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Anomalous diffusion of discrete solitons driven by evolving disorder
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Anomalous diffusion is simulated in this paper by studying the transport of discrete solitons in a lattice with
evolving disorder. We find a Richardson-type diffusion for the small solitons and a regime of transient diffusion
for larger solitons within the ensemble-averaged description. As a comparison, the time-averaged observables
present a ballistic scaling for both cases. However, distribution of these observables changes remarkably with the
soliton size. Our results suggest violation of ergodicity for the solitons’ diffusive processes, which are expected
to shed light on further understanding of the discreteness-disorder-nonlinearity interaction.

DOI: 10.1103/PhysRevE.101.062211

I. INTRODUCTION

Discrete solitons (DSs), the self-trapped wave packets bal-
ancing lattice dispersion and nonlinearity, have been observed
in a variety of physical systems such as optics, Bose-Einstein
condensates, and crystals [1–5]. One of the theoretical efforts
is dedicated to the understanding of DS mobility in ordered
lattices [6–9], where some prototype forms of discrete nonlin-
ear Schrödinger (DNLS) models have been considered by us-
ing the concept of the Peierls-Nabarro (PN) potentials [10,11].
However, study on the motion of DSs for disordered lattices
appears to be limited [12]. This should be an interesting topic
concerning the interplay among discreteness, nonlinearity,
and randomness that is on the other hand different from the
wave-packet spreading induced by weak nonlinearity [13–15].
Recently, it was reported that the PN landscape could be ef-
fective in analyzing the DS mobility in statically (only space-
dependent) disordered potential [16], and the breathing DSs
experience a short-time transient diffusion and consequently,
a longer-time localization [17]. A further question then arises:
How is the transport of DSs in a lattice with evolving (both
space- and time-dependent) disorder? Our investigation in
this work is expected to provide some insights into such a
problem.

For the wave-packet spreading (width expansion) de-
scribed by a linear Schrödinger equation with evolving dis-
order, the optical experiment [18] as well as theoretical study
[19] suggest a transport faster than ballistic (we call it hyper-
diffusion), while the diffusion rate may depend on the corre-
lation properties of the relevant random potential [20,21]. The
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diffusive expansion of wave packets with evolving disorder
also can be found in binary kagome ribbons [22] and ultracold
atomic systems with noise and interaction [23]. Nevertheless,
for the highly localized DSs, we might be interested in their
particlelike nature, considering random walks of the DS’s
center-of-mass accordingly. In such a vein, former works
have studied for continuous systems the Brownian motion of
solitons [24,25], transport of nonlocal solitons [26–28], as
well as the Anderson localization of solitons [29,30]. Due
to addition of the discreteness, the transport of DSs would
present more sophisticated and interesting visions as revealed
hereafter.

II. DISCRETE NONLINEAR SCHRÖDINGER MODEL AND
ADIABATIC APPROXIMATION

In this paper we consider the one-dimensional DNLS
model, written as

i
∂ψn

∂t
= −(ψn−1 + ψn+1) − ν|ψn|2ψn + εn(t )ψn , (1)

where ψn is the amplitude at the site n and time t , and ν

measures the strength of the cubic nonlinearity. The random
potential εn(t ) is assumed to be Gaussian with zero mean, and
δ correlated both in space and in time, of the form

〈εn(t )〉 = 0 , (2a)

〈εn(t )εn′ (t ′)〉 = σ 2δnn′δ(t − t ′) , (2b)

where the angular brackets stand for statistical averaging.
Equation (1) may be viewed as a model describing the light
propagation in nonlinear waveguides with evolving disorder
or the evolution of cold atomic wave packets in dynamically
random potential [31,32].

