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Physics-enhanced neural networks learn order and chaos
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Artificial neural networks are universal function approximators. They can forecast dynamics, but they may
need impractically many neurons to do so, especially if the dynamics is chaotic. We use neural networks that
incorporate Hamiltonian dynamics to efficiently learn phase space orbits even as nonlinear systems transition
from order to chaos. We demonstrate Hamiltonian neural networks on a widely used dynamics benchmark, the
Hénon-Heiles potential, and on nonperturbative dynamical billiards. We introspect to elucidate the Hamiltonian
neural network forecasting.
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I. INTRODUCTION

Newton wrote, “My brain never hurt more than in my
studies of the moon (and Earth and Sun)” [1]. Unsurprising
sentiment, as the seemingly simple three-body problem is in-
trinsically intractable and practically unpredictable. Nonethe-
less, Hamilton remarkably reimagined Newton’s laws as an
incompressible energy-conserving flow in phase space [2],
highlighting the difference between integrable and noninte-
grable systems [3], and heralding the discovery of determinis-
tic chaos [4,5].

Today, artificial neural networks are popular tools in in-
dustry and academia [6], especially for classification and
regression, and are beginning to elucidate nonlinear dynamics
[7] and fundamental physics [8–10]. Recent neural networks
outperform traditional techniques in symbolic integration [11]
and numerical integration [12] and outperform humans in
strategy games such as chess and Go [13]. But neural net-
works have a blind spot; they do not understand that “Clouds
are not spheres, mountains are not cones, coastlines are not
circles, . . .” [14]. They are unaware of the chaos and strange
attractors of nonlinear dynamics, where exponentially sepa-
rating trajectories bounded by finite energy repeatedly stretch
and fold into complicated self-similar fractals. Their attempts
to learn and predict nonlinear dynamics can be frustrated by
ordered and chaotic orbits coexisting at the same energy for
different initial positions and momenta.

Recent research [15–19] features artificial neural networks
that incorporate Hamiltonian structure to learn fundamental
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dynamical systems. But from stormy weather to swirling
galaxies, natural dynamics is far richer and more challeng-
ing. In this article, we exploit the Hamiltonian structure of
conservative systems to provide neural networks with the
physics intelligence needed to learn the mix of order and
chaos that often characterizes natural phenomena. After re-
viewing Hamiltonian chaos and neural networks, we apply
Hamiltonian neural networks to the Hénon-Heiles potential,
a numerical and dynamical benchmark, which models both
stellar [20,21] and molecular [22–24] dynamics. Even as these
systems transition from order to chaos, Hamiltonian neural
networks correctly learn their dynamics, overcoming deep
learning’s chaos blindness. If chaos is a nonlinear “super
power,” enabling deterministic dynamics to be practically
unpredictable, then the Hamiltonian is a neural network “se-
cret sauce,” a special ingredient that enables learning and
forecasting order and chaos.

II. HAMILTONIAN CHAOS

The Hamiltonian formalism describes phenomena from as-
tronomical scales to quantum scales; even dissipative systems
involving friction or viscosity are microscopically Hamilto-
nian. It reveals underlying structures in position-momentum
phase space and reflects essential symmetries in physical
systems. Its elegance stems from its geometric structure,
where positions q and conjugate momenta p form a set of
2N canonical coordinates describing a physical system with
N degrees of freedom. A single Hamiltonian function H
uniquely generates the time evolution of the system via the
2N coupled differential equations

{q̇, ṗ} = {dq/dt, d p/dt} = {+∂H/∂ p,−∂H/∂q}, (1)

where the overdots are Newton’s notation for time derivatives.
This classical formalism exhibits two contrasting dynam-

ics: simple integrable motion suggests a “clockwork uni-
verse,” while complicated nonintegrable motion suggests
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(a) (b)

FIG. 1. Hamiltonian flow. (a) Hénon-Heiles orbit wrapped many
times around the hypertorus appears to intersect at the creases in this
3D projection. (b) Different colors indicating the fourth dimension
show that the apparent intersections are actually separated in 4D
phase space.

a chaotic one. Additional conserved quantities constrain
integrable orbits to smooth N-dimensional “kamtori”[25] in
2N-dimensional phase space, as in Fig. 1, but increasing
nonlinearity can “fractalize” adjacent kamtori into infinitely
intersecting “cantori” [26], allowing nonintegrable orbits to
wander over the entire phase space, extremely sensitive to
initial conditions, and constrained only by energy.

