves. Crucially, the Benjamin-Feir index BFI = √

2ε/�

(� is the relative width of the frequency spectrum [9,14])
is not necessarily small. The modulational instability may
occur when BFI > 1. Large values of kurtosis yield greater
probability of large displacements and more frequent occur-
rence of high waves. Hence, the contribution of free wave
non-Gaussian dynamics to the sea wave statistics theoretically
may be even greater than the one from phase-locked modes.

Dynamical equations for the wave modulations (NLSE
and its generalizations) are written in terms of the free
wave complex amplitude, thus the dynamic kurtosis may be
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calculated straightforwardly within this approximate frame-
work. Large deviation from the Gaussian statistics was ob-
served in a number of direct numerical simulations of the
NLSE-type models (e.g., Refs. [9,15,16] and many others).
The dynamic kurtosis which exceeds the bound wave kurtosis
was shown in the numerical simulations of unidirectional
weakly nonlinear, weakly modulated waves [12] and within
a more accurate framework, the Zakharov equations in canon-
ical variables (i.e., the weakly nonlinear dynamic Hamiltonian
theory) [17]. In both situations, large values of λd

4 were reg-
istered during the fast transition stage. Recall that the theory
[14] was derived assuming stationary conditions; it was shown
in Ref. [18] that the relation derived in Ref. [14] does not hold
in such transition wave regimes. Furthermore, in Ref. [19]
the evolutions of the wave kurtosis simulated by means of
the primitive Euler equations, by the Zakharov equations, and
within the kinetic theory were shown to differ significantly.
The remarkably better agreement with experimental data was
provided by the simulation of the primitive Euler equations.
However, the integration of the primitive equation leads to the
calculation of the total kurtosis; the distribution between the
dynamic and bound kurtosis remains unknown.

Hence, though it is generally accepted that under the
conditions suitable for the Benjamin-Feir instability the prob-
ability of large waves should increase, the issue of whether
coherent four-wave dynamics can influence significantly the
wave statistics in the real ocean remains unclear. The answer
to this question is vital to the proper choice of the wave model
capable of the description of the rogue wave effect.

In the present work we calculate the dynamic kurtosis
directly from the data accumulated in phase-resolving simu-
lations of the Euler equations. The considered irregular waves
possess the JONSWAP frequency spectrum, typical of the North
Sea. We show that, under the conditions favorable for the
modulational instability, the dynamic kurtosis attains large
values similar in magnitude to the bound wave kurtosis, thus
revealing strongly non-Gaussian properties of the free wave
component. We present evidence of coherent wave patterns in
the Fourier space, which are responsible for this effect.

II. DESCRIPTION OF THE METHOD

We solve the potential Euler equations for gravity waves,
which propagate over infinitely deep water, with the help
of the high-order spectral method [20], accurately resolving
four-wave nonlinear interactions. The initial condition is spec-
ified in the form of a linear solution with random Fourier
phases (several realizations were simulated) and a prescribed
JONSWAP shape of the averaged angle-frequency spectrum
S(ω, θ ):

S(ω, θ ) = S(ω)D(θ ),

S(ω) ∼
(

ω

ωp

)−5

exp

[
−5

4

(
ω

ωp

)−4
]
γ r,

r = exp

[
− 1

2δ2

(
ω − ωp

ωp

)2
]
,

TABLE I. Parameters of the simulated sea states.

Series Tp Hs � γ ε = kpσ

A 10 s 7 m 62◦ 3 0.07
B 10 s 6 m 12◦ 6 0.06

δ =
{

0.07 if ω < ωp,

0.09 if ω > ωp,

D(θ ) =
{

2
�

cos2 πθ
�

if |θ | � �
2 ,

0 if |θ | > �
2 ,

(2)

having the significant wave height Hs ≈ 4σ , the peak period
Tp = 2π/ωp = 10 s, and the directional spread specified by
the angle � (see details in Ref. [21]). The peakedness γ

specifies the extra peak enhancement. The spectrum (2) was
recalculated to the spatial domain using the linear dispersion
relation.

The evolution of a wavy surface in the domain 50×50
dominant wave lengths is simulated for 1200 dominant wave
periods, following 20 wave periods of a preliminary stage
when the initially linear solution adiabatically adjusts to the
nonlinear equations. The simulations represent the evolution
of sea waves in the overall area of about 500 square kilometers
for 20 min under given initial spectral conditions. The wind
forcing is not included in the system; a weak hyperviscosity is
introduced to the code to regularize occasional wave breaking
events. Two samples of momentary surfaces are shown in
Figs. 1(a) and 1(b) for the directional spreads � = 62◦ and
� = 12◦; these two cases may be referred to as relatively
short-crested (A) and long-crested (B) conditions, respec-
tively, and will be considered further. The corresponding
parameters of the sea states are summarized in Table I.