When the random potential is weak and the DS velocity is
slow, an adiabatic approximation assumes the form of the DS
moving in the lattice governed by Eq. (1) as

ψn(t ) =
√

2

ν

sinh(μ)

cosh[μ(n − x)]
exp[ik(n − x) + iα] , (3)
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where the parameter μ relates to the inverse of the DS width,
and x is the DS’s center of mass. Note that although Eq. (3)
is not an exact solution of Eq. (1) when εn(t ) is vanished, it
can be viewed as a good approximation especially for μ < 1
(a detailed justification is presented in Appendix A).

Following the similar perturbation procedure as in [16]
(some detailed interpretations are presented in Appendix B),
we have μ being constant and two evolution equations for the
DS’s movement:

dx

dt
= 2 sinh(μ)

μ
sin(k) , (4a)

dk

dt
= − 8π3 sinh2(μ)

μ3 sinh(π2/μ)
sin(2πx) + f (x, t ) , (4b)

where the equivalent randomness-generated force f (x, t )
reads

f (x, t ) = −
+∞∑

n=−∞

εn(t ) sinh2(μ) tanh[μ(n − x)]

cosh[μ(n − x − 1)] cosh[μ(n − x + 1)]
.

(5)
Generally speaking, this force f (x, t ) is a nonstationary ran-
dom process in space with its correlation function depending
on both x and 
x = x − x′ [16]. Besides, the first nonlinear
term in Eq. (4b), the discreteness-generated force, may also
bring considerable complexity to these equations.

III. SMALL DISCRETE SOLITONS AND
RICHARDSON-TYPE DIFFUSION

When μ � 1, we may have two approximations for small
DSs: (i) The random process f (x, t ) can be viewed to be
stationary in both space and time [16], and its correlation
function reads

〈 f (x, t ) f (x′, t ′)〉 = σ 2F (μ)R(x − x′)δ(t − t ′) , (6)

where F (μ) = 3 coth(μ) − tanh(μ) − 3/μ, and R(|x|) falls
off to zero as |x| → ∞ [we have the value R(0) = 1]. (ii) The
discreteness-generated force is several orders of magnitude
smaller than the randomness-generated force, such that it can
be reasonably neglected from Eq. (4b). Hence, considering the
slow motion of the DSs (the parameter k � 1), we derive the
following simplified equation for the center of mass:

d2x

dt2
+ η(x, t ) = 0 , (7)

where 〈η(x, t )〉 = 0 and 〈η(x, t )η(x′, t ′)〉 = σ 2G(μ)R(x −
x′)δ(t − t ′), with G(μ) = 4 sinh2(μ)F (μ)/μ2. Note that
Eq. (7) is generally valid in describing the DS motion for con-
siderably long time if the random potential is weak enough,
and the radiation from DS to the surrounding environment
can be negligible (a brief comment on the radiation and
nonlinearity is presented in Appendix C).

A. Ensemble-averaged description

Equation (7) is nontrivial to integrate since η(x, t ) is also
a function of the trajectory x. However, by assuming that
x(t ) and η(x, t ) are independent random quantities (this as-
sumption holds hereafter when the relevant formulas are an-
alytically calculated), the following ensemble-averaged mean

squared displacement (eMSD) can be calculated exactly [33]:

〈x2(t )〉 = 1
3 G(μ)σ 2t3 . (8)

The validation of Eq. (8) has been checked by numerically
integrating Eq. (7) for typical parameters (not shown here).
Generally speaking, the eMSD 〈x2(t )〉 ∼ tγ characterizes the
feature of either a Brownian motion with γ = 1 or an anoma-
lous diffusion with γ 	= 1 for a certain timescale. Different
diffusive regimes usually include subdiffusion with 0 < γ <

1, superdiffusion with 1 < γ < 2, ballistic diffusion with γ =
2, and a faster hyperdiffusion with γ > 2.

This hyperdiffusive scaling (8) of the order ∼t3 corre-
sponds to the Richardson diffusion [36], which also describes
the celebrated Gordon-Haus effect of continuous solitons
in optical fiber [37]. A statistical mechanism suggested by
Kolmogorov and Obukhov explained Richardson scaling by
the Newtonian dynamical system driven by a Gaussian δ-
correlated noise [38,39], which was similar as in Eq. (7). On
the other hand, Richardson diffusion of quantum wave packets
was reported in random potentials [21,40], and this scaling
was also found for turbulent diffusion of particles [41], for a
phase of the cold-atom diffusion in optical lattices [42] and
for a transport inside neurons as well [43].