The Hénon-Heiles potential [20], which models phenom-
ena ranging from the orbits of stars to the vibrations of
molecules, provides a famous example of such an order-to-
chaos transition. In a four-dimensional phase space {q, p} =
{qx, qy, px, py}, its nondimensionalized Hamiltonian

H = (
p2

x + p2
y

)
/2 + (

q2
x + q2

y

)
/2 + (

q2
x qy − q3

y/3
)

(2)

is the sum of the kinetic and potential energies, including
quadratic harmonic terms perturbed by cubic nonlinearities
that convert a circularly symmetric potential into a triangu-
larly symmetric potential. Bounded motion is possible in a
triangular region of the {x, y} plane for energies 0 < E < 1/6.
As orbital energy increases, circular symmetry degenerates to
triangular symmetry, integrable motion degrades to noninte-
grable motion, kamtori become cantori, and ordered islands
give way to a chaotic sea.

III. NEURAL NETWORKS

While traditional analyses focus on forecasting orbits or
understanding fractal structure, understanding the entire land-
scape of dynamical order and chaos requires new tools. Ar-
tificial neural networks are today widely used and studied
partly because they can approximate any continuous function
[27,28]. Recent efforts to apply them to chaotic dynamics
involve the recurrent neural networks of reservoir computing
[29–31]. We instead exploit the dominant feed-forward neural
networks of deep learning [6].

Inspired by natural neural networks, the activity a� =
σ [W� a�−1 + b�] of each layer of a conventional feed-forward
neural network is the nonlinear step or ramp of the linearly
transformed activities of the previous layer, where σ is a
vectorized nonlinear function that mimics the on-off activity
of a natural neuron, a� are activation vectors, and W� and b�

are adjustable weight matrices and bias vectors that mimic the

(a)

(b)

FIG. 2. Neural network schematics. Weights (red lines) and bi-
ases (yellow spheres) connect inputs (green cubes) through neuron
hidden layers (gray planes) to outputs (blue cubes). (a) NN has 2N
inputs and 2N outputs. (b) HNN has 2N inputs and 1 output but
internalizes the output’s gradient in its weights and biases.

dendrite and axon connectivity of natural neurons. Concate-
nating multiple layers eliminates the hidden neuron activities,
so the output y = fP[x] is a parametrized nonlinear function
of just the input x and the weights and biases P = {W�, b�}.
A training session inputs multiple x and adjusts the weights
and biases to minimize the difference or “loss” L = (yt − y)2

between the target yt and the output y so the neural network
learns the correspondence.

Recently, neural networks have been proposed [15–19]
that not only learn dynamics but also capture invariants and
symmetries, including Hamiltonian phase space structure.
In particular, Greydanus et al. [15] introduced Hamiltonian
neural networks, and Toth et al. [16] added automatic learning
of the canonical coordinates, among other refinements.

The Fig. 2 conventional neural network NN intakes po-
sitions and velocities {q, q̇} and outputs approximations to

TABLE I. Python neural network parameters. We explored all
values but generated our final results with the bold ones.

Description Values

Number of layers 2, 4, 6, 8
Neurons per layer 100, 200, 400
Optimizer Adam, SGD
Training loss threshold 10−4, 10−5

Batch size 128, 256, 512
Epochs 10, 50, 100
Activations Tanh, ReLU
Orbit time 1000, 5000
Energy samples 20
Orbits per energy 20, 50
Integration scheme RK4, RK45, Symplectic
Data sampling rate 0.01, 0.1, 1, 10
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FIG. 3. Hénon-Heiles flows. Two sample Hénon-Heiles flows {qx, qy} for different initial conditions forecast by conventional neural
network (a), Hamiltonian neural network (b), and Hénon-Heiles differential equations (c), for small, medium, and large bounded energies
0 < E < 1/6. Hues code momentum magnitudes, from red to violet; orbit tangents code momentum directions. Orbits fade into the past.
HNN’s physics-informed forecasting is especially better than NN’s at high energies.

their time derivatives {q̇, q̈}, adjusting its weights and biases
to minimize the loss

LNN = (q̇t − q̇)2 + (q̈t − q̈)2 (3)

until it learns the correct mapping. In contrast, the Fig. 2
Hamiltonian neural network (HNN) intakes position and mo-
menta {q, p}, outputs the scalar function H, takes its gradient
to find its position and momentum rates of change, and
minimizes the loss

LHNN = (q̇t − ∂H/∂ p)2 + ( ṗt + ∂H/∂q)2, (4)

which enforces Hamilton’s equations of motion. For a given
time step dt , each trained network can extrapolate a given ini-
tial condition with an Euler update {q, p} ← {q, p} + {q̇, ṗ}dt
or some better integration scheme [32].

