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Deep learning to discover and predict dynamics on an inertial manifold
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A data-driven framework is developed to represent chaotic dynamics on an inertial manifold (IM) and applied
to solutions of the Kuramoto-Sivashinsky equation. A hybrid method combining linear and nonlinear (neural-
network) dimension reduction transforms between coordinates in the full state space and on the IM. Additional
neural networks predict time evolution on the IM. The formalism accounts for translation invariance and energy
conservation, and substantially outperforms linear dimension reduction, reproducing very well key dynamic and
statistical features of the attractor.
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I. INTRODUCTION

Partial differential equations are formally infinite-
dimensional, but the presence of dissipation (through
viscosity or diffusion, for example) leads to the expectation
that the long-time dynamics collapse onto a finite-dimensional
invariant manifold [1]. Specifically, for some systems,
including the Kuramoto-Sivashinsky equation (KSE) that
we consider here, it can be proven that all initial conditions
exponentially approach an inertial manifold M of finite
dimension dM [2], on which the long time dynamics evolve.
For states on the IM, v ∈ M, one can in principle find a
coordinate transformation h = χ (v) to coordinates h on the
inertial manifold, a change of coordinates v = χ̌ (h) back to
the full space, and a dynamical system h(t + τ ) = F (h(t )) on
M. [Alternately, one could represent the dynamical system
in differential form dh/dt = G(h).] This dynamical system is
an exact reduced-order model (ROM). Such a model can be
practically useful, for computationally efficient simulations of
a complex process, and may also be fundamentally important,
since the coordinates h represent the key dynamical variables
for the phenomenon of interest.

In the present work, we use “data” in the form of chaotic
solutions to the KSE with periodic boundary conditions, to
find neural-network (NN) representations of the functions
χ, χ̌ , and F . Many prior studies of inertial manifolds, and
approximations thereof, take the inertial manifold to be the
graph of a function � such that M := {v+ + �(v+)}, where
v+ = Pv is a projection onto the dM leading eigenfunctions
of the linear operator for the PDE [3–5]. The present work
is not subject to this restriction. Furthermore, our formalism
explicitly accounts for the important physical features of
translation invariance and energy conservation found in this
system, and reproduces, very well, with a minimal number of
degrees of freedom, key dynamic, and statistical features of
the attractor.

A standard machine learning method for nonlinear di-
mension reduction is the undercomplete autoencoder [6,7].
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This is a pair of neural networks, one mapping from a
high-dimensional space to a low-dimensional one, and the
second doing the reverse. The networks take data u as input,
compute an output ũ, and are trained to minimize a loss
function L = ||u − ũ||2 summed over a batch of data vectors
u. Autoencoders have been used for nonlinear dimension
reduction in many applications [6], including turbulent flow
fields [8,9]. For dynamical systems, autoencoders have been
used to explicitly yield coordinate transformations on which
the dynamics are linear [10,11] (e.g., to determine eigenmodes
of the Koopman operator) or have a sparse representation [12].
Gonzalez et al. [13] have combined autoencoders with non-
linear time-evolution models for reconstruction of dynamics
of isotropic turbulence and lid-driven cavity flow. Lee and
Carlberg [14] illustrate nonlinear model reduction via NNs
and an application to the dynamics of Burgers’ equation.
The physical interpretation of NN representations of physical
phenomena has been explored in Iten et al. [15].