To verify the result (8), we directly performed numerical
simulation of Eq. (1). The time domain was uniformly dis-
cretized with a step size 
t = 0.01, and the random poten-
tial εn(t = j
t ) was assigned Gaussian-distributed random
numbers with zero mean and standard deviation σ/

√

t . We

chose a coordinate moving with the center of mass of the
DS and used periodic boundary conditions for more than
N = 600 sites. The three-part split symplectic scheme of order
2 (type ABC2) [44–46] was employed to integrate Eq. (1) for
each step size, while a fourth-order Runge-Kutta method was
also utilized for double checking our numerical results. The
simulation was implemented up to the time T = 106, and the
statistical quantities hereafter were all derived by averaging
over M = 200 realizations of the random potentials. For the
initial conditions, we considered the stable on-site DSs con-
structed by a Newton-Raphson iteration method [2,3], with
their amplitudes denoted as A = max(|ψn|). The simulated
center of mass x(t ) were obtained as x(t ) = ∑

n n|ψn|2/P,
where P = ∑

n |ψn|2 is the conserved mass of the DSs.
In Fig. 1 we present the simulation results for A = 0.5.

Panel (a) shows a comparison of the initial DS profile with
the averaged profile at t = 106, where we see that the DSs are
well preserved for long-time propagation, with the radiation
much smaller than the core of the DSs (at least three orders
of magnitude smaller in amplitudes). Panel (b) displays the
trajectories for different samples, and the averaged speed of
DSs is not beyond the level ∼0.1. These features further
support our assumptions of weak radiation and small velocity.
A very good agreement between Eq. (8) and the numerical
results can be seen in panel (c).

B. Time-averaged observable

We now look at the Richardson-type diffusion of DSs
in the sense of single particle tracking, for which a typical
time-averaged mean squared displacement (tMSD) over an
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FIG. 1. (a) Comparison of the DS profiles |ψn|2 at t = 0 (red
circles) and t = 106 (green solid line), with the latter averaged out
from 200 independent realizations. (b) Motion trajectories x(t ) as
functions of t for 200 realizations of the random potentials. (c) Com-
parison of the scaling law 〈x2〉 ∼ t3 between Eq. (8) (red dashed
line) and the numerical results (yellow solid line). The parameters
are μ = 0.35, σ = 0.0002, and ν = 1.

individual trajectory is given by

δ2(
) = 1

T − 


∫ T −


0
[x(t + 
) − x(t )]2dt , (9)

where 
 is the lag time defining a time window slid along
the trajectory x(t ), and T is the overall measurement time
[47–49]. A stochastic process is called ergodic when the
tMSD is observed converging to the eMSD in the limit of
long measurement time, i.e., lim
/T →0 δ2(
) = 〈x2(
)〉, with
the identification t ↔ 
. The Brownian motion (normal diffu-
sion) is a typical example for ergodic processes where both the
eMSD and tMSD display a linear growth with t or 
 [47–49].
Oppositely, this equality is violated for a nonstationary pro-
cess and we find the phenomenon of so-called weak ergod-
icity breaking: lim
/T →0 δ2(
) 	= 〈x2(
)〉 [47–54]. Different
examples of anomalous diffusion exhibiting their nonergodic
behaviors have been listed in a review work by Metzler et al.
[47].

For nonergodic processes, the tMSDs vary from trajectory
to trajectory and show an obvious amplitude scatter (such a
scatter may be observed even for ergodic processes with finite
measurement times). We can therefore consider the averaged
tMSD over the ensemble of M different trajectories [47–50],

〈δ2(
)〉 = 1

M

M∑
j=1

δ2
j (
) , (10)

which by using Eqs. (7) and (9) then goes as

〈δ2(
)〉 = 1
2 G(μ)σ 2T 
2 (11)

for 
/T → 0. The disparity between the eMSD (8) and the
tMSD (11) may indicate the occurrence of weak ergodicity
breaking for the Richardson-type diffusion of DSs.