Loosely, NN learns the orbits, while HNN learns the
Hamiltonian. Geometrically, NN learns the generalized ve-
locities, the dual mappings {q, q̇} → q̇ and {q, q̇} → q̈, while
HNN learns the Hamiltonian generator function, the single
mapping {q, p} → H, whose (symplectic) gradient gives the
generalized velocities {q̇, ṗ}. With the same resources, HNN
outperforms NN, and the advantage grows as the phase space
dimension increases, where q and p are multicomponent
vectors.

IV. HÉNON-HEILES EXAMPLE

We “stress test” our neural networks on the Hénon-Heiles
system, as its mixed phase space of order and chaos is an
especially challenging dynamical scenario to identify and
decipher. For selected bounded energies, and for the same
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FIG. 4. Lyapunov spectrum. Integrating the variational equations
estimates the Hénon-Heiles Lyapunov exponents λn after time t
for NN (a), HNN (b), and true (c) for an example initial condi-
tion. HHN better approaches the expected Hamiltonian spectrum
{−λ, 0, 0, +λ}.

learning parameters detailed in Table I, we train NN and
HNN on multiple Hénon-Heiles trajectories starting in the
triangular basin that enables bounded motion. We use the
neural networks to forecast new trajectories and then compare
them to the “true” trajectories obtained by numerically inte-
grating Hamilton’s Eq. (1). Figure 3 shows these results. HNN
captures the nature of the global phase space structures well
and effectively distinguishes qualitatively different dynamical
regimes. NN forecasts are especially poor at high energies.

To quantify the ability of NN and HNN to paint a full
portrait of the global, mixed phase space dynamics, we use
their knowledge of the system to estimate the Hénon-Heiles
Lyapunov spectrum [33], which characterizes the separation
rate of infinitesimally close trajectories, one exponent for
each dimension. Since perturbations along the flow do not
cause divergence away from it, at least one exponent will be
zero. For a Hamiltonian system, the exponents must exist in
diverging-converging pairs to conserve phase space volume.
Hence we expect a spectrum like {−λ, 0, 0,+λ}, as in Fig. 4,
with the maximum exponent increasing at large energies
like λ ∝ E3.5 [34], as in Fig. 5. HNN satisfies both these
expectations, which are nontrivial consistency checks that it

FIG. 5. Lyapunov scaling. Maximum Lyapunov exponent λM

versus energy E for NN, HNN, and true. HNN reproduces the correct
energy exponent, while NN shows no trend at all.

FIG. 6. Order to chaos. Fraction of chaotic orbits fc for random
energies E , as inferred by the smaller alignment index α, for conven-
tional neural network (green circles), Hamiltonian neural network
(magenta squares), and Hénon-Heiles differential equations (blue
diamonds). NN is especially poor for chaotic high-energy orbits.
Insets are sample orbits.

has authentically learned a conservative flow similar to the
Hénon-Heiles flow. NN satisfies neither check.

Using NN and HNN we also compute the smaller align-
ment index α, a metric of chaos that allows us to quickly find
the fraction of orbits that are chaotic at any energy [35]. We
compute α for a specific orbit by following the time evolution
of two different normalized deviation vectors along the orbit
and computing the minimum of the norms of their difference
and sum. Via extensive testing, an orbit is chaotic if α < 10−8,
indicating that its deviation vectors have been aligned or
antialigned by a large positive Lyapunov exponent. Figure 6
shows the fraction of chaotic trajectories for each energy,
including a distinct transition between islands of order at low
energy and a sea of chaos at high energy. The chaos fractions
computed with HNN forecasts are good at all energies, but
those computed by NN forecasts are poor at high energies.

