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Understanding the origin of extreme events in El Niño southern oscillation
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We investigate a low-dimensional slow-fast model to understand the dynamical origin of El Niño southern
oscillation. A close inspection of the system dynamics using several bifurcation plots reveals that a sudden large
expansion of the attractor occurs at a critical system parameter via a type of interior crisis. This interior crisis
evolves through merging of a cascade of period-doubling and period-adding bifurcations that leads to the origin
of occasional amplitude-modulated extremely large events. More categorically, a situation similar to homoclinic
chaos arises near the critical point; however, atypical global instability evolves as a channellike structure in phase
space of the system that modulates variability of amplitude and return time of the occasional large events and
makes a difference from the homoclinic chaos. The slow-fast timescale of the low-dimensional model plays
an important role on the onset of occasional extremely large events. Such extreme events are characterized by
their heights when they exceed a threshold level measured by a mean-excess function. The probability density of
events’ height displays multimodal distribution with an upper-bounded tail. We identify the dependence structure
of interevent intervals to understand the predictability of return time of such extreme events using autoregressive
integrated moving average model and box-plot analysis.

DOI: 10.1103/PhysRevE.101.062210

I. INTRODUCTION

El Niño southern oscillation (ENSO) is one of the powerful
climatic and oceanic events and it is a result of interannual
climate variability due to an interaction between atmospheric
and ocean circulations [1]. It has two phases: El Niño, a warm-
ing phase of sea surface temperature (SST) in the eastern and
central equatorial Pacific ocean and La Niña, an occasional
cooling of ocean surface waters in that area. El Niño usually
occurs once in the range of 2–7 years [2]. The key features
of ENSO are its irregularity of occurrence and amplitude
modulation due to ocean-atmospheric instability [3,4], which
draw attention of the scientific community and planners over
the last few decades for its catastrophic effect and socioe-
conomic impact. SST of eastern Pacific ocean is cold in the
normal period along the west coast of South America, but
sudden changes of wind patterns, ocean circulation patterns,
and rise of the oceanic surface temperature of eastern Pacific
are observed during the El Niño phase of ENSO episodes
[5]. It becomes necessary to understand the extreme nature
of ENSO from a purely dynamical system perspective.

Strong El Niño events have devastating effects on nature
[6]. During El Niño periods, normal patterns of tropical
precipitation are heavily disturbed and ENSO also incurs
global climate change [7]. Drought may occur in Australia,
Indonesia, India, Kenya, Morocco, Algeria, Canada, Mexico,
etc., and floods in the central and eastern Pacific regions,
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parts of South America close to Argentina, Chile, Peru,
Ecuador, etc., during this phase. El Niño significantly dis-
rupts the local economy related to ecosystems, fisheries, and
agriculture.

Enormous research efforts have been exerted on de-
veloping an effective dynamical model dealing with the
atmosphere-ocean interactions, exploring the decadal tropical
climate variability [4,8,9]. A mechanism of positive feed-
back and delayed negative feedback of the ocean-atmosphere
interaction in the equatorial Pacific, illustrates the dynamic
features of the ENSO [10,11]. A coupled atmosphere-ocean
model has been studied to obtain self-sustained oscillations
without anomalous external forces for understanding the
characteristic feature of the ENSO phenomenon. A low-
dimensional model based on recharge mechanism was tried
to explain the existence of decadal ENSO amplitude mod-
ulation and decadal changes in the tropical mean state [9].
The low-order nonlinear ENSO model characterizes a strong
asymmetry which is an intrinsic characteristic property of the
ENSO phenomenon influenced by the nonlinear effect of the
subsurface temperature [3].

A kind of irregular spiking behavior has been reported in
the low-order ENSO dynamical model and more categorically,
in the dynamical sense, a homoclinic connection to a saddle
focus was found, which was responsible for this kind of
complexity in dynamics [9]. This explained the decadal recur-
rence of El Niño as chaotic mixed-mode oscillation (MMO)
[12] switching irregularly between large- and small-amplitude
oscillations. Although it was expected that predictability of
MMO kind of El Niño and La Niña situations could be
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possible, it was shown, using a modified low-dimensional
slow-fast model that strong El Niño events on decadal
timescales were completely unpredictable [13]. Still re-
searchers are in search of appropriate methods to address the
question of predictability of El Niño events to mitigate its
harmful impact on the society [14–18].

In this paper, we investigate the low-dimensional slow-fast
ENSO model proposed by Timmermann et al. [9] to under-
stand the origin of self-terminating occasional large spiking
in the time evolution of the SST leading to a type of extreme
events mainly from the dynamical system point of view. We
have adopted numerical as well as analytical techniques to
extend the earlier results [9,12] to develop further insights on
the dynamical features of the system and explore possibility
of extremely large events in the system with a parameter
variation. We acknowledge the earlier observation [9] that
a homoclinic connection plays a crucial role in the origin
of almost decadal recurrence of El Niño events of almost
equal height, which we classify here, in our study, as chaotic
MMOs. Additionally, we observe intermittent large spiking
events in the temporal evolution of SST with variations in
both return time and amplitude near a critical value of the
bifurcation parameter. Such a kind of recurrent and rare
events are considered here as extreme events, which has
been focused here from the dynamical system perspective
[19–22]. Underlying mechanism of the extreme events, in
our model, is a type of interior crisis [23,24] that occurs
via a collision of the period-doubling (PD) cascades and
period-adding (PA) bifurcations at a critical system parameter
and it is different from the typical interior crisis elaborated,
in the literature [25–28], as a collision of a chaotic orbit
and a saddle orbit or saddle point. Experimental evidence
of extreme rogue waves and interior crisis have also been
studied in nonlinear optics [20,29]. A closer inspection, in
the region of this merging of PD cascade and PA bifurcation,
reveals a global instability that exists in the form of a channel-
like structure [24,30,31] in state space of the system. The
volume of this channel introduces a variability of amplitude
and return time of intermittent large spiking events, which
we classify here as extreme events and are clearly different
from the El Niño events, which information is missing in the
earlier report [9,12]. We present numerical evidence that the
slow-fast timescale of the model system plays a crucial role
in the onset of such extreme events in the model. Extreme
events are identified here using a mean excess function [32]
and thereby, we also estimate the probability density function
(PDF) of events’ height as usually done for extreme events,
in general, in single or coupled systems [20,28,33–35]. We
confirm rare occurrence of this new kind of extreme event
(large variability of height and return time) using their in-
terval of return time. We have collected interevent interval
data from numerical experiments and plotted histograms of
return time and then try to fit with the known distributions,
Weibull, Gamma, and Log-normal distributions for a com-
parison and thereby to find an appropriate distribution of
events. Besides, we try to address the question of predictabil-
ity of extreme events using autoregressive integrated mov-
ing average (ARIMA) model for time-series forecasting [36]
and box-plot analysis [37] of interevent interval of extreme
events.

This paper is organized as follows. In Sec. II, we briefly
describe the slow-fast ENSO model. In Sec. III, we explain
the system dynamics and try to understand the mechanism
of extreme events in Sec. IV. In Sec. V, we characterize the
extreme events elaborately using statistical tools and address
the question of predictability of the observed extreme events
in Sec. VI. Finally, discuss an important point in Sec. VII that
the slow-fast parameter plays a crucial role on the onset of
extreme events. Results are summarized in Sec. VIII.

II. SLOW-FAST ENSO MODEL

A general formulation of a slow-fast dynamical system
[38] can be written as

η
dx

dt
= f (x, y, λ);

dy

dt
= g(x, y, λ), (1)

where x ∈ Rm and y ∈ Rn are fast and slow variables, re-
spectively, λ ∈ Rp is a model parameter, and 0 < η � 1
represents the ratio of timescales. Setting η = 0, the tra-
jectory of Eq. (1) converges to the solution of differential

algebraic equation f (x, y, λ) = 0 and
dy

dt
= g(x, y, λ), where

S = {(x, y) ∈ Rm × Rn| f (x, y, λ) = 0} is a critical manifold.
Now we introduce the slow-fast ENSO model proposed by
Timmermann et al. [9]. If h1 is the thermocline depth of the
western Pacific, then its evolution equation is

dh1

dt
= r

(
− h1 − bLws

2

)
, (2)

where r represents the dynamical adjustment timescale, ws

denotes the zonal wind stress, b is the efficiency of ws in
driving thermocline slope, and L is the basin width. The
thermocline depth h2 of the eastern Pacific is related to h1 by
the relation h2 = h1 + bLws.