The scatter of the tMSDs δ2(
) around their mean
〈δ2(
)〉 can be quantified in terms of the probability den-
sity function (PDF) φ(ξ ) of the dimensionless variable ξ =
δ2(
)/〈δ2(
)〉. The variance of ξ is further defined as the
ergodicity breaking (EB) parameter [47,48,50]

E (
) = 〈ξ 2〉 − 1 , (12)

which is widely used to measure the trajectory-to-trajectory
fluctuations in single particle tracking. This parameter can be
studied in the limit 
/T → 0, and it has been also used to
qualify the spread of ξ for finite ratio 
/T [55,56]. For Brow-
nian motion, the ergodicity breaking parameter has the scaling
E (
) = 4
/(3T ) at 
/T → 0, while for certain anomalous
diffusion the EB parameters have finite values even in the limit

/T = 0 [47,50,55,56]. In our work, after some calculation
by using Eqs. (7), (9), and (12), we derive the following EB
parameter for 
/T → 0:

E (
) � 4
3 . (13)

This result means that for long measurement times the tMSDs
remain random variables with almost a constant scatter, and
the individual time-averaged trajectory cannot be reproduced
from another one, which characterizes the nonergodic feature
of the DS spreading.

Figure 2 compares the data from directly simulating Eq. (1)
of the DS motions with the theoretical results Eqs. (11) and

FIG. 2. (a) Comparison of the scaling law 〈δ2(
)〉 ∼ 
2 be-
tween Eq. (11) (red dashed line) and the numerical results (blue
solid line). (b) Distribution of the normalized tMSDs in terms of
the PDF φ(ξ ) at 
 = 104. The embedded panel shows the ergodicity
breaking parameters E (
) as functions of 
/T (T = 106), where the
red dashed line denotes Eq. (13) and the yellow solid line displays the
simulation results. The parameters are the same as those in Fig. 1.
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FIG. 3. (a)–(c) The DS trajectories x(t ) as functions of t for 200 realizations of the random potentials for A = 0.60, 0.70, and 0.80. The
embedded panels show the initial DS profiles |ψn(0)|2. (d)–(f) The eMSD 〈x2(t )〉 as functions of t for cases (a)–(c). The scaling exponent γ is
obtained by fitting the data in each time interval with R2 > 0.996. (g)–(i) The trajectory-averaged tMSD 〈δ2(
)〉 as functions of 
 for cases
(a)–(c). The embedded panels display the PDF φ(ξ ) at 
 = 104 (the distribution φ(ξ ) at different 
 keeps a similar profile for each case).
Other parameters include ν = 1 and σ = 0.0002.

(13), which shows reasonably good agreements. Additionally,
we also plot the PDF φ(ξ ) for 
 = 104 in Fig. 2(b) [the
distribution φ(ξ ) for smaller 
 keeps almost the same profile].
It is observed that the maximum of φ(ξ ) is not centered at
the value ξ = 1, and φ(ξ ) becomes highly asymmetric even
for small 
/T , which is far different from the Gaussian
distribution of ergodic Brownian motion [56]. On the other
hand, the long tail of φ(ξ ) with ξ deviating from the unity
indicates some extreme events apparently contributing to the
trajectory-averaged tMSD.

IV. LARGER DISCRETE SOLITONS AND TRANSIENT
DIFFUSION

In this section, we shall investigate the transport for larger
DSs (corresponding to larger μ), where the approximation of
Eq. (7) is invalid mainly due to the interplay between the
discreteness and randomness. Our discussions are based on
the numerical simulations of Eq. (1) for A ≈ 0.6−0.8. The
results are provided in Fig. 3.