Finally, to understand what NN and HNN have learned
when they forecast orbits, we use an autoencoder—a neural
network with a sparse “bottleneck” layer–to examine their
hidden neurons. The autoencoder’s mean-square-error loss
function forces the input to match the output, so its weights
and biases adjust to create a compressed, low-dimensional
representation of the neural networks’ activity, a process
called introspection [36]. For HNN, the loss function Lb drops
precipitously for Nb = 4 (or more) bottleneck neurons, which
appear to encode a combination of the four phase space co-
ordinates, thereby capturing the dimensionality of the system,
as in Fig. 7. NN shows no similar drop, and the uncertainty in
its loss function is orders of magnitude larger than HNN’s.

V. BILLIARDS EXAMPLE

Billiards model a wide range of real-world systems, span-
ning lasers [37], optical fibers, ray optics [38], acoustic and
microwave cavities [38–40], quantum dots [41], and nanode-
vices [42]. Billiards also elucidates the subtleties of quantum-
classical correspondence and the challenging notion of quan-
tum chaos [43–46].

Dynamicists typically idealize billiard tables with hard
boundaries and discontinuous potentials. With similar

062207-4



PHYSICS-ENHANCED NEURAL NETWORKS LEARN ORDER … PHYSICAL REVIEW E 101, 062207 (2020)

FIG. 7. Introspection. (a) When an autoencoder compresses
HNN forecasting, its loss function Lb (magenta squares) drops pre-
cipitously as its bottleneck layer increases past Nb = 4 neurons, the
dimensionality of the Hénon-Heiles system; when an autoencoder
compresses NN forecasting, its loss function (green circles) wiggles
irregularly, oblivious to this transition. (b) HNN’s compressed rep-
resentation {n1, n2, n3, n4} resembles the low- or high-energy orbit
{qx, qy, px, py} it is forecasting, where color indicates the fourth
dimension. NN hardly notices the differences between the low- or
high-energy orbits.

phenomenology, we model billiard tables with soft boundaries
and continuous potentials, so the billiard balls’ momenta
change rapidly but continuously at each bounce. Our
Hamiltonian

H = (
p2

x + p2
y

)
/2 + V (5)

with potential energy

V[qx, qy] = + 1

1 + e(ro−
√

q2
x +q2

y )/δr

− 1

1 + e(ri−
√

(qx−δqx )2+q2
y )/δr

, (6)

where ro is the radius of the outer circle, ri is the radius of the
inner circle, δqx is the shift of the inner circle, and δr is the
softness of the walls, as in Fig. 8.

Our tables are bounded by two circles, and the dynamics
exhibits fascinating transitions as the circles resize or shift.
Ordered and chaotic trajectories coexist for different initial

FIG. 8. Billiards potential energy. Potential energy versus posi-
tion for circular billiards.

conditions at the same energy. Figure 9 shows typical tra-
jectories, where grays code potential and colors code time.

(a)

(b)

(c)

FIG. 9. Billiard flows. Three sample billiard flows {qx, qy} for
different initial conditions, regular and bouncing from the outer circle
only, regular and bouncing from both circles, and chaotic, forecast
by conventional neural network (a), Hamiltonian neural network
(b), and billiard differential equations (c). Hues code time, from
red to violet. HNN physics bias significantly improves its dynamics
forecasting over NN, which typically diverges after short times (and
low-frequency colors).
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FIG. 10. Double pendulum. Relative energy error δE/E for
forecasted orbits versus number of training pairs N for a double
pendulum averaged over six different initial distributions of weights
and biases for NN and HNN. Power-law fits guide the eye, and
HNN’s advantage grows with training pairs.

After identical training, HNN easily outperforms NN, which
often forecasts energy-violating escapes at early times (low-
frequency colors).

VI. OTHER EXAMPLES

We have demonstrated the efficient forecasting of Hamil-
tonian neural networks in diverse systems, both perturbative,
like Hénon-Heiles with H = H0 + εH1, and nonperturbative,
like dynamical billiards. Other successful implementations in-
clude higher-dimensional Hénon-Heiles, and simple harmonic
oscillators and pendulums with noisy training data.

We have successfully used Hamiltonian neural networks
to learn the dynamics of librating (back-and-forth) and ro-
tating (end-over-end) single, double, and triple pendulums.
The angles of rotating pendulums diverge, which makes
them difficult for neural networks to learn. Consequently, we
compactify the pendulum phase space by wrapping it into
a cylinder. We find that both NN and HNN can learn the

pendulums, and that the learning improves with the number
of training pairs, but HNN is always significantly better, as in
Fig. 10 for the double pendulum.