The dynamical equations of equatorial sea surface temper-
atures T1 and T2 of the western and eastern Pacific, respec-
tively, are represented by

dT1

dt
= −α(T1 − Tr ) − u(T2 − T1)

L
2

,

dT2

dt
= −α(T2 − Tr ) − w[T2 − Tsub(h1, T1, T2)]

Hm
, (3)

where 1
α

measures a typical thermal damping timescale, Tr is
the thermal relaxation toward a radiative-convective equilib-
rium temperature, Hm denotes depth of the mixed layer, u and
w are the zonal advection velocity and equatorial upwelling
velocity, respectively. Tsub is the subsurface temperature being
upwelled into the mixed layer.

The zonal wind stress is related to SST as ws = −μ(T1−T2 )
β

,
where β and μ are the coupling coefficient between SST and
wind stress. Hence the expression of h2 becomes

h2 = h1 + bLμ(T2 − T1)

β
. (4)

The zonal advection velocity u and equatorial upwelling ve-
locity w are assumed to be proportional to the zonal wind
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stress anomalies ws as
u
L
2

= εβws;
w

Hm
= −ζβws. (5)

Here ε and ζ , respectively, quantify the strength of zonal and vertical advection. The expression of Tsub can be written as

Tsub(h1, T1, T2) = Tr − 1

2
(Tr − Tr0)

{
1 − tanh

[
H + h1 + bLμ(T2−T1 )

β
− z0

]
h∗

}
. (6)

Here Tr0 and H , respectively, are the mean eastern equatorial temperature and eastern thermocline reference depth, z0 measures
the depth at which upwilling velocity w takes its characteristic value, and h∗ is sharpness of thermocline. Hence we obtain the
three-dimensional (3D) slow-fast model,

dh1

dt
= r

[
−h1 − bLμ(T2 − T1)

2β

]
, (7a)

dT1

dt
= −α(T1 − Tr ) − εμ(T2 − T1)2, (7b)

dT2

dt
= −α(T2 − Tr ) + ζμ(T2 − T1)

(
T2 − Tr + 1

2
(Tr − Tr0)

{
1 − tanh

[
H + h1 + bLμ(T2−T1 )

β
− z0

]
h∗

})
, (7c)

when h1 represents a slow variable for r < 1 and, T1

and T2 are fast variables. Throughout this paper, we make
a choice of fixed parameters [9], ζ = 1.3, r = 1

400 day−1,
α = 1/180 day−1, Tr = 29.5◦C, L = 15 × 106 m, Hm =
50 m,

bLμ

β
= 22 mK−1, μ = 0.0026 K−1 day−1, H = 100 m,

h∗ = 62 m, Tr0 = 16◦C, and z0 = 75 m. We analyze the
linear stability of the equilibrium points of system (7)
and calculate the invariant manifold as detailed in the
Appendix A. The system has one saddle (0, Tr, Tr ) and
an interior equilibrium point (h∗

1, T ∗
1 , T ∗

2 ), which is a sad-
dle focus. We integrate the system (7) using fourth-order
Runge-Kutta algorithm and fixed time step 0.01. Our main
emphasis is to investigate the complex dynamical behav-
ior of the system (7) by varying the strength of zonal
advection ε.

III. COMPLEX DYNAMICS OF ENSO MODEL

Emergence of El Niño and extreme events is shown in
Fig. 1 with a series of temporal dynamics and their phase por-
traits in a range of ε ∈ [0.0961, 0.17]. Figures 1(a) and 1(b)
show a period-1 oscillation at ε = 0.0961, which evolves into
bounded chaos shown in Figs. 1(c) and 1(d) for ε = 0.0984
via a cascade of PD bifurcations (cf. bifurcation diagrams
in Sec. IV and in the Appendix A). It is noticeable that the
amplitude of T2 remains bounded (T2max < 24) here, how-
ever, for a small increase beyond ε ≈ 0.09848, intermittent
large spiking events (T2max > 24) start appearing as shown
in Fig. 1(e) for ε = 0.0985, which occasionally visit a close
vicinity of the interior equilibrium point, namely a saddle
focus. This sudden change in amplitude of the oscillation
and occasional switching to small-amplitude oscillation is
reflected in the comparative phase portraits in Figs. 1(d) and
1(f). The system trajectory in Fig. 1(f) spirals out in a 2D
unstable manifold of the saddle focus. The trajectory moves
slowly near the saddle focus and it is trapped there for a

while before finally spiraling away from it. After moving
away from the saddle focus, the trajectory attempts a global
excursion to originate a large spike; however, it is reinjected
along the stable eigendirection to reach another close vicinity
of the saddle focus with a highly irregular interval of time.
The time spent during spiraling out varies and it depends
on how close the reinjected trajectory reaches a vicinity of
the saddle focus and thereby it makes a large variation in
the number of small oscillations that makes irregular return
time of the large events. A tendency to develop a homoclinic
chaos with a local instability of the saddle focus is seen here,
but the typical global stability of homoclinic chaos [39], is
never achieved due to the presence of a channellike structure.
The trajectory revolves around the saddle focus for quite
some time due to local instability (attracted along the stable
eigendirection, pushed away along the unstable eigenplane
of the saddle focus) while a globally instability due to the
channellike structure induces a variation of the return path
(global excursion) of the trajectory making a wide variation in
both the amplitude and return time of large spikes. Our main
focus is the origin of this exceptional case of large variation
in return time and amplitude of extreme events illustrated in
Figs. 1(e) and 1(f), which has not been reported so far, to the
best of our knowledge. For higher values of ε = 0.1076 in
Figs. 1(g) and 1(h), the dynamics becomes almost regular, but
in reality, the oscillation has low variability in amplitude of
large spikes and the number of small oscillations still varies
irregularly confirming existence of local instability, a typical
signature of chaotic MMO reported earlier [9,12] as El Niño
events. In that particular case, large events are more frequent
compared to our observed new kind of extreme events shown
in Fig. 1(e). Following a series of dynamical events with
varying ε we notice a transition from chaotic MMOs to
periodic MMOs (11) shown in Figs. 1(i) and 1(j) for a larger
ε = 0.15. The period-1 limit cycle returns for larger ε, but
with a larger amplitude of oscillation as shown in Figs. 1(k)
and 1(l).
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FIG. 1. Evolution of different dynamics in ENSO model with a variation of ε. Temporal evolution of T2 and corresponding phase space
diagram in (T1, T2) plane: [(a) and (b)] small-amplitude period-1 limit cycle at ε = 0.0961, [(c) and (d)] bounded chaos at ε = 0.0984, [(e) and
(f)] extreme events at ε = 0.0985, [(g) and (h)] chaotic MMO (or El Niño events) at ε = 0.1076, [(i) and (j)] periodic MMO (11) at ε = 0.15,
and [(k) and (l)] large-amplitude period-1 limit cycle at ε = 0.17.

IV. ORIGIN OF EXTREME EVENTS

For a closer inspection of the dynamical evolution of
extreme events with both local and global instabilities in the
system, a bifurcation diagram of T2max against ε is drawn
in Fig. 2(a). The stable interior equilibrium (FP) evolves
into a limit cycle (LC) via Hopf bifurcation (HB) and it
continues until ε ≈ 0.09802. The system undergoes a cascade
of PD bifurcations to become chaotic with increasing ε (a
broader scenario in parameter space presented in Fig. 12 in
Appendix A). At a critical value ε ≈ 0.09848, T2max suddenly
increases to a large value where the cascading sequence of
PD merges with a PA sequence. The bounded chaotic mode
explodes here when we notice intermittent large-amplitude
spiking oscillations with a variation in amplitude intercepted
by a varying number of small oscillations as shown in the
temporal evolution of T2 in Fig. 1(e). We classify such inter-
mittent large events as the extreme events, which are followed
by the typical chaotic MMOs identified as El Niño events

[12] and MMOs as shown in Fig. 2(c) [a zoomed version of
Fig. 2(a)] for increasing ε; exemplary temporal evolution of
chaotic MMO and periodic MMO are shown in Figs. 1(g)
and 1(i), respectively. For larger ε, the dynamics return to
LC, but with a large-amplitude as shown in Fig. 1(k). The
periodic MMO sequence is better visualized from the right
side of the bifurcation diagram in Fig. 2(a) when we decrease
ε and observe a Farey sequence Ls [39] consisting of large-
amplitude oscillations (denoted here by L = 1) followed by
small-amplitude oscillations (denoted by s = 1, 2, 3, . . . ,∞).
The Farey sequence of periodic MMOs emerges in succes-
sive parameter windows intermediate to chaotic windows of
the control parameter ε. Figure 2(b) shows the sequence of
MMOs (11 − 12 − · · · − 116) in a period-parameter bifurca-
tion plot. It first emerges with a period-1 limit cycle (10) from
ε ≈ 0.1653 and continues until we see a 116 MMO that shows
a devil’s staircase [39] with an asymptotic increase in the
time period of oscillations. From our numerical simulations,
we are able to record a MMO with a maximum number of
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FIG. 2. (a) Bifurcation diagram of maximum peak values of T2 against ε. It shows different kind of oscillatory behavior of the system.
(b) Period-parameter bifurcation: Period of periodic mixed mode oscillations are plotted with intervals. Zoomed version of the bifurcation
diagram (c) for ε ∈ [0.1, 0.1015] to get clear view of the inverse period-doubling (IPD) bifurcation and saddle-node bifurcation of limit point
cycles (LPC) and (d) for ε ∈ [0.0978, 0.0988] to emphasize the interior crisis of the system.

s = 16 (with our best effort) near ε = 0.1, although MMOs
with larger s values really exist in the system. The parameter
window of ε for each MMO becomes narrower with increas-
ing s and the time period of MMOs increases asymptotically.
The interval between any two successive MMO windows
in ε [Fig. 2(b)] is a chaotic window and hence the MMOs
emerge in a sequence of alternate PA bifurcations. As we
decrease ε, we find an increasing number of small oscillations
s = 1, 2, 3, . . . , 16 in the periodic MMO windows until the
sequence collides with bounded chaos.

