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Modern concepts of quantum equilibration do not rule out strange relaxation dynamics
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Numerous pivotal concepts have been introduced to clarify the puzzle of relaxation and/or equilibration in
closed quantum systems. All of these concepts rely in some way on specific conditions on Hamiltonians H,
observables A, and initial states p or combinations thereof. We numerically demonstrate and analytically argue
that there is a multitude of pairs H, A that meet said conditions for equilibration and generate some typical
expectation-value dynamics, which means (A(z)) o f(t) approximately holds for the vast majority of all initial
states. Remarkably we find that, while restrictions on the f(¢) exist, they do not at all exclude f () that are rather

adverse or strange regarding thermal relaxation.
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I. INTRODUCTION

Since the beginning of the previous century, numerous
concepts have been suggested to account for the emergence
of irreversible thermodynamics from the underlying reversible
unitary quantum dynamics [1]. Despite its long history, this
is an active field of research, even to date. With the paper
at hand we intend to show that, while all these concepts are
certainly cornerstones of our understanding of the origins of
the second law, they are not yet sufficient to rule out certain
types of dynamics of observables that may be perceived as
being at odds with the arrow of time and which we address
as strange dynamics. But before embarking on a detailed
demonstration of their existence, we first name some valuable
approaches to equilibration in closed quantum systems, which
nonetheless fail to exclude said strange dynamics. This list is
neither intended to be complete nor to serve as a full fledged
introduction to the subject; readers well acquainted with its
items may skip it.

Equilibration on average. Statement on temporal fluctua-
tions of, e.g., expectation values. Let the Hamiltonian H with
H|e;) = €j|€;) have a sufficiently low number of equal energy
gaps €; — €; (nonresonance condition). Let furthermore the
effective dimension desr := (3_;(€;|ple;)*) ™" with p being the
initial state, be large, i.e., desf > 1. Then excursions of an
expectation value (A(z)) from some equilibrium value Aeq :=

fOT (A(¢))dt/T are rare in the sense that ({A(t)) —Aeq)2 <
[|A]] for most ¢ from [0, T'] [2-4].

Eigenstate thermalization hypothesis (ETH). Assumption
on H, A, more precisely on random numberlike properties of
matrix elements A;; := (¢;|Al¢;), see also Eq. (2). The appli-
cability of the ETH ensures the above rareness of excursions
from equilibrium and a fixed A¢q for all initial states from
some energy shell (thermalization). The validity of the ETH
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is closely related to quantum chaos, cf. corresponding item
below [5,6].

Typicality. Statistical statement on properties of pure states.
Let the dimension of some finite Hilbert space d be large, d >
1. Let A be an operator on this Hilbert space with a spectral
variance of order unity. Furthermore |y) are pure states that
drawn at random according to the unitary invariant Haar
measure from this Hilbert space. Then, for the overwhelming
majority of all |), the expectation values (Y|A|Y) are very
close to Tr{A}/d [4,7-13]. In the absence of any further
information on |y) it is thus rational to assume (W |A(?)|y) ~
Tr{A}/d, independent of 7.

Quantum chaos. An observable featuring a finite overlap
with a conserved quantity cannot relax to an equilibrium
value independently of its initial value [14]. Wigner-Dyson-
type (rather than Poissonian) statistics of spacings of adjacent
energy eigenvalues signal the absence of many nontrivial
conserved quantities (integrability) [15].

Microreversibility. Principal property of the dynamics of
a system that ensures that an operation like flipping of par-
ticle momenta indeed entails a kind of reversed dynamics.
Fluctuation relations, which are often viewed as more de-
tailed formulations of the second law, are routinely based on
microreversibility [16]. While the abstract concept is more
encompassing, a version of microreversibility is implemented
if A, H are both real in a common basis, cf. Eq. (2).

Non-fine-tuned initial states. Some specific mathematical
constructions of initial states p obviously allow for imple-
menting dynamics that are at odds with regular thermal relax-
ation. Thus a nontrivial conflict with the arrow of time requires
the occurrence of strange relaxation dynamics for non-fine-
tuned initial states, i.e., states that do not require backwards
evolving of nonequilibrium states, flipping of particle mo-
menta, or complex conjugating of wave functions [y (f)) —
[ (2))* (no Loschmidt operations), full control over each
individual matrix element (¢;|p|¢;), etc. [16]

This paper is organized as follows. In Sec. II we elaborate
on what is meant by strange dynamics and formulate our main
claim. In Sec. III we present numerical examples of strange