To handle nonconservative systems, we are currently inves-
tigating Lagrangian and Newtonian neural network variations
of HNN. The essential idea behind building such networks is
manifold learning [47], but instead of learning a Hamiltonian
as in HNN, we now learn a Lagrangian, from which we
obtain the equations of motion. For instance, we are currently
studying a Lagrangian neural network for a damped pendulum
whose Hamiltonian conserves phase space volume but not
energy.

We are also investigating potential applications of physics-
informed neural networks like HNN to flights of autonomous
drones through turbulent air characterized by chaotic changes
in velocity and pressure. Such drones will use neural networks
to navigate and maneuver, and physics-informed networks
might efficiently learn and forecast their movements, includ-
ing landings when the interaction between the rotors and the
ground induce turbulence.

VII. CONCLUSION

Neural networks that respect Hamiltonian time-
translational symmetry can learn order and chaos, including
mixed phase space flows, as quantified by metrics
like Lyapunov spectra and smaller alignment indices.
Incorporating other symmetries [19] in deep learning may
produce comparable qualitative performance improvements.
While we have focused on feed-forward neural networks,
nonlinear recurrent neural networks (RNNs) can exhibit
coexisting chaotic and ordered orbits [48], and an algorithm
for training an RNN without a Hamiltonian loss function may
be possible.

Time series can be analyzed using multiple techniques,
including genetic algorithms [49] or neural networks [9] to
find algebraic or differential equations of motion or simple
compressed representations [8]. But Newton and Poincaré had
equations hundreds of years ago and still just glimpsed their
complexity without fully understanding it.

Conventional neural networks extrapolating time series do
not conserve energy, and their orbits can drift off the energy
surface, jump into the sea of chaos from islands of order, or
fly out to infinity. By incorporating energy-conserving and
volume-preserving flows arising from an underlying Hamil-
tonian function—without invoking any details of its form—
Hamiltonian neural networks can recognize the presence of

ALGORITHM 1. Generating orbit from learned model.

1: procedure EVOLVE(state, model) � Evolve from start with NN or HNN.
2: q0

1, q0
2, p0

1, p0
2 ← state

3: while t �= T do � Integration Loop
4: f low ← q̇1, q̇2, ṗ1, ṗ2 ← MUPDATE(state, model ) � Model update
5: qt+1

1 , qt+1
2 , pt+1

1 , pt+1
2 ← RK45( f low, state) � Integrate one step

6: state ← qt+1
1 , qt+1

2 , pt+1
1 , pt+1

2

7: end while
8: return q1, q2, p1, p2 � Return the full orbit
9: end procedure
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ALGORITHM 2. Model update subroutine.

1: procedure MUPDATE(state, model) � advances the state using model
2: if model == NN then
3: f low ← q̇1, q̇2, ṗ1, ṗ2 ← NN.Forward(state) � Forward pass
4: else
5: H ← HNN.Forward(state) � Forward pass
6: f low ← q̇1, q̇2, ṗ1, ṗ2 ← backprop(H, state) � Gradients using back-propagation
7: end if
8: return f low � Return the vector field
9: end procedure

order and chaos as well as challenging regimes where both
these very distinct dynamics coexist.
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APPENDIX: NEURAL NETWORK IMPLEMENTATIONS

We implement our baseline neural network NN and Hamil-
tonian neural network HNN in the Python programming
language using the PyTorch open source machine learning
library. Table I summarizes the parameters used to train our
neural networks. On a 12-core desktop CPU, our model takes
approximately 3 h to reach the desired training accuracy with-
out any GPU acceleration. Our code is available upon request.

Much recent research on deep learning implements artifi-
cial neural networks in the Python ecosystem using automatic
differentiation. (Unlike either numerical or symbolic differen-
tiation, given a sequence of elementary arithmetic operations
on elementary functions, automatic differentiation applies the
calculus chain rule to decompose a compound derivative
into many elementary derivatives, which are evaluated and
combined numerically.) As an independent check of the HNN
efficacy, we also implement NN and HNN in Mathematica
using symbolic differentiation. We symbolically derive (long)
formulas for the output, loss function, and gradients, which we
then compile to fast machine code before training, validating,
and testing the neural networks. The entire implementation is
self-contained in a single Mathematica notebook. As in our
Python implementation, HNN significantly outperforms NN.

Algorithms 1 and 2 outline how trajectories are generated
using learned neural nets. NN.Forward and HNN.Forward
are simply the conventional feed-forward pass for NN and
HNN, respectively.
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