We see in Figs. 3(a)–3(c) that the transverse diffusion
seems to be progressively suppressed for larger DS up to
the time t = 106. However, the details are more complicated.

Figures 3(d)–3(f) show that after the DS has a substantial
displacement (usually with 〈x2(t )〉 � 100 such that the soliton
center moves at least one site long statistically), the time evo-
lution of the eMSD on longer accords with the Richardson-
type diffusion but presents a transient diffusion which may
be divided into different time intervals: an early period of
hyperdiffusive regime with γ > 3.0, and a longer-time regime
with γ < 3.0 where slower diffusion may occur for the larger
DS. We stress that the regime of transient behavior was
discussed within our finite computational limit up to T = 106.
The transition between different spreading states can also
be found in other systems, for instance, see the diffusion of
telomeres in mammalian cells (from subdiffusion to normal
diffusion) [57], and the transport in driven Brownian ratchets
(from superdiffusion to subdiffusion) [58,59]. However, the
spreading speed of the DSs reported in this work appears to
be much faster for the above transient time regimes.

In Figs. 3(g)–3(i) we plot the time-averaged description for
this transient diffusion. We are interested in the trajectory-
averaged tMSDs that are not deviating from the scaling of
∼
2 except for the large lag times 
 approaching T/10.
Nevertheless, the distribution φ(ξ ) changes remarkably with
the DS amplitude. The scatter of the individual tMSDs δ2(
)
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FIG. 4. (a) The ergodicity breaking parameters E (
) as func-
tions of 
/T for A = 0.60, 0.70, and 0.80 (T = 106). (b) The
parameter κ as a function of A (μ is derived by fitting the DS
similarly as in Appendix A), and typical plots of E for six different
amplitudes A. Other parameters are the same as in Fig. 3.

becomes progressively smaller and symmetric as the DS am-
plitude increases [see the embedded panels in Figs. 3(g)–3(i)].
Consequently, for larger DSs the tMSDs and the ergodic prop-
erties appear be less dominated by few extreme trajectories
in the data ensembles, which is different from the case of
Richardson diffusion.

To further understand the dependence of the scatter on
DS size, we show the evolution of the parameters E (
)
with 
 for the above cases, as seen in Fig. 4(a). This figure
suggests that E (
) can also be approximated as constants
for relatively larger DSs (especially for 
/T � 1), and their
values apparently drop down for about one order of magnitude
when the DS amplitude increases to A ≈ 0.80. We define the
following averaged EB parameter to characterize the overall
level of the scatters within the interval [0, τ ] :

E = 1

τ

∫ τ

0
E (
)d
, (14)

where τ = T/10 hereby. Figure 4(b) gives several typical
plots of E for increasing amplitudes of the DSs, where we see
that a crossover actually occurs in the regime A ∈ [0.70, 0.80]
for our parameters. Recalling the fact the discreteness takes
an essential effect on the DS motion in this regime, we may
denote another parameter,

κ = 8π3 sinh2(μ)

μ3 sinh(π2/μ)
√

F (μ)σ
, (15)

as a ratio of the amplitude of the discreteness-generated force
to the standard deviation of the randomness-generated force
(the formula F (μ) can still be a good approximation near μ ∼
1 [16]). In Fig. 4(b) the variation of κ with A is also displayed,
which clearly shows that this parameter surpasses the value
κ ∼ 0.1, increasing to ∼1 in the above crossover regime (the
discreteness- and randomness-generated forces become com-
parable), in contrast to the interval for the small DSs where we
have κ � 1 (several orders smaller). Such a condition further
confirms the effect of discreteness-randomness interplay in
shrinking scatters of the time-averaged observables, compar-
ing with the Richardson-type diffusion where the disorder
dominates. For much larger DSs (e.g., with A > 1), the soliton
is tightly “stuck” in the lattice due to the big PN barrier
induced by discreteness, and it would take too long a time

for the weak randomness to drive a substantial displacement,
which is not involved in the current work.