The method of evaluation of the free wave component from
the surface displacement η(x, y, t ) operates in the Fourier
domain. The instant Fourier amplitudes η̂ are calculated af-
ter the application of the smoothing Hanning mask M(t ) =
0.5(1 − cos 2πt/T ), T ≈ 25Tp, which acts in time, and the
Fourier transforms along the two coordinates and time,

η̂(kx, ky, ω, t ) = FxFyFτ {M(τ − t )η(x, y, τ )}. (3)

Here kx and ky are components of the wave vector k ≡
(kx, ky), and ω is the cyclic frequency. For our purpose it is
convenient to represent the wave vector in polar coordinates

with the absolute value k ≡
√

k2
x + k2

y and the angle θ with

respect to the dominant direction of the wave propagation
along Ox, and to consider the function A(k, θ, ω, t ) = |η̂|.
Then the quantity kA2 has the meaning of momentary power
spectral density in coordinates k, θ , and ω.

Examples of the spatiotemporal Fourier domains of short-
crested and long-crested intense waves are shown in Fig. 2
with the help of isosurfaces of the Fourier amplitudes A. Only
the part ω > 0 is shown as the function η is real valued. The
color intensity characterizes magnitudes of the Fourier ampli-
tudes in the logarithmic scale, from the maximum down to
10−3 of it. Colors denote different nonlinear wave harmonics
as is discussed below.
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FIG. 1. Instant water surfaces for the series A (a) and B (b) at the
end of the simulations.

Assuming a narrow-banded process, dominant waves
(k, ω) through nonlinear n-order interactions generate Fourier
harmonics (nk, nω), which in the weakly nonlinear approxi-
mation may be presented in the form

ωn = n�(k/n), �(k) ≡
√

gk, (4)

where ω1 = √
gk is the dispersion relation, g is the gravity

acceleration, and integer n � 2 is the order of interaction.
Figures 3(a) and 3(b) give a better demonstration of the

nonlinear harmonics. The figures are produced from the plots
in Figs. 2(a) and 2(b), respectively, when they are rotated
in such a way that the axis Oθ gets perpendicular to the
plane of the page. The vertical axis is transformed to the
squared frequencies and then ω2

n depends linearly on k;
the corresponding lines are plotted in Fig. 3. Remarkably,

FIG. 2. Isosurfaces of the Fourier amplitudes in the instant spa-
tiotemporal transforms for the conditions A (a) and B (b) at the
moments after more than 100 periods of the simulations. Different
colors denote nonlinear harmonics.

the calculated first (n = 1), second (n = 2), and third (n = 3)
harmonics of the broad JONSWAP spectrum are localized along
the lines prescribed by the narrow-band relation (4).

The “difference” (or “zeroth”) harmonic produced by
narrow-banded waves propagates with the group velocity of
the carrier and hence in the Fourier space corresponds to
the condition ω = Cgr (kc)k, where Cgr ≡ ∇k� and kc is the
carrier wave vector. Under the conditions of broad-banded
waves the location of the difference harmonic turns out to
be relatively well described by the same condition (4) when
n = 1/2 (see Fig. 3). (This should correspond to the decay
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FIG. 3. Same as in Fig. 2, but the view from the side along the
Oθ axis, and the vertical axis represents the squared frequency. The
straight lines correspond to the relation (4) for different n.

interaction.) Significantly, the use of Eq. (4) for the approxi-
mate description of the difference harmonic does not require
an assignment of kc.

Thus, the first, second, and third harmonics and the ze-
roth nonlinear harmonics (the latter is the induced long-scale
displacement) may be easily distinguished. What is essential
is that the corresponding volumes in the Fourier space al-
most do not intersect in the situations of narrow-angle and
relatively broad-angle spectra shown in Fig. 3. More exactly,
the corresponding overlapping parts of |η̂(kx, ky, ω)| contain
tiny amounts of energy. Hence, the nonlinear harmonics may

be segregated with the help of a simple spectral filter. In
Fig. 3 the dash-dotted lines show the conditions (4) for n =
0.75, 1.5, 2.5, and 3.5, which specify the boundaries between
the nonlinear harmonics. The color coding in Figs. 2 and 3
denotes the harmonics selected in this way. It may be seen
from Fig. 3 that such a simple filter manages very well in both
the cases (the process of spectral segregation may be further
improved if necessary).