To make a clear picture of this scenario, a small range
of ε values is zoomed in two separate bifurcation diagrams
in Figs. 2(c) and 2(d). Figure 2(c) shows an example of PA
sequence in the range of ε ∈ [0.1, 0.1015]. MMOs lie in the
periodic windows where the chaotic state becomes periodic
via inverse period-doubling (IPD) cascades and it becomes
chaotic via saddle-node bifurcation. MMOs continue with
alternate chaotic and periodic windows with decreasing ε until

it reaches a chaotic MMO (1∞) and arrive at a critical point of
transition where the amplitude drops down to small-amplitude
bounded chaos at ε ≈ 0.09848 as shown in Fig. 2(d). Another
view of the bifurcation scenario is presented in Fig. 2(d)
that is a zoomed version of Fig. 2(a) in the range of ε ∈
[0.0978, 0.0988] that focuses on the PD cascades to bounded
chaos and a sudden large rise (fall) of amplitude of the
chaotic oscillation as viewed for an increasing (decreasing)
ε. This sudden change in amplitude of chaos occurs near
ε ≈ 0.09848 via the interior crisis due to a merging of PD
and a PA bifurcation sequences [23,24] and, it indicates onset
of extreme events as shown in Fig. 1(e). We observe the
typical El Niño events as chaotic MMOs for a larger ε value
as shown in Fig. 1(g) and as reported earlier [12]. For a
macroscopic view, we draw the critical manifold of the slow-
fast system and search for the regions of instabilities in 3D
phase space that provides a minefield for the generation of
extreme events. The critical manifold is obtained by solving a
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FIG. 3. Critical manifold S (green surface). Sa, attracting part; Sr , repelling part; and Ss, saddle part of the critical manifold. T1 = T2 plane
in brown, and a red circle indicates the position of saddle focus (76.43, 27.28, 20.33). (a) Bounded chaotic attractor (blue line) for ε = 0.0984
(precrisis) and (b) expanded attractor (blue line) for extreme events ε = 0.0985 (postcrisis).

truncated system of the fast variables T1 and T2, given by the Eqs. (7b) and (7c),

S =
[

(h1, T1, T2) ∈ R3
∣∣ α − μ

(
ε(T2 − T1) + ζ

{
T2 − Tr + 1

2
(Tr − Tr0)

[
1 − tanh

H + h1 + bLμ(T2−T1 )
β

− z0

h∗

]})
= 0

]
. (8)

The Jacobian JS of the truncated system is now derived at each point on the critical manifold S defined by using Eq. (8). The
Jacobian JS = [Ji j]2×2, where

J11 = −α + 2εμ(T2 − T1); J12 = −2εμ(T2 − T1);

J21 = −ζμ

(
T2 − Tr + 1

2
(Tr − Tr0)

{
1 − tanh

[
H + h1 + bLμ(T2−T1 )

β
− z0

]
h∗

})

+ ζμ(T2 − T1)

(
bLμ

2h∗β
(Tr − Tr0)

{
sech2

[
H + h1 + bLμ(T2−T1 )

β
− z0

]
h∗

})
;

J22 = −α + ζμ

(
T2 − Tr + 1

2
(Tr − Tr0)

{
1 − tanh

[
H + h1 + bLμ(T2−T1 )

β
− z0

]
h∗

})

+ ζμ(T2 − T1)

(
1 − bLμ

2h∗β
(Tr − Tr0)

{
sech2

[
H + h1 + bLμ(T2−T1 )

β
− z0

]
h∗

})
. (9)

We plot the critical manifold [38] in a 3D surface in Fig. 3
(green) and mark separate sections (dashed lines) of attracting
(Sa), repelling (Sr), and saddle (Ss) regions of the critical
manifold using the sign of the eigenvalues of JS at each point
of the surface. The saddle focus (76.43, 27.28, 20.33) (red
circle) is lying on the border of the attracting and the repelling
regions of the critical manifold. Starting from a precrisis
point at ε = 0.0984, we obtain bounded chaos as shown in
Figs. 1(c), 1(d) and 2(d). Figure 3(a) shows the trajectory of
bounded chaos in 3D space traveling far away from the saddle
focus, rather revolving around the triangular shaped repelling
region (Sr) of the critical manifold. In contrast, Fig. 3(b)
shows a postcrisis chaotic attractor on the critical manifold
S for ε = 0.0985. This is obtained by tuning the ε parameter
near the critical point when the trajectory is destined to

travel a close vicinity of the saddle focus (red circle) in the
repelling region. It takes longer time to spiral out since the
trajectory gets slower near the saddle focus and makes many
small-amplitude oscillations before moving out for a global
excursion, but it is reinjected to reach another close proximity
of the saddle focus along the stable eigendirection. This is
exactly the way a homoclinic chaos originates. However,
in contrast to homoclinic chaos, the trajectory is no more
globally stable rather traces different trajectories during the
reinjection period due to the presence of a global instability in
the form of a channellike structure. Thereby it originates large
spikes with a variability of amplitude and return time intervals
that depend on the number of small oscillations.

Now we explain here the role of the channellike struc-
ture that creates a global instability. The geometric singular
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FIG. 4. Variation of the channel structure. Segments of a trajectory (blue lines) plotted for (a) ε = 0.0985 (a narrow channel) and (b) ε =
0.1076 (a wider channel) on the critical manifold S (green surface). Red circles are the positions of saddle focus (76.43, 27.28, 20.33) for
(a) and (73.87, 27.23, 20.52) for (b).

perturbation theory [40] explains the existence of a locally
invariant slow-manifold S (r) close to the critical manifold
S within a domain O(r), where attracting or repelling prop-
erties of the critical manifold remain unchanged. This in-
variant manifold consists of stable (attracting) and unstable
(repelling) slow manifolds [41]. As usual a slow increase in
the size of a bounded chaotic attractor occurs with the increase
of ε and it enters the repelling part of the critical manifold
at a critical value of ε. After entering the repelling section,
the trajectory tends to move toward the saddle focus along
the stable manifold as mentioned above. When the trajectory
reaches a close vicinity of the saddle focus, it spirals out
along the 2D unstable manifold and attempts a large excursion
to originate a large spike, but passes through a channellike
structure. The global stability of homoclinic chaos with a
fixed global trajectory, as expected in such a situation, is
broken by the channellike structure. This structure appears
due to changes in the alignment of the manifolds in phase
space as the control parameter ε is varied [24,42,43]. To
illustrate the influence of this channellike structure, we follow
the trajectory microscopically. We project collected data on a
segment of the trajectory as shown in Fig. 4(a) from a long
time series of large events shown in Fig. 1(e). The trajectory
while spiraling out, passes through a very narrow channel in
phase space. The system trajectory escapes from its small-
amplitude oscillation while spiraling near the saddle focus and
passes through this leaky channel.

This instability region explicitly prescribes the location of
the leak in phase space and most importantly, its volume is
inversely proportional to the rarity of large spiking events.
The trajectory spends longer time in the narrow channel when
the number of small oscillations are larger and, thereby it
creates longer interval of the large events and also a wide
spreading in the reinjection path of the trajectory that makes
an amplitude variation of the large spikes or events. The role
of the channel is further illustrated by increasing ε = 0.1076
when the volume of the channel increases in Fig. 4(b) plotted
from a time series in Fig. 1(g) of chaotic MMO (in the case
of El Niño situation). In this case, the trajectory spends less
time in the channel and hence large spiking events are more

frequent with low variability of amplitude. To summarize, a
collision between the PD cascade from the left side and PA
cascade from the right side of the system parameter (ε) occurs
at a crisis point [23] that makes a sudden change in the size
of attractor. An additional global instability of trajectories is
created by a channellike structure in phase space. The channel
volume is modulated by the variation of ε and as a result, two
kinds of events, the extreme events and the typical El Niño
events, evolve as shown in Figs. 1(e) and 1(g), respectively,
for two different values of ε, one with large variability in
amplitude and return time making its rare occurrence and
another one with almost identical heights and more frequent
occurrence of events.