V. CONCLUSIONS

In summary, we have studied the transport of discrete soli-
tons driven by a dynamically disordered potential. Two phases
of soliton diffusion, depending on the soliton size, are revealed
from both of the ensemble- and time-averaged descriptions.
For the ensemble-averaged observables, the small solitons
whose motion is dominated by disorder present a Richardson-
type diffusion with 〈x2(t )〉 ∼ t3, while as t < 106 the larger
solitons show a transient anomalous diffusion affected by
the discreteness-disorder interaction. For the time-averaged
observables, both the small and larger solitons suggest a
ballistic scaling 〈δ2(
)〉 ∼ 
2 for the lag times far less than
our computational limit. However, the distribution of the
normalized quantity ξ = δ2(
)/〈δ2(
)〉 becomes narrower
and symmetric as the soliton grows larger, and its variance
drops down for an order of magnitude after the discreteness
progressively dominates. Our discussions consequently indi-
cate that the ergodicity is violated for considerably long-time
diffusion of the discrete solitons.

These investigations may pave the way for simulating
anomalous diffusion (especially for the less-understood hy-
perdiffusion) by soliton transport in disordered environments.
On the other hand, to some degree we expect our results
to guide experimental realizations in the relevant nonlinear
optical and atomic lattices, which are ideal platforms to study
the phenomena of wave spreading and localization [1,2,4,32].
Besides, we could try to extend our studies to the coupled or
high-dimensional noisy lattice systems with various forms of
nonlinearities, which might be included in future publications.
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APPENDIX A: VALIDATION OF THE DS APPROXIMATION

The DNLS Eq. (1) [εn(t ) ≡ 0] is a nonintegrable model
with numerically iterated DS solutions [2–4]. Its integrable
counterpart, the Ablowitz-Ladik (AL) model, permits an exact
soliton solution with a similar form of Eq. (3).

Hereby we will show that Eq. (3) is also able to well
approximate the DS solutions for the DNLS model when the
parameter μ < 1. In fact, a relevant comparison of the DNLS
DSs with those of the AL model can be found in Ref. [4].

TABLE I. The fitting parameter μ and fitting error θ for the DSs
with A = 0.40−0.80 (ν = 1).

A 0.40 0.50 0.60 0.70 0.80
μ 0.28 0.35 0.41 0.48 0.54
θ 2.9 × 10−4 7.3 × 10−4 1.5 × 10−3 2.8 × 10−3 4.8 × 10−3
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FIG. 5. The DS profiles at t = 0 for (a) A = 0.50 and (b) A =
0.80 (ν = 1). Blue circles represent the numerically iterated profiles
φ1,n and red solid lines correspond to the fitted profiles φ2,n with
Eq. (3). The phase gradient 
ϕ for three realizations of DSs at
t = 106, with (c) and (d) respectively corresponding to the cases of
A = 0.50 and A = 0.80 (the coordinate origin is located on the DS
center).

Firstly, the shape of the numerically iterated DSs is fitted by
using Eq. (3). We denote the relative fitting error as

θ = ‖φ1,n − φ2,n‖2
2

‖φ1,n‖2
2

= 1

P
‖φ1,n − φ2,n‖2

2 , (A1)

where φ1,n is the numerically iterated profile of the DSs, φ2,n is
the fitted profile satisfying φ2,n = √

2/ν sinh(μ)/ cosh[μ(n −
x)], and ‖ · ‖2 represents the L2 norm of a vector. We look for
the fitting parameter μ that minimizes this error, i.e.,

μ = arg minμ∈R+θ . (A2)

The fitting results for typical DSs, including those used in
this paper, are listed in Table I. We see that the DS profiles
are well fitted by the assumption (3) with very small relative
errors. Two DS profiles at t = 0, comparing with their fitted

FIG. 6. The ensemble-averaged terms 〈|Rn|〉 at t = 106 for the
cases of (a) A = 0.50 and (b) A = 0.80 (ν = 1 and σ = 0.0002).
From upper to lower curves, blue circles, green squares, and red
triangles respectively correspond to the terms R0,n, R1,n, and R2,n (the
coordinate origin is at the DS center).