Other studies have focused on developing NNs for evolving
equations with chaotic dynamics without nonlinear dimension
reduction. An early example of this is González-García et al.
[16], who used a NN to predict the right-hand side of the
discretized KSE. Specifically, they input the full state of the
KSE and its derivatives into a NN to predict the parameters
of a Runge-Kutta method for time integration. More recently,
larger NN have been used for prediction. For example, Pathak
et al. [17] showed that a reservoir network trained with time-
evolution “data” from the KSE was capable of making excel-
lent predictions of future time evolution. No explicit model
reduction was performed. In Ref. [18], proper orthogonal
decomposition (POD) and a spectral version (SPOD), both
linear dimension reduction techniques, were used to reduce
the dimension of fluid flow data that were then used to train a
NN for time evolution. Vlachas et al. [19] combined various
linear dimension reduction approaches with a long-short term
memory NN and mean stochastic modeling to keep trajecto-
ries on the attractor. Similarly, in Ref. [20] a long-short term
memory NN was used in a nonlinear Galerkin approach to
estimate the nonlinearity, a task often achieved by assuming
lower modes evolve slowly, and iteratively solving for the
higher modes [5,21–24].
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Although methods exist for modeling dynamics on an IM,
estimating dM remains a difficult problem. In Ref. [25], an au-
toencoder is used to estimate dM from data for the dynamics
of the complex Ginzburg-Landau (CGL) equation; however,
the dynamics on M are not modeled. A dynamical approach
to determining dM was taken in Ref. [26], where the covariant
Lyapunov vectors of trajectories the KSE and the CGL were
found to decompose into “physical” and “isolated” modes.
Physical modes are entangled, in the sense that tangencies
between them result in perturbations of a single mode ef-
fecting other modes, whereas isolated modes lack tangencies
with physical or isolated modes. This suggests the number of
physical modes corresponds to dM. Expanding on that work,
Ding et al. [27] found the dimension for the KSE in similar
ways using Floquet vectors from an ensemble of unstable
periodic orbits that are close to the chaotic attractor. The
present work combines data-driven dimension reduction and
time evolution using an efficient autoencoder structure that
incorporates translation symmetry and energy conservation.

II. FORMULATION

Our testbed for this approach is the KSE,

∂tv = −v∂xv − ∂xxv − ∂xxxxv, (1)

with periodic boundary conditions in the domain x ∈ [0, L].
We select L = 22, 44, and 66 because these domain sizes yield
increasingly chaotic dynamics, and dM is known at L = 22
[27]. Solutions to this equation are only unique to within
a translation that we will represent with a phase variable
φ ∈ R. This equation has an energy conservation principle:
when time-averaged, the energy production rate P = 〈∂xv∂xv〉
balances the dissipation rate ε = 〈∂xxv∂xxv〉. Here 〈·〉 rep-
resents averaging over x. These properties are incorporated
into the dimension reduction formulation as detailed below.
Trajectories of (1) were generated using a Fourier spectral
method in space and a fourth-order time integration scheme
[28] with the code available from Cvitanović et al. [29]. The
solution v(x) is represented on a uniformly spaced mesh of
d = 64 points; we denote the solution on this mesh as u ∈ Rd ,
so d is the dimension of the full state space in the present
system.

III. METHODOLOGY AND RESULTS

Figure 1 illustrates our framework for finding the inertial
manifold and the dynamical system on it. The first step of
the process exploits translation invariance: The solution u at
every time instant is transformed into a pattern û ∈ Rd and
a phase φ using an approach called the “method of slices”
[30,31]. Factoring out the phase leads to a more compact
representation of the data by eliminating the need of training
redundant weights for translated signals (e.g., the representa-
tion will not need to separately represent sin 2πx/L and all
of its translations). Furthermore, such “symmetry reduction”
methods have been found to help elucidate the state space
structure in fluid mechanics problems such as pipe flow [32].

The method of slices involves taking the discrete Fourier
transform F of the data in x to yield a(t ) = F{u(t )}. With
the data in Fourier space, the phase of the first Fourier mode

FIG. 1. Block diagram for the hybrid autoencoder and time-
evolution scheme. NNs are pink (light gray).

a1(t ) is found using φ(t ) = atan2{Im[a1(t )], Re[a1(t )]}. Now
we can construct a phase-aligned solution û(t ) so that its
first Fourier mode is a pure cosine: û(t ) = F−1{a(t )e−ikφ(t )}.
Storage of φ for each time instant allows conversion of û back
to u [i.e., u(t ) contains both φ(t ) and û(t )]. Times when a1(t )
approaches zero require special treatment, as was recognized
by Budanur et al. [30]. We use the solution they proposed,
which is to stretch time according to 	t̂ = 	t/|a1(t )|. The
rescaled time t̂ is called “in-slice” time. Given any u(t ) we
can always find û(t ), φ(t ) and a1(t ), so it is always possible to
move back and forth between the original and phase-aligned
solutions and between real and in-slice time. The data used
for training the NNs were ∼4–5 × 105 solutions u separated
by 	t̂ = 0.2 “in-slice” time units, which corresponds to 	t ≈
0.023 time units on average for L = 22. Data were gathered
after the dynamics had settled onto the attractor.