V. EXTREME EVENTS: STATISTICAL PROPERTIES

We explore here the statistical properties of the extreme
events, the probability distributions of event heights and in-
terevent intervals. At first, a mean excess function is defined
to identify a threshold level for qualifying extreme events.

A. Mean excess function: Extreme event qualifier

We use a mean excess function [32,44] to define a threshold
of an event. Any event larger than this threshold is declared as
extreme. For a random variable X , it is defined as

e(u) = E (X − u | X > u), (10)

where E (X ) denotes expectation of the random variable X and
u is the threshold value which varies between the minimum
and maximum values of the observed data. This function gives
an expected value of excess of a random variable over a certain
threshold. Then we plot the function e(u) with varying u and
there we estimate a threshold value u∗ until this functional
relation is a better fit to a straight line. If any event crosses
u∗, then the event is considered as an extreme event. The
extreme event qualifier threshold value is also obtained by
considering few times more standard deviation than the mean
value [30,45], deduced by using peak over threshold approach
[46].
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FIG. 5. Mean excess function plot against u for different val-
ues of ε: ε = 0.0985 (blue circle), ε = 0.0986 (black square), ε =
0.0987 (red diamond), and ε = 0.0988 (cyan triangle). Filled circles
represent the threshold values for different values of ε. Vertical
dashed line is the threshold value u∗ = 25.5 for ε = 0.0985. A
portion of curve is fitted by black solid line.

As an example, for ε = 0.0985, in our system, the mean
excess function e(u) increases monotonically (blue line) with
decreasing u and reaches a peak, and finally decreases as
seen in Fig. 5. However, a best straight line fit (black line) is
possible until u = u∗ = 25.5, beyond which the plot deviates
slowly in the beginning and then largely (open blue circles)
for lower u values from the straight line. We mark u∗ =

25.5 as an extreme event qualifier (solid blue circle). Simi-
larly, we obtain extreme event qualifiers as u∗ = 25.6 (solid
black circle), 25.7 (solid red circle), and 25.8 (solid cyan
circle), respectively, for ε = 0.0986, 0.0987, and 0.0988. It
is noted that the threshold value u∗ increases (shifts to the
right) with increasing ε and the rarity of occurrences of
extreme events gradually decreases. The slopes of straight
line fits are −0.8053 (blue circle), −0.8730 (black square),
−0.8774 (red diamond), and −0.9362 (cyan triangle) for
ε = 0.0985, 0.0986, 0.0987, and 0.0988, respectively. These
slopes are used for approximating the values of shape pa-
rameter of the respective generalized Pareto distribution and
to identify the nature of distribution as discussed in the next
section.

B. Probability distribution of event heights

Now probability density functions of all the peaks in a
long run of time evolution of T2 are drawn in semilog scale
in Figs. 6(a) and 6(b) for two different values of ε, i.e.,
ε = 0.0985, very close to the interior crisis point and ε =
0.0988, slightly away from the crisis point. Simulations are
run for sufficiently long time (1.0 × 1012 iterations) so that
the distributions are saturated. Vertical lines (red) indicate
the threshold level of extreme events estimated by the mean
excess function (Fig. 5). Clearly, both PDFs show multimodal
non-Gaussian distributions with extreme events larger than the
threshold level. Figure 6(a) shows two dominant modes with
an additional less dominant mode (marked by a rectangular
box) for ε = 0.0985. The increasing values of ε push the addi-
tional mode to the right (rectangular box) and PDF approaches
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FIG. 6. Top: Probability density functions of the event heights in semilog scale, inset figure shows the corresponding time series. Bottom:
Corresponding return times: [(a) and (c)] ε = 0.0985 and [(b) and (d)] ε = 0.0988.
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a bimodal distribution as shown in Fig. 6(b) at ε = 0.0988.
Insets show corresponding time evolution of T2. One mode
corresponds to small amplitude oscillations and another mode
corresponds to large amplitude oscillations. Both the time
signals of T2 (insets) show an alternate large-amplitude spik-
ing oscillations (related to extreme events) in alternate time
sequence of spiraling small-amplitude oscillations. However,
the height and return of large events show wide variability.

Once the intermittent large events are identified as extreme
from a simulated time series, which are above a threshold u∗.
Now we introduce a function which is capable to capture the
spatial status as well as temporal fluctuation of occurrence of
the events. For this, we estimate the return time by taking an
average of time-intervals of all the events at certain height,
say, u, and define it by RT (u),

RT (u) = 1
N

N∑
i=1

IEIi(u), (11)

where IEIi(u) is the ith interevent interval corresponding to
all the events of the fixed height u, and N is the number of
interevent intervals collected from a long time series. Figure 6
(lower panel) shows the return time with respect to the event
height u for two exemplary values of ε used in the upper
panels. We notice that the PDFs in Figs. 6(a) and 6(b) and
corresponding return times in Figs. 6(c) and 6(d) are inversely
proportional in nature in the interval 24 � u � 28. So a larger
return time of a particular event u indicates that extreme events
occur rarely. For both the cases, the return time of events
increases with decreasing probability of number of events.

Extreme events occur due to dynamical instability, which
are responsible for the nonuniform behavior of the tail of the
distribution. PDFs have different characteristics in different
parameter regime and the tail of the distribution cannot be
easily fitted with the well-known statistical functions [47].
We attempt here to find the characteristic feature of the tail
of our observed PDFs in Figs. 6(a) and 6(b) with the help
of the shape parameter in a generalized Pareto distribution
(GPD) [32]. The probability density function of the Pareto
distribution is

Gξ,γ (x) =
{

1
γ

(
1 + ξx

γ

)− 1
ξ
−1

, ξ �= 0
1
γ

exp
( − x

γ

)
, ξ = 0

, (12)

where x � 0 when ξ is nonnegative, and 0 � x � − γ

ξ

otherwise. Here γ > 0 and ξ , respectively, are the scale and
shape parameters of the distribution. The sign of the shape
parameter ξ delineates the nature of the distribution at the tail.
In particular, if ξ � 0, then the distribution has no upper limit,
while ξ < 0 implies the distribution has finite end-point. In
our example, in Fig. 5, we try to fit the mean excess function
e(u) against u curve by a straight line, when we can express
the mean excess function [44] for the case of GPD as

e(u) ≈ γ

1 − ξ
+ ξ

1 − ξ
u, (13)

where ξ

1−ξ
is the slope of the best fitted straight line. For

parameter values ε = 0.0985 and 0.0988, the numerically
calculated slopes of the straight lines in Fig. 5, are −0.8053
and −0.9362, respectively. We obtain the shape parameters of

the two distributions approximately as −4.1361 and −14.674,
respectively, where the signs of the shape parameter ξ , tell
us that the distributions have upper-bounded tails, which are
shown in Figs. 6(a) and 6(b).

C. Probability distribution of interevent interval

We study here the distribution and dependence structure of
interevent interval (IEI). Figures 7(a) and 7(b) depict that the
autocorrelation functions (ACF) [48] of IEI are out of small
band (i.e., significant, taking 95% confidence interval) only
for the first lag at ε = 0.0985 and for the first three lags at ε =
0.0988, respectively (in this case, the values of ACF for fourth
and fifth lags are very close to the confidence limit). These
observations conclude that occurrence of extreme events are
correlated (in the short range). We have observed similar phe-
nomena by moving the windows of smaller size through out
the data. We thus identify [49] that the IEI process is stationary
and can be modeled by ARIMA processes. From there, it
can also be said that the process {IEI2n : n = 1, 2, 3, . . .} is
an uncorrelated process [see the inset figure in Fig. 7(a)] for
the first case. Also the process {IEI4n : n = 1, 2, 3, . . .} is an
uncorrelated process [see the inset figure in Fig. 7(b)] for the
second case. The similar comment is applicable for the pro-
cess {IEI2n−1 : n = 1, 2, 3, . . .} [similarly to that of Fig. 7(a)]
as well as {IEI4n−1, IEI4n−2, IEI4n−3 : n = 1, 2, 3, . . .} [sim-
ilarly to that of Fig. 7(b)]. We then use the Kolmogorov-
Smirnov (KS) test [50] to check whether the distributions
of corresponding elements of these two sets {IEI2n−1, IEI2n :
n = 1, 2, 3, . . .} and {IEI4n, IEI4n−1, IEI4n−2, IEI4n−3 : n =
1, 2, 3, . . .} are same or not. The p-value [the probability
of obtaining test results at least as extreme as that of the
observed one(s) under the null hypothesis] corresponding to
ε = 0.0985 is 0.5792. For ε = 0.0988, we get six p-values for
six pairs (IEI4n, IEI4n−1), (IEI4n, IEI4n−2), (IEI4n, IEI4n−3),
(IEI4n−1, IEI4n−2), (IEI4n−1, IEI4n−3), and (IEI4n−2, IEI4n−3)
are 0.8464, 0.6683, 0.5478, 0.5039, 0.479, and 0.7091, re-
spectively. Since the p-values are very high, we fail to reject
the null hypothesis of equality of any of these pairs of distri-
butions. The KS test also confirms that the distributions of all
the processes are also same as that of the whole data of IEI.
For different values of ε, the processes can be thought as a
renewal process (of events) [51] or more generally as a point
process.