To select the first harmonic, we introduce the spectral mask
N (kx, ky, ω) which is equal to 1 if ω0.75(k) < ω < ω1.5(k) and
is 0 otherwise [here ω0.75 and ω1.5 are determined by Eq. (4)].
Then the first harmonic η1 is calculated after the inverse to
Eq. (3) triple Fourier transform,

η1(x, y, t ) = F−1
x F−1

y F−1
τ {N η̂}. (5)

Strictly speaking the first harmonic contains a constituent of
phase-locked waves, but its magnitude is at least 2 orders of
steepness smaller than the amplitude of free waves. Therefore,
in what follows we assume that the first harmonic and the free
wave component are equivalent.

We note that waves which travel opposite to the principal
wave direction may be seen in Fig. 2 (the angles |θ | > 90◦).
They did not exist originally, but reach up to about 0.15%
of the total wave energy for the 20 min of simulation of the
short-crested waves [Fig. 2(a)]. The portion of opposite waves
in the long-crested wave field is smaller. The generation of
opposite waves was observed in precise numerical simulations
of initially unidirectional waves in the planar geometry in
Ref. [22]. It is seen in Fig. 3 that the distribution of very short
waves is somehow affected by the weak hyperviscosity which
was introduced to suppress breaking of too steep waves.

The frequency–wave number plots were used in previous
works to separate spectral areas responsible for different
nonlinear harmonics (e.g., Refs. [22–25]). We emphasize that
in the present study we make use of the available Fourier
phases and reconstruct the surfaces of free and bound waves.
This approach opens possibilities such as evaluation of the
statistical characteristics of the wave components directly,
with no extra assumptions.

III. FULL AND DYNAMIC STATISTICAL MOMENTS

Instant full statistical moments of the water surface η(x, y)
are calculated according to Eq. (1), where the angle brackets
denote the averaging over the surface in one realization.
Different realizations are used to estimate the confidence
interval (seven realizations were simulated per each sea state).
The dynamic statistical moments at the given time instant are
calculated similarly, based on the obtained free wave surfaces
η1(x, y) (5).

The full and dynamic variances σ remain approximately
constant throughout the period of simulation, as the evolution
is almost conservative. Meanwhile the asymmetry λ3 and the
kurtosis λ4 are time dependent. They are shown in Figs. 4 and
5 for the two representative cases A and B. Above, the black
lines and gray shading represent the full statistical moments
with the confidence interval of 1 standard deviation. The lower
red curves with shaded areas give the dynamic parts of the
skewness and kurtosis. As was mentioned earlier, the first
200 s (20Tp) of the simulations are preparatory and should
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FIG. 4. Skewness in the sea states A (a) and B (b). The black
thick curve and gray shading (above) show the ensemble-averaged
total skewness and its standard deviation band. The red line and
shading below show the dynamic part of the skewness. The broken
lines give the skewness estimation λ3 = 3ε.
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FIG. 5. Kurtosis for the same simulations as in Fig. 4. The total
kurtosis is above and the dynamic kurtosis is below. The broken lines
give the estimation of the bound wave kurtosis λb

4 = 24ε2.

not be considered (left of the vertical lines in Figs. 4 and 5,
t < 0).

The plots of the wave surface skewness look very similar
for the two situations displayed in Fig. 4. The dynamic skew-
ness is about 0; the total skewness possesses similar values in
these two cases, having a trend to decay gradually due to slow
broadening of the angle spectrum. The analytic estimations of
λ3 according to Ref. [14] are shown with the broken lines;
they underestimate the actual values a little. The skewness in
Fig. 4(b) exhibits a somewhat larger spread.

The situation with the kurtosis is qualitatively different.
The total kurtosis attains much larger values in the simulation
of steep long-crested waves [Fig. 5(b)]. In this case it exhibits
a rapid growth and subsequent slow decrease in agreement
with numerous previous studies (e.g., Refs. [11,12,15–19]),
while short-crested waves are characterized by a smaller value
of λ4 which almost does not vary in time and is close to
the estimation of the bound wave kurtosis λb

4 obtained in
Ref. [14]. We do not plot the curves for the dynamic kurtosis
λd

4 since the method for calculation of BFI is ambiguous.
The dynamic kurtosis is steady in Fig. 5(a) for short-

crested waves; it is slightly below 0, which may be explained
by the finite statistical ensemble. The dynamic kurtosis of
long-crested waves evolves qualitatively similar to the full
kurtosis. Importantly, it makes up about one-half of the total
kurtosis, by about 0.3 in the absolute value. During the
transition stage the theoretical bound wave kurtosis λb

4 [the
broken line in Fig. 5(b)] lies much below the dynamic kurtosis
of simulated waves.