Given the phase-aligned pattern data û, the first machine
learning task is to find the manifold M, of dimension dM,
on which these data live, or equivalently the coordinate tran-
formations h = χ (û) and û = χ̌ (h). Because the phase of any
given data vector u is arbitrary, the phase information is not
needed for this step. The coordinates h(t ) and the phase φ(t )
completely describe the state of the system so the dimension
of the attractor in the unreduced state space will be dM + 1.
(For further discussion of invariant manifolds in translation-
symmetric systems, see Ref. [31].) Indeed, phase alignment
allows more efficient representation of the data, because phase
information need not be encoded—it is captured separately as
noted above.

To find χ and χ̌ , we use a variant of a standard undercom-
plete autoencoder, shown as the “τ = 0” branch of architec-
ture shown in Fig. 1. This variant uses an NN to represent
the difference between the data and their projection onto the
basis arising from principal components analysis (PCA) of
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the data set [33]. PCA is widely used for linear dimension
reduction because it yields the projection of dimension dh that
minimizes the mean-squared deviation from the original data.
Let U be a square orthogonal matrix whose columns are the
PCA basis vectors, and PdhU

T and Pd−dhU
T the projection

onto the first dh and last d − dh such vectors, respectively. The
encoding step learns the function E (U T û(t )) such that

E (U T û(t )) = h(t ) − PdhU
T û(t ). (2)

This structure is shown inside the blue (upper) box in Fig. 1. It
must be emphasized that there is no approximation in choos-
ing this representation. Furthermore, U need not come from
PCA; for example, U could be the discrete Fourier transform
operator or simply the identity, the latter corresponding to
using the solution values on the mesh points.

The decoding step takes the data h(t ) ∈ Rdh in the inertial
manifold coordinates and transforms them back to the full
space, as shown in the yellow (lower) box in Fig. 1. Again
one can think of learning a difference: The decoder learns a
function D(h(t )) such that

D(h(t )) = U T ˜̂u(t ) −
[

h(t )
0

]
. (3)

Taking E (U T û(t )) = 0 recovers the original IM formulation
but precludes the representation of curved manifolds that
do not have a one-to-one mapping from a linear projection.
An example of such a manifold is the Archimedean spiral,
whose Cartesian representation is (x, y) = (φ cos φ, φ sin φ).
The autoencoder architecture used here is able to represent
this manifold with dh = 1.

Finally, inserting Eq. (2) into Eq. (3), solving
for ˜̂u(t ), and noting that this can be written ˜̂u(t ) =
U [PdhU

T û(t ), Pd−dhU
T û(t )]T , shows that the exact solution

satisfies E (U T û(t )) + Ddh ((h(t )) = 0, where Ddh contains
the first dh components of D. This constraint can be satisfied
approximately by adding a penalty term to the autoencoder
loss function so it becomes

L = ||û(t ) − ˜̂u(t )||2 + α||E (û(t )) + Ddh (h(t ))||2. (4)

With this structure, we can in principle achieve an exact rep-
resentation (within the approximation error of the functions E
and D) of data on a manifold of dimension dM for all dh �
dM. In general, the functions E and D, or more generally
χ and χ̆ , need not come from NNs. Other approaches to
nonlinear dimension reduction and function approximation
(e.g., tSNE, diffusion maps, kernel regression [34,35]) might
be useful as well. The overall structure of our approach would
be the same.

Autoencoders of the above structure, which we denote
hybrid neural networks (HNN) were trained (i.e., the functions
E and D were determined) using the phase-aligned data. At a
given value of dh, 20 HNNs (each initialized with different
initial guesses for the weights), with α = 1 were trained for
1000 epochs with an Adam optimizer using Keras [36]. This
process was repeated for a range of dh. Results are reported
for the model with the lowest MSE at each value of dh.