We now try three known parametric family of distributions
(Weibull, Gamma, and Log-normal distributions) to fit the his-
togram of IEI (data collected from our numerical experiment)
for two different values of ε in Figs. 7(c) and 7(d) to help us
understand the nature of occurrence of next extreme events.
We have also observed that Log-normal distribution is the best
fit for both the cases. In Appendix B, we write the expressions
of PDFs of IEI and present a chart of the estimated parameters
of these distributions (Table I).

VI. PREDICTABILITY OF EXTREME EVENTS

The dependence structures of IEI are observed in Figs. 7(a)
and 7(b) which indicate about predictability of extreme events
[52].
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FIG. 7. Autocorrelation function (ACF) with varying lag parameter (τ ) for (a) ε = 0.0985, and (b) ε = 0.0988. Insets show variation of
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For predictability, we use ARIMA model [36], histogram
of the IEIs and a corresponding box-plot analysis [37]. A
preliminary description related to the predictive property of
box-plot analysis is described in Appendix C.

ARIMA time-series forecasting model is used to fit the data
at first. For this, we find that the best fitted model for data is
ARIMA (1, 0, 0), i.e., a model with only autoregressive part
of lag one and no integrated or moving average part. We use
half of the 400 samples to find a best fit of the model and
on the remaining half we use the one-step-ahead prediction
using the above AR(1) or, equivalently, the ARIMA (1, 0, 0)
model. We plot the iteration of our simulated IEIs (blue solid
curve) and predicted IEIs (red dash curve) for ε = 0.0985
and ε = 0.0988, respectively, in Figs. 8(a) and 8(b). For this
predictability, we use one-step-ahead ARIMA (1, 0, 0) time-
series estimation. Figure 8 shows a deviation of the time of
occurrences (plotted along the ordinate) whose abscissa is
the index of the occurrences of IEI. From the mean absolute
deviation (MAD) and the root-mean-standard error (RMSE),
predictions are of the order of 104 for Fig. 8(a) and 103

for Fig. 8(b). This is reasonable for predicting such extreme
events, whose distribution of time intervals of occurrence, IEI,
have a very wide range. Here we observe that if the value of ε

is shifted away from critical crisis point, the predictability of
extreme events becomes finer because the chaotic fluctuation
of time signal of T2 decreases varying with parameter and
it reaches to MMO, where fluctuation of temporal evolution
of system drops significantly. As a result, it may quite easy
to predict such El Niño events using ARIMA method. We
investigate further the question of predictability in a different
way.

A careful observation of the simulated time evolution of
T2 in Fig. 1(e) and the inset in Fig. 6(a) reveals that two
types of spiking patterns appear, which may be characterized
as extreme events. A class of large spiking events called
here as extreme events emerge after spirally outward with
small amplitude oscillations; another class of extreme events
emerge after a relatively longer duration of bounded chaotic
oscillations around the saddle focus. To distinguish these two
types of extreme events, we plot a set of last 10 local maxima
of T2 before occurring an event of height larger than or equal
to 27.5 as shown in Fig. 9(a). Extreme events that emerge
via two different processes, small amplitude oscillations and
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FIG. 8. Prediction plots of one-step-ahead forecast using
ARIMA (1,0,0) time-series model based on the simulated IEI’s for
(a) ε = 0.0985 and (b) ε = 0.0988. Blue solid curves: simulated IEIs
used for forecasting; red dash curves: predicted IEIs; and gray solid
curves : exact simulated IEIs.
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FIG. 9. (a) Local maxima of T2 before appearing the event
height 27.5 and above (10 last maxima) are plotted. Black and
magenta curves are the events which occur through spiral outward
and bounded chaotic oscillations, respectively. (b) Histogram of the
interevent intervals at ε = 0.0985 for all the events of height 27.5
and above followed by spiral outward as well as bounded chaotic
oscillations and corresponding box plot in the inset.

bounded chaotic oscillation, are clearly distinguishable. The
peak value of the spiraling oscillation (T2max ) monotonically
increases (black line) until they reach an event height larger
than T2max � 27.5. However, during the emergence of large
events from the bounded chaotic oscillation, there is no such
increasing trend before the extreme events, rather a serpentine
pattern (magenta line) is seen. Inspired from this fact, we
separately investigate the question of predictability of extreme
events arising out of the two cases.

Figure 9(b) presents a histogram of IEI for all the
events of height 27.5 and above that includes for both
the cases and it shows a unimodal long-tail distribu-
tion. A corresponding box plot (see Appendix C for de-
tails) is drawn in the inset, which we elaborate here

for our results. Five measures for this box plot are esti-
mated from our simulated time-series data: lower adjacent =
12604.38, first quartile Q1 = 13291.14, median = 22822.30,
third quartile Q3 = 46548.3, and upper adjacent = 96434.04.
These measures tell us that once an event of height 27.5 and
above occurs, then next such type of event will occur within
the time intervals [12604.38,13291.14], [12604.38,22822.30],
and [12604.38,46548.3] with respective probabilities 0.25,
0.5, and 0.75. It is almost sure that these particular type of
events will occur within the interval [12604.38,96434.04].
Red-marks (+) in the box plot indicate seemingly the hard
to predict extreme events which are about 6.55% of them.
From our results, we conclude that the interquartile range
(IQR) = Q3 − Q1 = 33257.16, and approximately 6.55% of
the events are not predictable with this standard methodology,
which in statistical terms may often be called outliers.

Next we investigate all extreme events of height 27.5 and
above on the basis of their emergence, either through spiral
outward or bounded chaotic oscillations as classified above.
Results are shown in Figs. 10(a) and 10(b) and measurements
are given in the Table II (Appendix C). Figure 10(a) depicts
a multimodal distribution. We have drawn two different box
plots for these two disjoint components of the distribution
in the insets. Figures 10(a) and 10(b) together show the
data described in Fig. 9(b) may be suitably modeled by a
mixed distribution with two major components, spiral outward
and bounded chaos oscillations, with corresponding frequen-
cies 35% and 65%, respectively. Within the spiral outward
component, two smaller components are visible, one with
frequency 9% and another with 26% with IQR = 25.862 (left
box) and IQR = 22.99 (right box) which are significantly
small compared to bounded chaos. For both these cases, we
do not get any outliers which indicate better predictability
of such events and the events occur through spiral outward
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FIG. 11. Bifurcation diagram of the variable T2 with respect to ε for (a) r = 1
300 and (d) r = 1

450 . Temporal evolution of T2 at (b) ε =
0.09837, r = 1

300 , and (e) ε = 0.0988, r = 1
450 and corresponding probability density functions are shown in (c) and (f), respectively. Red lines

in (e) and (f) are the threshold values at u∗ = 25.65 (measured using mean excess function).

oscillation is almost predictable. Figure 10(b) shows an long-
tail unimodal distribution for the interevent intervals of the
extreme events of height 27.5 and above occurring through
bounded chaos.

A similar study is performed in the lower panel of Fig. 10
for all event heights (for which T2max exceeds the predefined
threshold 25.5) instead of a specific height. For such cases,
similarly we have separated out all the events which are
occurring through spiral outward and bounded chaotic oscil-
lations. Figures 10(c) and 10(d), respectively, represent the
distributions of IEI for these two cases. For the spiral outward
induce extreme event which exceeds the length 25.5, almost
every interevent intervals are concentrated within a very small
abscissa length. It shows the feature of periodicity for the
occurrence of extreme event followed by small amplitude
oscillations. However, bounded chaos induces events that
exhibit a unimodal long-tail distribution. The IQR and outlier
for such events are respectively 1971.79 and 5.74%, while
20139.18 and 5.64% for bounded chaos case. This study
clearly indicates that the spiral outward induces events are
more predictable than bounded chaos induces events.