TABLE II. The values of ρ at t = 106 (ν = 1 and σ = 0.0002).

A 0.50 0.60 0.70 0.80
ρ 0.038 0.039 0.041 0.045

configurations, are also illustrated in Figs. 5(a) and 5(b).
Due to very weak radiation, the core of the DSs is nearly
unchanged [see Fig. 1(a)], and thus the approximation Eq. (3)
of DS profiles can be effective for a considerably long time.

On the other hand, Eq. (3) indicates that the assumed
DS has a constant phase difference in consecutive sites, i.e.,

ϕn = ϕn − ϕn−1 = const, where ϕn = arg ψn. We checked
the phase gradient up to t = 106 for all our computational
realizations and found that the core of the DS is characterized
by an approximately constant 
ϕ. Three realizations are
respectively plotted in Figs. 5(c) and 5(d) for the cases of
A = 0.50 and A = 0.80. This shows the fact that Eq. (3)
reasonably describes the phase of the DS core as well.

APPENDIX B: COMMENTS ON THE PERTURBATION
APPROACH

An effective way to study the moving DSs for the DNLS
model is considering its nonintegrable term as a perturbation
to the AL model and applying the soliton perturbation theory
[10,60–62]. This method is equivalent to the variational ap-
proach for collective coordinates [61,63].

We rewrite Eq. (1) as the following:

i
∂ψn

∂t
+ (ψn−1 + ψn+1) + ν

2
|ψn|2(ψn−1 + ψn+1)︸ ︷︷ ︸

R0,n

= ν

2
|ψn|2(ψn−1 + ψn+1 − 2ψn)︸ ︷︷ ︸

R1,n

+ εn(t )ψn︸ ︷︷ ︸
R2,n

. (B1)

For the core of the DSs, the term |R2,n| is much smaller
than |R0,n| due to the very weak random potential, and mean-
while |R1,n| for μ < 1 is at least an order of magnitude less
than |R0,n| up to t = 106 (see two showcases in Fig. 6).

FIG. 7. The ensemble-averaged wave packets 〈|ψn|2〉 at t = 103

for ν = 1.0 (blue line), ν = 0.5 (green line), and ν = 0.1 (red line).
The DS with A = 0.50 was used as the initial condition and the
parameter σ = 0.0002 was considered.
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Recombination of the nonlinear terms leads the l.h.s. of
Eq. (B1) to be the form of the AL model and the r.h.s. to be a
relatively small perturbation for the sites within the DS core.
Therefore it would be valid to employ the perturbation theory
for the AL model [60,61] to approximately obtain Eq. (4).

APPENDIX C: RADIATION AND NONLINEARITY

The total mass of very small linear waves radiated from
the core of DSs is calculated by using the numerical data of
〈|ψn|2〉 up to t = 106, which is denoted as Mr . The ratio of
Mr to the conserved mass P, i.e., ρ = Mr/P, can describe the
radiation level. Table II gives the values of ρ for the cases of

A = 0.50−0.80, which reveals that the radiation mass is quite
small even up to our computational limit. We also estimated
the contribution of radiation mass in numerically calculating
the center of mass of DS and found that it contributed no more
than 6% of the final result for A = 0.50−0.70 and less than
7% for A = 0.80.

On the other hand, we stress that in this study a relatively
strong nonlinearity is considered, which ensures that even the
small DSs (e.g., for A = 0.50) keep their solitonic identity no
shorter than t = 106, in contrast with previous works on the
wave packet spreading by weak nonlinearity [13,14]. In Fig. 7
we show that the soliton structure may be broken up at an early
time if the strength of nonlinearity is decreased by an order of
magnitude, resulting a wide spread of the wave packets that is
completely different from the soliton diffusion.
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