For comparison we trained three variations on the HNN
to evaluate the effect of the linear projection (Pdh ), the PCA
change of basis (U T ), and phase alignment steps. In the

TABLE I. Architectures of the NNs. “Shape” indicates the di-
mension of each layer, and “activation” the corresponding activation
functions (S is the sigmoid activation) [7]. Decoder1 refers to do-
mains L = 22 and 44. Decoder2 refers to L = 66.

Function Shape Activation

Encoder E d : 500 : dh S:tanh
Decoder1 D dh : 500 : d S:linear
Decoder2 D dh : 500 : 500 : d S:linear
Evolution Fh dh : 200 : 200 : dh S:S:linear
Evolution Fφ dh : 500 : 50 : 500 : 1 S:S:S:linear

first variation, denoted PCANN, we built a NN without the
“Trunc” and “Expand” blocks in Fig. 1, which corresponds
to using the PCA basis, but using E and D to learn the
whole nonlinear coordinate tranformation rather than just the
difference from PCA. The next variation builds upon the
previous and removes the “PCA” block in Fig. 1, which leaves
it in the original basis, so we denote it ONN. Then, the last
variation is to remove the phase shift (No Shift). Both the
PCANN and the ONN are trained with the loss L = ||û − ˜̂u||2,
while the unsifted variation is trained with L = ||u − ũ||2. Hy-
perparameter tuning of the NN architectures was performed
manually by varying width, depth, and activation functions.
All of these variations used the same architecture, shown in
Table I, for functions E and D.

Figure 2 shows the mean-squared error (MSE) on a sep-
arate test data set for the NN methods described above and
PCA for L = 22. At low dh, the HNN, PCANN, and ONN
all perform similarly, and in all three cases the MSE drops
significantly at dh = 7. For the case of no shifting, the drop
appears at dh = 8 because the continuous translation sym-
metry has not been factored out. All NNs perform orders of
magnitude better than PCA. On continuing to increase dh,
the MSE for the HNN continues to improve while the others
stagnate, because the HNN only needs correct coefficients of
the less relevant higher PCA modes, while the other methods
modify all of them. Notably, the abrupt drop in MSE at dh = 7
coincides with the true dimension dM of the attractor as found
in Ref. [27]. The remaining error for dh � 7 for the HNN is
small, at O(10−7), which follows from the fact that at this

FIG. 2. MSE of test data for various dh for L = 22. The legend
is described in the text.
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FIG. 3. P vs ε state-space projection for the data at L = 22, and
HNN ROM prediction with dh = 7.

dimension an exact coordinate transformation exists, so the
remaining error is approximation error.

Having in hand the coordinate representation for points on
M, we now use NNs to learn the dynamical system (“exact”
reduced-order model) on the manifold, corresponding to the
“τ �= 0” branch in Fig. 1. This approach will be denoted
“HNN ROM.” We construct discrete time mappings

h(t + τ̂ ) = Fh(h(t )), 	φ ≡ φ(t + τ̂ ) − φ(t ) = Fφ (h(t )),
(5)

where Fh and Fφ have the architectures shown in Table I.
We use the symbol τ̂ instead of τ to emphasize that the
discrete time mappings use in-slice time. We chose τ̂ = 2,
which reproduces trajectories well, by allowing for the signal
to change an appreciable amount, but not too much, in one
time interval. Setting τ̂ much smaller or larger results in poor
model predictions.

Recall that the energy balance for the KSE requires that
the production and dissipation rates P and ε must balance
on average. We incorporate this fact in the training of the
dynamic models as follows. We compute the projection of the
data onto P and ε, as shown in Fig. 3. The relation between
P and ε is narrowly distributed around the line P = ε, with
a sharp boundary, and we can find maximum and minimum
dissipation rates εmax and εmin associated with a given value
of P . We then add a penalty for crossing this boundary to the
loss function LF for Fh and Fφ , as follows:

LF = ||u(t + τ̂ ) − ũ(t + τ̂ )||2
+β max(max(0, ε̃−εmax(P̃ )), εmin(P̃ )−ε̃), (6)

where P̃ and ε̃ are calculated from ũ. We selected β = 0.1
so the second term contributed the same order of error to the
loss as the first term. For each dh, the best dimension reduction
model was chosen, and 50 time-evolution models were trained
for 200 epochs. Results are reported for the best models, as
determined at a given dh based on producing low errors in
both short and long-time statistics.