VII. EFFECT OF SLOW-FAST TIMESCALE

The parameter r controls the timescale of the slow variable
of the system (2). It plays a crucial role in the onset of a sudden

large expansion of the attractor from a bounded state and in
the origin of extreme El Niño events. For elaboration, we fix
all the parameters as considered above and draw bifurcation
diagrams of T2 for two additional choices of r. Figures 11(a)
and 11(d) show two bifurcation diagrams against ε for r = 1

300
and r = 1

450 , one larger and one smaller than r = 1
400 . We have

already drawn the scenario of PD and PA cascade collision in
Fig. 2(d) in Sec. IV for r = 1

400 . The extreme event occurs
at a postcrisis region after transition point ε ≈ 0.09848 in
Fig. 2(d). For a faster timescale, r = 1

300 , an expansion of T2max

occurs at a transition point ε ≈ 0.09837, but it is not large
enough to originate extreme events, which is also confirmed
by its temporal evolution in Fig. 11(b) and an almost Gaussian
probability distribution of event heights in Fig. 11(c). On the
other hand, if we consider a lower r = 1

450 value, then the
critical ε for the onset of a sudden large expansion shifts to
a larger value, which is clearly observed in Fig. 11(d) [cf.
Fig. 2(d)]. The corresponding time series at ε = 0.0988 is
plotted in Fig. 11(e) where the large events are really extreme
events since they cross a threshold u∗ = 25.65 (horizontal red
line), which is calculated by the mean excess function plot.
PDF also changes significantly at ε = 0.0988 for a lower
r = 1

450 as show in Fig. 11(f) clearly shows a multimodal
non-Gaussian distribution. So it is clear that timescale r plays
an important role for generating extreme events by shifting
ε for the onset of extreme events. For a smaller value of r,
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i.e., for a slower rate of change in h1, a larger value of the
strength of zonal advection ε is necessary to reach the crisis
point where the enlargement of the attractor in phase space
occurs leading to extreme events.

VIII. CONCLUSION

A low-dimensional slow-fast ENSO model has been in-
vestigated to understand the dynamical origin of extreme
and related El Niño events. Using bifurcation diagrams of
SST against a system parameter ε connected to the strength
of difference in SST in the southern and eastern Pacific,
we identified two different kinds of interesting events, the
typical chaotic MMO type El Niño events and another extreme
events. El Niño events emerge more frequently and almost
in identical heights while the second type of events shows a
wide variability in amplitude and interevent intervals. For a
demonstration of both the events, besides drawing bifurcation
diagrams of the system by varying the system parameter, we
analytically derived a critical manifold of the system and lo-
cated the regions of instabilities in phase space of the system.
We found a critical value of the control parameter ε, where a
sudden expansion of the chaotic attractor was observed due to
an interior crisis. This interior crisis emerged due to a merging
of PD and PA cascade of bifurcations at a critical point
when the extreme events emerge by a self-induced switch-
ing between small-amplitude oscillations and large-amplitude
events. In fact, a homoclinic chaos was expected, in such a
situation, with a local instability of the saddle focus of the
slow-fast system along with a global stability of the trajectory
when large identical spiking events were usually seen alter-
nately with randomly varying number of small oscillations.
However, an additional instability exists in phase space of the
system in the form of a channellike structure that prevents the
global stability of the trajectory leading to large variation in
amplitude and return time of the large spiking events. This
variation in amplitude depends on the volume of this channel.
For a relatively narrow channel, a trajectory while spirally
moving out of a saddle focus of the system, spent a longer
period of time inside the channel and finally made a large
global excursion to form an extreme event. The reinjected
trajectories or the repeat global excursions were no more
stable and irregular leading to a large variation of amplitude
and return time of events. For a wider channel, a trajectory
easily passed through it without spending much time inside
it and hence the reinjected trajectories in the repeat global
excursion were more stable to make almost identical height
and more frequent chaotic MMO-like typical El Niño events
as reported earlier. We classify the large spiking events as
extreme events, which are larger than an estimated threshold
defined by a mean-excess function.

PDF of event heights showed a multimodal distribution
which tends to be bimodal with an increase in the system
parameter ε. For characterization of the occurrence of large
events, PDF of interevent intervals has been fitted by Weibull,
Gamma, and Log-normal distributions and out of the three, the
Log-normal distribution is best fitted. A dependence nature
of the interevent intervals is obtained from ACF plot that
illustrates possible implication of the predictability of (re-

sulting) extreme events. We have discussed the predictability
of extreme events, first using ARIMA models, and then in
more details with box-plot analysis. We show that the ARIMA
models can predict the events with a standard error of the order
of 104. We then indulge in in-depth analysis via box-plot.
For our predictability purpose, we categorize each events in
two different classes based on their emergence. One class of
events takes much shorter time to occur, which originate via
spiraling out from the saddle set and from a knowledge of
such events and their occurrence, their return time is predicted
with a good accuracy; the second class of events on an average
takes much longer time and they originate via bounded chaos
where they spend more time before a large event. Our box-plot
analysis reveals, knowing that such events occur, predictabil-
ity is found less accurate than the former one, because of the
duration of the time spent in bounded chaotic motion. The
slow-fast ratio parameter of the system plays a significant role
in the onset of extreme events. While real data are available
on chaotic MMO-like decadal emergence of extreme events,
we are yet to find a real data set to verify the existence of our
classified extreme events. However, we explain how and when
two events, El Niño events and extreme events may emerge
in the low-dimensional slow-fast climate model against a
system parameter variation, and explained the phenomena
using a common dynamical mechanism, which has so far been
missing. Furthermore, we tried to address the question of the
predictability of extreme events.
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APPENDIX A

We make a linear stability analysis of the equilibrium
points of the system (7), which has one axial equilibrium point
(0, Tr, Tr ) and one interior equilibrium point (h∗

1, T ∗
1 , T ∗

2 ). The
stability of the axial equilibrium (0, Tr, Tr ) is obtained from
the Jacobian matrix J of the 3D system (7),

J =
⎡
⎣−r bLrμ

2β
− bLrμ

2β

0 −α 0
0 −p −α + p

⎤
⎦,

where p = ζμ
Tr−Tr0

2 {1 − tanh H−z0
h∗

}. Its eigenvalues are
−r,−α, p − α. For our choice of system parameters, the value
of p becomes 0.0141, this yields p > α and hence the axial
equilibrium is a saddle point. Now we obtain,

[J + rI]m =
⎡
⎣0 (p − α)m−1 bLrμ

2β
−(p − α)m−1 bLrμ

2β

0 −αm 0
0 −αm − (p − α)m (p − α)m

⎤
⎦,

when the generalized eigenvector of order m corresponding to
the eigenvalue −r is [1 0 0]tr (here tr denotes the transpose of
the matrix), for all m ∈ N. For the other eigenvalue −α, one
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can write

[J + αI]m =
⎡
⎣(α − r)m (α−r)m−pm

α−r−p
bLrμ

2β

(α−r)m−pm

p+r−α

bLrμ
2β

0 0 0
0 −pm pm

⎤
⎦

when its eigenvector is [0 1 1]tr.
The stable subspace of the saddle point (0, Tr, Tr ) is

the eigenspace generated by the generalized eigenvector
{[1 0 0]tr, [0 1 1]tr}, which, in reality, is the T1 = T2 plane.

The T1 = T2 plane is the invariant manifold of the system
since when we have d

dt [T1 − T2] = 0 and, for all the choices of
initial conditions, the system remains confined to this plane.
The tangent space of the T1 = T2 plane is T1 = T2 itself, which
is a stable subspace of system (7). In this stable manifold, our
original 3D system can be reduced to a 2D system,

ḣ1 = −rh1,

Ṫ = −α(T − Tr ),
(A1)

where T1 = T2 = T . It is easy to check that the axial equilib-
rium point (0, Tr, Tr ) is a stable node in this plane. Since our
system is 3D and the stable manifold is 2D, so the unstable
manifold is 1D, which is spanned by the generalized eigen-
vector [ 2(α−r−p)β

bLrμ 0 1] corresponding to the positive eigenvalue
p − α of J .