©2020 American Physical Society
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FIG. 1. H and A may be tailored such that (A(#))/(A(0)) follows
almost any desired function f(t) for a majority of initial states.
Displayed data are for initial states that are eigenstates of A, i.e.,
Al (0)) = a;|¥(0)). Green and red symbols: (A(z))/(A(0)), blue
line: desired function f(¢). (a) Burj Khalifa (original photo: Burj
Khalifa by Joi is licensed under CC BY 2.0, https://commons.
wikimedia.org). (b) Bitcoin price. (c) Elephants (original photo:
Family Of Elephants by Javier Puig Ochoa is licensed under CC BY
3.0, https://commons.wikimedia.org).

dynamics that back up our main claim and explain how the
numerical construction of these examples works. The physical
relevance of the respective initial states underlying these dy-
namics is discussed in Sec. IV. In Sec. V we analytically argue
for the validity of the main claim for (mixed) initial states that
commute with the observable. These arguments suggest that
the main claim is valid in the limit of large systems, which
is supported by a numerical finite-size scaling in Sec. VI. In
Sec. VII we generalize the result on certain classes of pure
initial states that do not commute with the observable.

II. NOTION OF STRANGE DYNAMICS AND MAIN CLAIM

Prior to stating the main claim of the paper at hand we
first establish the notion of strange dynamics: To comply
with equilibration on average the considered expectation value
Tr{A(t)p} := (A(z)) must take a fixed value Aeq for the vast
majority of all instances in time. It may, however, nevertheless
exhibit a behavior that is entirely unexpected in the context
of relaxation dynamics. It could, e.g., follow the contour of
some skyline before settling to Aeg, cf. Fig 1. Or it could,
after having seemingly settled to Ay, spike to a significantly
off-equilibrium value at a time long compared to its initial
relaxation time but much shorter than the Poincaré recurrence
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FIG. 2. (A(t)) exhibits a significant revival at an arbitrary pre-
defined time ti (here 1z = 10) for two classes of initial states:
(a) |¥(0)) are eigenstates of A, (b) |1 (0)) are samples of an unbiased
pure state ensemble conditioned on a given (A(0)), cf. Eq. (3).

time, cf. Fig. 2. Any such unexpected dynamics we call
strange dynamics without further rigorous definition.

Our main claim is as follows: It is possible to find a
multitude of pairs H, A in accord with all above equilibration
principles such that

(A@) = (AO) f@) (f(0)=1), ey
where f(¢#) must have a positive Fourier transform. Other
than that f(r) may essentially be freely chosen. Among the
possible choices are plenty of strange dynamics, cf. Figs. 1
and 2. Most importantly the validity of Eq. (1) is claimed for
a vast majority of all initial states p. This major set of initial
states will be detailed below, see Secs. V, VII.

This claim is the more technical reformulation of the cen-
tral statement, which forms the title of the present paper. (For
some numerical evidence of the validity of Eq. (1) in concrete
spin systems, albeit with nonstrange f(¢)’s, see Ref. [17])
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III. MAKING OF FIGS. 1 AND 2: HAMILTONIANS,
OBSERVABLES, AND INITIAL STATES

Figures 1 and 2 show various expectation-value dynamics
as resulting from the solution of the Schrodinger equation for
fixed H, A (per panel in Fig. 1) but various p. The somewhat
odd examples in Fig. 1 have simply been picked to substanti-
ate the above claim that f(¢) may essentially be chosen at will,
cf. Eq. (1). The setting in Fig. 2 is meant as a prime example
of strange dynamics in the sense described above. Of course
peculiar dynamics as presented in Figs. 1 and 2 require pairs
H, A with specific properties. In the following we detail the
construction of H, A, thereby unveiling their accordance with
the cornerstone principles of thermal relaxation.

First a d-dimensional Hamiltonian H is defined by choos-
ing d eigenvalues €; (examples in Figs. 1 and 2: d = 20000).
To this end d — 1 energy gaps [; = €41 — €; are drawn as
ii.d. random numbers from a pertinent Wigner-Dyson distri-
bution. The spectrum is scaled to span an interval [—E, E]
(examples in Figs. 1 and 2: E = 30). Within this interval H
has thus a constant density of states and exhibits Wigner-
Dyson level statistics as expected for nonintegrable systems.
Thus our modeling is in accord with the nonresonance condi-
tion and quantum chaos in the sense of the respective items
in the introductory list in Sec. I. This Hamiltonian H may
be viewed as the sector of, e.g., a many-body Hamiltonian
that corresponds to a (narrow) energy window stretching from
—FE to E. If the initial state lives (almost) entirely in this
energy window, which is what we assume here, modeling of
this sector suffices to compute the dynamics. Note that (A(?))
is fully determined by the spectra and the relative angles of
the eigenvectors of the operators H, A, p. Thus, there is no
need to specify the eigenvectors of H with respect to some
computational basis for the purposes at hand.