To illustrate the performance of this approach, which we
denote HNN ROM, on predicting dynamics, we first present
short-time tracking results and then long-time statistics. All
trajectories are evolved from a given initial condition u(0) on
the manifold, from which we find û(0) and φ(0) by phase
alignment and then set h(0) = χ (û(0)). This initial condition

FIG. 4. Time-correlation function for the data at L = 22, and
HNN ROM prediction with dh = 7.

in the manifold coordinates is evolved forward in in-slice time
with Eq. (5). For validating the performance of the short-
time tracking we need a timescale for comparison. Here we
consider the integral timescale TI = ∫ ∞

0 C(t ) dt ≈ 19, where

C(t ) = 〈u(0)u(t )〉
〈u(0)2〉

is the temporal autocorrelation, and the Lyapunov time TL ≈
21 [27]. Figure 4 shows the temporal autocorrelation of the
data and the HNN ROM at dh = dM are in good agreement
for t � 30. Likewise, typical trajectories show close tracking

(a)

(b)

(c)

(d)

FIG. 5. [(a) and (c)] Trajectories [color contours of u(x, t ) with
solid lines at u = 1 and dashed lines at u = −1] evolving from
different initial conditions according to the HNN ROM; L = 22.
[(b) and (d)] True trajectories corresponding to (a) and (c).
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FIG. 6. Spatial correlation function for the data and HNN ROM
prediction with dh = 7, L = 22.

for 30 or more real time units. This comparison appears in
Fig. 5, where Figs. 5(a) and 5(c) show the evolution of two
initial conditions of test data using the dynamical system
found with dh = dM = 7, and the “exact” results are shown
in Figs. 5(b) and 5(d) obtained from solving the KSE. These
results indicate predictive capability for timescales longer
than TI or TL, and thus represent very good performance for
prediction of chaotic dynamics.

Next, we evaluate the ability of our dynamic model to
reproduce key long-time statistical properties of the attractor,

focusing on the quantities ux and uxx that determine the
energy production and dissipation in the KSE. We examine
predictions both for dh = dM and for values of dh either larger
or smaller than dM. The trajectories considered here cover
approximately 9 × 103 real time units.

Figures 6 and 3, respectively, show the spatial autocorrela-
tion function (averaged over space and time) and the energy
balance (P vs ε) of the HNN ROM for dh = dM and for
data, illustrating close agreement of these quantities. These
statistics show that long-time trajectories do not diverge from
the attractor and that the HNN ROM prediction stays within
the envelope of the energy balance, which was the intent of
the penalty in the loss for the time-evolution training, Eq. (6).
These predictions deteriorate when dh < dM.

A more detailed representation of the attractor is the joint
probability density function (PDF) of the pointwise values
of ux and uxx. Figure 7(a) shows this PDF, on a log scale,
as determined from the data. At dh = dM = 7, the HNN
ROM prediction, Fig. 7(b), is very close to the exact PDF. To
highlight the effect of the nonlinear autoencoder, we also con-
sider predictions with linear dimension reduction from PCA
(i.e., E = D = 0), and NNs for the dynamics; we denote this
approach PCA ROM. At the same dimension, Fig. 7(d) shows
that the PCA ROM prediction yields much poorer results. Fig-
ure 7(c) shows how the relative L2 difference between the true
PDF and the model predictions varies with dh. For dh = 5, the
predictions are poor for both cases, but for dh � 7, the error is

(a) (b)

(c) (d)

FIG. 7. (a) Joint PDF of data, L = 22, and (b) joint PDF of HNN ROM prediction, both plotted on a logarithmic scale. (c) Relative error
in PDF vs dimension. The PDF from data is denoted f , and that from the model prediction is f̃ .
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(a) (b)

FIG. 8. (a) MSE vs the difference between dh and the predicted dM. (b) Dimension dM + 1 of the unreduced IM for different domain
sizes: “HNN” denotes the current results, “PM” the number of physical modes from Ref. [26], and “PM Fit” a linear fit of the PM curve.

small and nearly unchanging for the HNN ROM case, which
is unsurprising since dM = 7. On the other hand, it takes
dh = 14 for the PCA ROM to yield a comparable model to the
HNN ROM at dh = 7. This result might be expected based on
Whitney’s embedding theorem, which states that any mani-
fold of dimension k can be embedded in R2k [37].