The essential departure of the dynamic kurtosis from 0
reveals the non-Gaussian wave dynamics. In contrast to the
previous studies, we show explicitly within the primitive
equations of hydrodynamics the strong non-Gaussianity of
free waves, which are the “normal modes” of the wave system.

IV. SPECTRAL “SIGNATURES” OF
COHERENT WAVE PATTERNS

It was shown in previous studies that, under the conditions
of intense irregular unidirectional waves with a narrow spec-
trum, wave groups of the shape similar to NLSE envelope
solitons can appear (e.g., Refs. [26,27]); however if the waves
were indeed coherent (i.e., the groups persist) was unclear.
To investigate this issue, we examine the evolution of the
Fourier amplitudes for the situation of intense long-crested
waves (series B).

An example of the instant Fourier transform for the given
angle θ ≈ 14◦ is shown in Fig. 6(a). The free wave component
follows the dispersion curve (shown by the broken line); it is
slightly above due to the nonlinear frequency shift. Besides,
one may clearly see a remarkable violation of the dispersion
law: a significant amount of energy is distributed along the
tangent line. This spectral “jet” corresponds to coherent wave
structures (one may discern many) which travel with speeds
approximately equal to the group velocity. These structures
are supported by quasiresonant and nonresonant interactions
between the dominant and close side harmonics. (A discus-
sion of similar Fourier portraits observed in fully nonlinear
simulations of unidirectional narrow-banded waves may be
found in Ref. [22]; they may be also found in the simulations
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FIG. 6. The section of Fourier amplitudes A(k, θ, ω, t ) for θ ≈
14◦ and t ≈ 45Tp (a), and the amplitude spectral density when

integrated over the angle
√

k
∫

A2dθ (b) for the sea state B. The
dashed lines show the linear dispersion law and the bands of different
nonlinear harmonics according to the suggested spectral filter.

of the NLS equation in Ref. [23].) In the present example
the second nonlinear harmonic (straight elongated area above)
is determined mainly by the coherent part of the free waves.
The difference nonlinear harmonic consists of two distinctive
lobes (shown with arrows below the dispersion curve), which
result from the coherent and incoherent parts of the first
harmonic. In agreement with the estimation in Ref. [22], the
coherent part of the zeroth harmonic crosses the line of the
dispersion relation when k ≈ 4kp.

When the wave energy is integrated over all angles θ , the
lobes which represent the coherent patterns cannot be seen
[Fig. 6(b)]. All together they lead to broadening of the spectral
lobes in addition to the nonlinear frequency upshift, and they
form the actual lobes of nonlinear harmonics.

V. CONCLUSION

In this article we show explicitly, by virtue of the direct nu-
merical simulation of primitive equations of hydrodynamics,
that irregular nonlinear directional sea waves may violate es-
sentially the Gaussian statistics due to the coherent dynamics
of free waves. Under the condition of relatively narrow-angle
spectrum the dynamic kurtosis may be comparable with the
value of the bound wave kurtosis. The method which allows
segregation of different nonlinear harmonics, including the
free wave component, in broad-banded directional deep-water
waves is suggested and employed.

The coherent three-dimensional wave patterns persist in
the irregular directional sea wave fields and do not follow
the classic dispersion relation. Consequently, they noticeably
contribute to the spread of the actual relation between wave
vectors and frequencies. Still, the lobes of the nonlinear har-
monics in the spatiotemporal Fourier domain overlap weakly,
which enables their efficient separation with the help of the
suggested method.

In our opinion, the contradicting statements about the role
of the Benjamin-Feir instability in the real sea, mentioned in
the Introduction, may be brought together if the situations
when the waves suffer from the Benjamin-Feir instability
are not frequent. The strong deviation from the conventional
wave height probability in these abnormal sea states will be
inconspicuous when averaged over a much greater amount of
“ordinary” sea states. This circumstance, however, does not
mean that the situations of “abnormal” wave statistics caused
by strong wave coherence are not significant for the ocean.
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