Next we construct the observables A. To this end we first
define f(w) to be the real part of the Fourier transform of some
desired, possibly strange, f(¢). Let furthermore wp,x be some
cutoff frequency wmax, such that f (w) attains only negligible
values at |w| = wmax. Choose E, wnax such as to fulfill £ >
Wmax (examples in Figs. 1 and 2: wp,x =~ 3). Furthermore f (w)
has to vary only negligibly on the scale of the level spac-
ings /;. While these conditions on f(w) imply conditions on
f(¢), these conditions become exeedingly mild, at sufficiently
large d.

Now we specify the A’s in the energy eigenbasis {|¢;)} in
full accord with the ETH [18] as

Aji = (€jlAle)) = Crd™ "2/ f(e; — e) Rj1, 2)

where Rj; are normally i.i.d. random real numbers with zero
mean and unit variance. C; is a constant, which we use to scale
the extreme eigenvalues of A t0 —apin =~ dmax ~ 1. To render
A Hermitian, f(w) must be nonnegative, which implies the
condition on f(¢) mentioned below Eq (1). To support our
main claim it suffices that A as defined in Eq. (2) is not in
conflict with the ETH. But what is more, numerous numerical
studies found operators of local observables (currents, magne-
tizations, etc.) in the eigenbasis of the respective Hamiltonians
(many-body lattice models) to essentially agree with the con-
struction Eq. (2) [19-29], for more details see Appendix A.
Choosing the A j; real renders the setup microreversible in the
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FIG. 3. The mean values of the errors and the variances are
almost independent of the eigenstate, which served as the respective
initial state.

sense defined in the respective item of the introductory list of
equilibration principles.

Ultimately we aim at establishing that this construction of
H, A renders Eq. (1) valid for practically all non-fine-tuned
initial states p. However, for the numerical demonstration of
this validity as displayed in Figs. 1 and 2, we chose initial
states from the following two classes:

Observable eigenstates. Let |a;) be an eigenstate of A, i.e.,
Ala;j) = ajla;). The dynamics in Figs. 1 and 2 (top panel) are
computed for some sample initial eigenstates of A, i.e., p =
la;){(a;| for eigenvalues a;, which may be inferred from the
respective captions.

Unbiased ensemble states. The dynamics in Fig. 2 (bottom
panel) correspond to states p = [{) (| with

V) = (@lo)"2lg),  1g) = (1 +24)7 %), (3)
where |£) is a random vector unitarily drawn from the d-
dimensional hypersphere in Hilbert space. A has been chosen
such as to obtain the respective (A(0)) as indicated in the
caption of Fig. 2.

Before motivating the above choice of initial states we
provide some more information on Figs. 1 and 2. For Fig. 1
the functions f(¢) have been extracted from the respective
underlying pictures. (The pictures and contours have been
chosen such as to make sure that the contours indeed feature
positive Fourier transforms.) For Fig. 2 f(¢) is simply a per-
tinent mathematical function, the revival time 7z of which is
chosen as 7z = 10, which is much longer than the timescale of
the initial decay but definitely much shorter than the Poincaré
recurrence time, cf. Appendix B, making this example a prime
instance of strange dynamics. The respective H, A have been
constructed according to the above scheme. The respective
Schrodinger equations have been numerically solved for the
sample initial states as described above and in the captions.
Obviously all computed data are in excellent agreement with
our main claim, Eq. (1). (Even more numerical support for
the latter comes from the data displayed in Fig. 3). All initial
states feature effective dimensions of at least d.gr > 4700, i.e.,
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are in accord with the principle of equilibration on average,
for more detailed information see Appendix C.