To investigate the generality of this method, we examine
its performance for larger domains, L = 44 and L = 66. For
L = 22 there is one positive Lyapunov exponent [27,38],
whereas the dynamics at L = 44 and L = 66 are more chaotic;
at these values, Edson et al. [38] report four and seven positive
Lyapunov exponents, respectively. Data gathering and NN
training were performed in the same way as for L = 22. Initial

trials for the L = 66 showed poor results, so the capacity of
the decoder was increased, as noted in Table I. Figure 8(a)
shows the MSE on a test data set of HNNs with the lowest
MSE at various dh for L = 44 and 66. The horizontal axis
is centered around the dM of each domain size inferred
from the drop in the MSE. This corresponds to dM = 17
and dM = 27 for L = 44 and L = 66. Increasing dimension
still shows a distinct drop in MSE; however, it becomes less
substantial with increased domain size. The L = 66 autoen-
coder has lower MSE than L = 44 because of the increased
capacity.

The results at these domain sizes suggests that there is a
linear scaling of dM with L. This observation agrees well with

(a) (b) (c)

(d) (e) (f)

FIG. 9. [(a) and (d)] Joint PDF of data for L = 44, 66. [(b), (c), (e), and (f)] Joint PDF of HNN ROM prediction at dM − 1 and dM for
L = 44, 66.
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results of Yang et al. [26] where they show the number of
physical modes (PM) scales linearly with domain size.

Figure 8(b) shows dM + 1 (the dimension in the unreduced
state space) against the domain size for both our results and
their results, along with the extrapolation of their results
to smaller domains. The excellent agreement between these
results provides additional computational evidence that the di-
mension of the IM for the KSE scales linearly with L. Finally,
we show the attractor recreation with the joint PDFs of ux and
uxx. Figure 9(a) and 9(d) show these for L = 44 and L = 66
for trajectories of approximately 8 × 103 and 6 × 103 real
time units, respectively. Model predictions for dh = dM − 1,
Figs. 9(b) and 9(e), and dM degrees of freedom, Figs. 9(c)
and 9(f), are shown for comparison. Unlike with L = 22,
where models with too few dimensions tended to land on
periodic orbits, here, with more degrees of freedom, models
with too few dimensions maintain chaos. However, the PDFs
for dM − 1 are more diffuse, less accurately recreating the
data. In both cases, when the models retain dM dimensions
the joint PDF agrees well with the data, the main discrepancy
being a broader tail of the model PDF, i.e., a higher, but still
very low, probability of large excursions.

IV. CONCLUSION

We have shown here a framework for data-driven “ex-
act” reduction of a dynamical system onto a low dimen-

sional invariant manifold and time evolution on that manifold.
Translation symmetry and energy conservation, two important
features of many systems of interest, are incorporated nat-
urally into the framework. By observing the model reduc-
tion error as a function of dimension, the dimension dM of
the invariant manifold can be determined, and once dM is
known, highly accurate model predictions can be obtained.
In particular, key statistical quantities in a chaotic system can
be well approximated, indicating that the model dynamics
capture the shape of the attractor. In this work, the NNs can
be trained on a single processor in a couple days, and time
evolution over 104 time units takes only minutes. At present,
it is difficult to predict how network size and training time
will scale for more complex problems, especially given that
it is not even known in general how dM scales. Extensions
to systems with higher-dimensional dynamics are underway.
Systematizing this method could provide a straightforward,
data-driven means of approximating the dimension of mani-
folds and constructing reduced order models, a difficult task
for high-dimensional chaotic systems like turbulence. Code
used in this work is available at [39].
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Takeuchi, Phys. Rev. Lett. 117, 024101 (2016).

[28] A. K. Kassam and L. N. Trefethen, SIAM J. Sci. Comput. 26,
1214 (2005).
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