For T1 �= T2, the interior equilibrium point (h∗
1, T ∗

1 , T ∗
2 )

satisfies

h∗
1 = −bLμ(T ∗

2 − T ∗
1 )

2β
,

α(T ∗
1 − Tr ) + εμ(T ∗

2 − T ∗
1 )2 = 0,

2
[(

α
μ

+ ζTr
) − (ε + ζ )T ∗

2 + εT ∗
1

]
ζ (Tr − Tr0)

= 1 − tanh

[
H + bLμ(T ∗

2 −T ∗
1 )

2β
− z0

]
h∗

. (A2)

Solving Eq. (A2), we derive the interior equilibrium point
with one real and two complex conjugate eigenvalues. A
bifurcation diagram of this interior equilibrium point is plotted
by varying ε in the range [0, 1] as shown in Fig. 12(a). The
interior equilibrium point is stable until ε ≈ 0.0952 when it
transits to a stable limit cycle via Hopf bifurcation (HB).
With increasing ε � 0.0952, the system evolves into a chaotic
state via a period-doubling (PD) cascade. The chaotic state
undergoes an IPD and returns to a stable steady state at ε ≈
0.8776 via inverse HB. The evolution of the steady state with
ε is verified by plotting the real parts of three eigenvalues
of the Jacobian matrix of the system at interior equilibrium
point is shown in Fig. 12(b). It is noticed that, for 0 � ε �
0.0952, real parts of the three eigenvalues λi=1,2,3 remain
negative which signify stability of the interior equilibrium
point in this parameter interval. Above ε = 0.0952, the real
part of the complex conjugate eigenvalues becomes positive
and sustains it up to ε = 0.8776. In this range of ε, the system
becomes oscillatory either in periodic [green (gray) dots] or
in chaotic [blue (black) dots] state [cf. Fig. 12(a)]. At ε =
0.8776, the real part of the complex conjugate eigenvalues
becomes negative and the equilibrium point turns out to be
stable again. So in the interval of ε ∈ (0.0952, 0.8776), the
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30
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FIG. 12. (a) Bifurcation diagram of the interior equilibrium point
(h∗

1, T ∗
1 , T ∗

2 ) with respect to ε by plotting the maxima of T2. (b) Vari-
ation of the real parts of the eigenvalues for the interior equilibrium
point by changing ε. PD, period doubling; HB, Hopf bifurcation;
IPD, inverse period doubling; LPC, limit point bifurcation of cycles.

interior equilibrium point is a saddle focus with a negative real
eigenvalue and complex conjugate eigenvalues with positive
real parts. The complex dynamics of the system evolves
around this equilibrium point and changes with respect to ε

values, which is our main focus of study and described in the
Sec. IV, in detail.

The stable manifold, T1 = T2, plane (gray) is drawn in
Fig. 13(a) on which the saddle point (0,29.5,29.5) (black
circle) lies. For all initial conditions from the left side of
this plane, any trajectory of the system goes unbounded
along the unstable manifold of the saddle point (0,29.5,29.5).
For initial conditions from the right side of this plane, the
trajectories of the system converge to the chaotic attractor
that is originated around the saddle focus (h∗

1, T ∗
1 , T ∗

2 ), which
lies not far away from the T1 = T2 plane. Some exemplary
trajectories are shown in different colors for various choice of
initial conditions. The trajectories move toward the attractor
along the stable manifold (eigendirection corresponding to
the negative real eigenvalue) of the saddle focus, but spirally
moves away as repelled by the unstable manifold (correspond-
ing to the complex conjugate eigenvalues with positive real
parts) of the saddle focus. This is an ideal situation for the
origin of homoclinic chaos, when the trajectory travels a close
vicinity of the saddle focus along the stable eigendirection,
but strongly repelled and spiral out along the unstable plane of
the saddle focus and makes large excursions on the same path
repeatedly and return to another close vicinity of the saddle fo-
cus. Instead, the trajectory of ENSO system is locally unstable
in the close vicinity of the saddle focus as usual, but becomes
globally unstable, too. As a result, the global trajectory is
not stable, but traces different paths as shown in Fig. 13(a)
that creates variation in the amplitude of large spiking events
and the interspike intervals, which we explain in the Sec. IV.
The right side of the plane T1 = T2 is the basin of attraction
of those events. Fig. 13(b) is a 2D projection of the vector
field, which clearly enunciates that all the initial conditions
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FIG. 13. (a) Trajectories of the chaotic attractor (blue line) in 3D
plane. Trajectories for different initial conditions are represented by
different colors. The diagonal T1 = T2 plane (brown) denotes a stable
manifold of the axial equilibrium point (0,29.5,29.5) (black circle).
(b) Two-dimensional vector field at h1 = 0 plane where black line
(in Z shape) represents the projection of the critical manifold on this
plane. Parameter value: ε = 0.0985.

from the lower-half of the T1 = T2 line have possibility to
originate extreme events. For other initial conditions from the
upper half, i.e., T2 > T1, the system goes unbound along the
unstable manifold of the saddle point. In reality, T2 > T1 is
also impossible situation. In this way, the equilibrium point
(0, Tr, Tr ) also plays a significant role to determine the basin
of attraction of the extreme events.

APPENDIX B

Here, we have described three PDFs. PDF of the Weibull
distribution is

P(r) = k

θ

( r

θ

)k−1
e−( r

θ
)k
, r ∈ [0,∞). (B1)

FIG. 14. Schematic diagram of a box plot: A blue box is drawn
from the first quartile (Q1) to the third quartile (Q3). Red horizontal
straight line is traced at the median of the data set. Two black dashed
vertical lines are drawn respectively from lower adjacent to Q1 and
Q3 to upper adjacent. Red (+) markers denote the outlier events,
which are least predictable.

PDF of the Gamma distribution is

P(r) = 1

�(k)θ k
rk−1e− r

θ , r ∈ (0,∞). (B2)

PDF of the Log-normal distribution is

P(r) = 1√
2πrσ

exp

[−(log r − μ)2

2σ 2

]
, r ∈ (0,∞). (B3)

Here k(> 0) and θ (> 0) are shape and scale parameters for
the first two distributions [(B1) and (B2)], μ and σ (> 0)
are mean and standard deviation for the last one (B3). In
this context, r represents interevent interval. We estimate the
parameters which we have recorded are given in the Table I.

APPENDIX C: BOX-PLOT ANALYSIS

A box plot [37] is a standard contrivance to display the dis-
tribution of a given data. It basically produces a five measures
summary, namely lower adjacent, first quartile Q1, second
quartile (median), third quartile Q3, and upper adjacent. A
box plot gives more information than the measures of central
tendency. For information on variability or dispersion of IEI,
it gives an impression about the spread of IEI values. Here
median is the second quartile, which is the middle-most value
of the data set. The first quartile Q1, is the middle point
between the median and the smallest number of the whole

TABLE I.

ε = 0.0985 ε = 0.0988

Weibull distributon θ = 23463.1 θ = 15815.20
k = 1.49827 k = 3.5059

Gamma distributon θ = 7322.98 θ = 706.46
k = 2.8527 k = 20.4212

Log-normal distributon μ = 9.7617 μ = 9.5522
σ = 0.5487 σ = 0.2122
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TABLE II.

Box plot Lower adjacent Q1 Median Q3 Upper adjacent Outliers

Fig. 9(b) 12604.38 13291.14 22822.3 46548.3 96434.04 6.55%

Fig. 10(a) 12604.38 12615.708 12626.15 12641.57 12659.5 0.0
13267.38 13276.74 13284.7 13299.73 13322.18 0.0

Fig. 10(b) 14980.68 23718.93 36832.34 62234.63 120008.18 5.05%

Fig. 10(c) 8345.9 11303.59 12609.16 13275.38 13322.18 5.74%

Fig. 10(d) 8955.99 16956.65 22821.38 37095.83 67282.32 5.64%

data set. While the third quartile Q3 is the middle point
between the median and the highest value of the whole data
set. IQR is defined as the difference of Q3 and Q1. The
lower adjacent and upper adjacent are not always the smallest
and largest values in the data set, respectively. Here, lower
adjacent is the smallest value of the data set or (Q1 − 1.5 ×
IQR), whichever is the maximum. While upper adjacent is
the minimum of the maximum value of the data set and
(Q3 + 1.5 × IQR). The events from lower adjacent to upper
adjacent are predictable events, and the range of upper adja-
cent to lower adjacent is known as the range of predictable
events. Although, we use large size of data set as available
from our simulations and as necessary for such kind of
box-analysis.

A schematic diagram of the box plot is shown in Fig. 14.
The five measures approximately divide the entire data set
into four sections, each one approximately contains 25% of
the data sets. Beyond the upper adjacent and lower adjacent
values, events are outliers, which are seemingly unpredictable
and much occurred rarely. The outliers (red plus) tell us which
events are out of our predictable range. The probability of
occurrence of an event within the interval [lower adjacent,
Q1] is 0.25. While the probability of an event that lies within
the intervals [lower adjacent, median] and [lower adjacent,
Q3] are 0.5 and 0.75, respectively. It is almost sure to lie the
predictable events within the interval [lower adjacent, upper
adjacent]. The five measures of box plot corresponding to the
Fig. 9(b) and Figs. 10(a)–10(d) are given in the Table II.

[1] H. A. Dijkstra, Nonlinear Physical Oceanography: A Dynami-
cal Systems Approach to the Large Scale Ocean Circulation and
El Niño (Springer Science, New York, 2005).

[2] E. S. Sarachik and M. A. Cane, The El Niño-Southern Oscil-
lation Phenomenon (Cambridge University Press, Cambridge,
UK, 2010).