IV. PHYSICAL SIGNIFICANCE OF THE INITIAL STATES
UNDERLYING THE DISPLAYED DATA

Before explaining the inner workings of the above con-
struction of H, A we comment on the physical significance
of the initial states used in Figs. 1 and 2. Some physical
relevance of the initial observable eigenstates |a;) comes
from their being identical to results of (preparatory) projective
measurements of the monitored observable A at the beginning
of the relaxation dynamics. More importantly, however, the
validity of Eq. (1) for p = |a;)(a;| for all j necessarily entails
the validity of Eq. (1) also for all initial states of the form
p =), c A" The latter comprises, e.g., p & exp(AA), which
is the state of maximum von-Neumann entropy conditioned
on some given (A(0)). This is a relevant class of initial states
within the framework of Jayne’s principle.

The states from the unbiased ensemble, cf. Eq. (3) repre-
sent an ensemble of pure states, which is entirely unbiased
with respect to the unitary invariant Haar measure, under the
condition of a given (A(0)) [30-32]. This ensemble thus is a
very relevant class of initial states within the framework of
pure state statistical mechanics.

V. VALIDITY OF THE MAIN CLAIM [EQ. (1)] FOR INITIAL
STATES THAT COMMUTE WITH THE OBSERVABLE

In the following we explain why the above construction
yields pairs H, A that render our main claim Eq. (1) valid for
the above-mentioned class of initial states p = ), ¢,A" that
also comprises the observable eigenstates |a;){a;|. Consider
the relation

odd N
even N~

o Tr{A(t)A} o f(1), (4)

Tr{A(t)AN} ~ {0

Obviously the validity of this relation entails the validity
of Eq. (1) for all initial states of the above class. Accord-
ingly Eq. (4) is the first pillar on which Eq. (1) rests. The
validity of a subpart of Eq. (4), namely Tr{A(t)A} o f(t)
follows rather straightforward from Eq. (2) (for details see
Appendix D). To fully validate Eq. (4) we employ a scheme
suggested in Ref. [17]. As the argument is quite involved
for large exponents N, we here restrict ourselves to N = 2
and N = 3. A comparable but more complex derivation for
arbitrary but fixed N at large d can be found in Appendix E.

We start by writing out the correlation function for N = 2
explicitly,

THAMA®) = ) AwpApcAcq e @) 5)

a,b,c

Given the matrix structure in Eq. (2), the biggest part of
the addends in the sum are by construction (products of)
independent random numbers with zero mean. Thus, to an
accuracy set by the law of large numbers, summing the latter
yields zero as well. There are, however, index combinations
for which not all factors within the addends have vanishing

mean, namely, ¢ = a. Focusing on these terms, we can write

Tr{AWA?) 2 14w P Aaee’ @5 ©)
a,b

While the numbers |Ag|*> do not have mean zero, the num-
bers A,, do have zero mean. Furthermore for a # b the
|Aup|?, Aga, €€~ are mutually independent stochastic vari-
ables, cf. Eq. (2). For a = b these numbers are obviously
not independent, however, in this case the sum in Eq. (6) is
proportional to the third moment of the distribution of the A,,,
which vanishes according to Eq. (2). Exploiting these findings
for both cases (a # b as well as a = b) to evaluate Eq. (6) we
obtain Tr{A(¢)A%} ~ 0, i.e., Eq. (4) for the even case N = 2.
Now we turn to N = 3, i.e.,

TrAMA®) = ) AwAscAcaAaad ™" (])
a,b,c,d

Again, the contributions of most addends approximately can-
cel each other upon summation. But also here there are
exceptions, namely, the index combinations ¢ = a or d = b.
Focusing on these terms, we find

Tr{ADA®} D (1Awl* Y 1Apel® + |Age e @™ (8)
a,b c

[Note that Eq. (8) erroneously counts the terms corresponding
to c = a and d = b twice. However, as this overcounting error
is of order d~!, it becomes negligible at large d.] To proceed,
consider the above sums over c first.

While these sums do not vanish, they are practically
independent of a,b, due to the specific matrix struc-
ture of A, cf. Eq. (2). Thus, the respective sums may
be replaced by a constant Ca, i.e., Y., |Apc|* + |Aucl® =
C,. Inserting this into Eq. (8) yields Tr{A(H)A3} =~ C, -
> s lAapl?e @< Comparing this to the exact rela-
tion Tr{A(H)A} =Y, , |Aw|*e' @ %) yields Tr{A(1)A%} ~
C, Tr{A(¢)A}, i.e., Eq. (4) for the odd case N = 3.