[3] S.-I. An and F.-F. Jin, J. Clim. 17, 2399 (2004).
[4] A. Timmermann and F.-F. Jin, Geophys. Res. Lett. 29, 3-1

(2002).
[5] A. S. Sharma, A. Bunde, V. P. Dimri, and D. N. Baker, Ex-

treme Events and Natural Hazards: The Complexity Perspective
(American Geophysical Union, Washington, DC, 2013).

[6] O. Rojas, Y. Li, and R. Cumani, Understanding the Drought
Impact of El Niño on the Global Agricultural Areas (FAO, Rome,
Italy, 2015).

[7] A. Timmermann, J. Oberhuber, A. Bacher, M. Esch, M. Latif,
and E. Roeckner, Nature 398, 694 (1999).

[8] F.-F. Jin, J. Atmos. Sci. 54, 811 (1997); 54, 830 (1997).
[9] A. Timmermann, F. F. Jin, and J. Abshagen, J. Atmos. Sci. 60,

152 (2003).
[10] S. E. Zebiak and M. A. Cane, Mon. Wea. Rev. 115, 2262 (1987).
[11] J. Bjerknes, Mon. Wea. Rev. 97, 163 (1969).
[12] A. Roberts, J. Guckenheimer, E. Widiasih, A. Timmermann,

and C. K. R. T. Jones, J. Atmos. Sci. 73, 1755 (2016).
[13] J. Guckenheimer, A. Timmermann, H. Dijkstra, and A. Roberts,

Dyn. Stat. Clim. Sys. 2, dzx004 (2017).
[14] M. Ghil et al., Nonlin. Process. Geophys. 18, 295 (2011).
[15] M. Latif, D. Anderson, T. Barnett, M. Cane, R. Kleeman, A.

Leetmaa, J. O’Brien, A. Rosati, and E. Schneider, J. Geophys.
Res. 103, 375 (1998).

[16] G. G. Nobre, S. Muis, T. I. E. Veldkamp, and P. J. Ward, Progr.
Disast. Sci. 2, 100022 (2019).

[17] M. Ghil and N. Jiang, Geophys. Res. Lett. 25, 171 (1998).
[18] M. Ghil, M. R. Allen, M. D. Dettinger, K. Ide, D. Kondrashov,

M. E. Mann, A. W. Robertson, A. Saunders, Y. Tian, F. Varadi,
and P. Yiou, Rev. Geophys. 40, 1003 (2002).

[19] A. N. Pisarchik, R. Jaimes-Reátegui, R. Sevilla-Escoboza, G.
Huerta-Cuellar, and M. Taki, Phys. Rev. Lett. 107, 274101
(2011).

[20] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller,
Jose R. Rios Leite, and J. R. Tredicce, Phys. Rev. Lett. 107,
053901 (2011).

[21] H. L. D. de S. Cavalcante, M. Oriá, D. Sornette, E. Ott, and D. J.
Gauthier, Phys. Rev. Lett. 111, 198701 (2013).

[22] V. Lucarini et al., Extremes and Recurrence in Dynamical
Systems (John Wiley & Sons, New York, 2016).

[23] Y. S. Fan and T. R. Chay, Phys. Rev. E 51, 1012 (1995).
[24] R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, Phys.

Rev. E 90, 022917 (2014).
[25] C. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181

(1983).
[26] C. Grebogi, E. Ott, F. Romeiras, and J. A. Yorke, Phys. Rev. A

36, 5365 (1987).
[27] A. Ray, S. Rakshit, D. Ghosh, and S. K. Dana, Chaos 29,

043131 (2019).
[28] S. Leo Kingston, K. Thamilmaran, P. Pal, U. Feudel, and S. K.

Dana, Phys. Rev. E 96, 052204 (2017).
[29] N. Akhmediev et al., J. Opts. 18, 063001 (2016).
[30] J. A. Reinoso, J. Zamora-Munt, and C. Masoller, Phys. Rev. E

87, 062913 (2013).

062210-16

https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2
https://doi.org/10.1029/2001GL013369
https://doi.org/10.1038/19505
https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
https://doi.org/10.1175/JAS-D-15-0191.1
https://doi.org/10.1093/climsys/dzx004
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.1029/97JC03413
https://doi.org/10.1016/j.pdisas.2019.100022
https://doi.org/10.1029/97GL03635
https://doi.org/10.1029/2000RG000092
https://doi.org/10.1103/PhysRevLett.107.274101
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1103/PhysRevLett.111.198701
https://doi.org/10.1103/PhysRevE.51.1012
https://doi.org/10.1103/PhysRevE.90.022917
https://doi.org/10.1016/0167-2789(83)90126-4
https://doi.org/10.1103/PhysRevA.36.5365
https://doi.org/10.1063/1.5092741
https://doi.org/10.1103/PhysRevE.96.052204
https://doi.org/10.1088/2040-8978/18/6/063001
https://doi.org/10.1103/PhysRevE.87.062913


UNDERSTANDING THE ORIGIN OF EXTREME EVENTS IN … PHYSICAL REVIEW E 101, 062210 (2020)

[31] J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici,
Jose R. Rios Leite, C. Masoller, and J. R. Tredicce, Phys. Rev.
A 87, 035802 (2013).

[32] S. Coles, An Introduction to Statistical Modeling of Extreme
Values (Springer, Berlin, 2001).

[33] G. F. de Oliveira, Jr., O. Di Lorenzo, T. P. de Silans, M.
Chevrollier, M. Oriá, and Hugo L. D. de Souza Cavalcante,
Phys. Rev. E 93, 062209 (2016).

[34] A. Mishra, S. Saha, M. Vigneshwaran, P. Pal, T. Kapitaniak, and
S. K. Dana, Phys. Rev. E 97, 062311 (2018).

[35] A. Ray, A. Mishra, D. Ghosh, T. Kapitaniak, S. K. Dana, and
C. Hens, Phys. Rev. E 101, 032209 (2020).

[36] C. Chatfield, Time-series Forecasting (CRC Press, Boca Raton,
FL, 2000).

[37] J. W. Tukey, Exploratory Data Analysis (Addison-Wesley,
London, 1977); F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä,
and L. E. Meester, A Modern Introduction to Probability and
Statistics: Understanding Why and How (Springer, London,
2005).

[38] J. Guckenheimer, SIAM J. Appl. Dyn. Syst. 7, 1355
(2008).

[39] S. K. Dana, S. Chakraborty, and G. Ananthakrishna, Pramana
64, 443 (2005); S. Chakraborty and S. K. Dana, Chaos 20,
023107 (2010).

[40] N. Fenichel, J. Diff. Eqns. 31, 53 (1979).
[41] M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn,

H. M. Osinga, and M. Wechselberger, SIAM Rev. 54, 211
(2012).

[42] G. Ansmann, R. Karnatak, K. Lehnertz, and U. Feudel, Phys.
Rev. E 88, 052911 (2013).

[43] G. Ansmann, K. Lehnertz, and U. Feudel, Phys. Rev. X 6,
011030 (2016).

[44] B. Das and S. Ghosh, Extremes 19, 325 (2016).
[45] S. Nag Chowdhury, S. Majhi, M. Ozer, D. Ghosh, and M. Perc,

New J. Phys. 21, 073048 (2019).
[46] S. R. Massel, Ocean Surface Waves: Their Physics and Predic-

tion (World Acientific, Singapore, 1996).
[47] T. Sapsis, Phil. Trans. R. Soc. A 376, 20170133 (2018).
[48] J. D. Hamilton, Time Series Analysis (Princeton University

Press, Princeton, NJ, 1994).
[49] P. J. Brockwell and R. A. Davis, Time Series: Theory and

Methods (Springer, Berlin, 1991).
[50] J. W. Pratt and J. D. Gibbons, Concepts of Nonparametric The-

ory, Springer Series in Statistics (Springer, New York, 1981).
[51] K. V. Mitov and E. Omey, Renewal Process (Springer, Berlin,

2014).
[52] S. Albeverio, V. Jentsch, and H. Kantz (eds.), Extreme Events in

Nature and Society (Springer, Heidelberg, 2006).

062210-17

https://doi.org/10.1103/PhysRevA.87.035802
https://doi.org/10.1103/PhysRevE.93.062209
https://doi.org/10.1103/PhysRevE.97.062311
https://doi.org/10.1103/PhysRevE.101.032209
https://doi.org/10.1137/080718528
https://doi.org/10.1007/BF02704570
https://doi.org/10.1063/1.3378112
https://doi.org/10.1016/0022-0396(79)90152-9
https://doi.org/10.1137/100791233
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1007/s10687-015-0238-9
https://doi.org/10.1088/1367-2630/ab2a1f
https://doi.org/10.1098/rsta.2017.0133