VI. ACCURACY OF THE MAIN CLAIM [EQ. (1)] FOR
EIGENSTATES OF THE OBSERVABLE AS INITIAL STATES

Mainly due to the neglect of terms with random signs [cf.
below Eq. (5)], Eq. (4) is not exact. To scrutinize the accuracy
of Eq. (4) and hence Eq. (1) specifically with respect to grow-
ing dimensions d, the Schrédinger equation has been solved
for the setup underlying Fig. 1(a), for all |a;) (d = 7000),
respectively, every tenth |a;) (d = 50000) as initial states.
Figure 3 shows the deviations from Eq. (1) at an exemplary
point in time, here chosen as t+ = 10. These deviations are
defined as

D, = (ajlA(")la;) — a;f@). &)

The errors have vanishing mean and a standard deviation
that is almost independent of ;. But, most importantly, the
standard deviation decreases with the dimension d.

To numerically analyze this dependence, we consider the
mean square of these errors (averaged over all eigenstates a;
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FIG. 4. The finite-size scaling of the mean square of the errors
D, indicates that these are proportional to 5

and over time):

141 (T )
—_— — 4 =
Da =~ ?:1 T/o (D) dr, T =13. (10)

Plotting D, over the reciprocal Hilbert-space dimension
1/d (see Fig. 4) reveals that the mean square of these errors
vanishes as o«d~!. This is supported by an analytical rea-
soning (see Appendix E). These findings imply that Eq. (1)
becomes exact in the limit of large d for all initial states of the
form p = )", c,A", ie., all initial states that commute with
the observable A.

VII. VALIDITY OF THE MAIN CLAIM [EQ. (1)] FOR A
CLASS OF INITIAL STATES THAT DO NOT COMMUTE
WITH THE OBSERVABLE

Next we establish the validity of Eq. (1) for a set of (pure)
initial states that are not of the form p = Zn c,A", i.e., not
functions of the observable A, and comprises the unbiased
ensemble states [cf. Eq. (3)]. We call this set the r set and
define its states |n) by

In) = (xIx)"21x),  1x) = Vr)g), (11)

where 7(A) is a non-negative function that varies little on the
scale of the eigenvalue spacings of A and |£) is a random vec-
tor drawn from the unitary invariant Haar measure. Typicality
arguments may be used to show that for all |n), except for a
fraction of at most ocd~!/2 the approximation

(MA@ ) ~ Tr{r(AA@) Tr{rA)) ™ (12)

holds to very good accuracy. For a complete derivation see
Ref. [32] and Appendix F. As r(A) may be cast into the
form r(A) = )", b,A", the combination of Eqs. (12) and (4)
establishes the validity of Eq. (1) for all |n) except for the
above fraction of size o«d~!/2. Thus Eq. (12) is the second
pillar on which Eq. (1) rests. For the special case r(A) =
(1 +AA)~! the r set is identical to the unbiased ensemble,
cf. Eq. (3), hence Eq. (12) explains the numerical findings
displayed in Fig. 2 (bottom panel). Note that the r sets are
very encompassing. The small fraction of order d~!/2 of

initial states that does not comply with Eq. (12) for a suitable
r(A) thus corresponds to the set of fine-tuned initial states,
which always exist but are excluded from the analysis at
hand, c.f. last item of the introductory list of principles of
equilibration. Note furthermore that the validity of Eq. (12)
entails the validity of Eq. (1) for all initial states of the form
p= fg(n)|n)(n|dr] with g(n) > 0 for the few (fine tuned) n
to which Eq. (12) does not apply. Thus Eq. (1) also holds for
a large set of mixed states.

VIII. OUTLOOK

While the body of this paper aims at pointing out an
overlooked loophole in the current approach to equilibration
in closed quantum systems, we eventually very briefly turn to
possible closings of this loophole: While pairs H, A giving rise
to strange dynamics definitely exist, these dynamics may not
be stable under perturbations of the respective Hamiltonians
[33-35]. Apart from that the ETH may miss some correlations
that are in fact present in the matrices representing physical
observables in physical systems [36]. These correlations may
possibly rule out strange dynamics. Furthermore arguments
are viable that are based on the condition of Hamiltonians be-
ing local [37]. Helpful insights may also come from clarifying
the role of Markovianity in closed quantum systems [38].
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APPENDIX A: EIGENSTATE THERMALIZATION
HYPOTHESIS IN PHYSICAL MODELS

The similarity of local operators represented in the energy
eigenbasis with random matrices, as implemented in Eq. (2),
is at the heart of the ETH [18]. Such a similarity has numer-
ically been observed frequently, see, e.g., Refs. [19-23,25—
29], it may, however, require a splitting of A into distinct
symmetry sectors. The more specific form of A, namely the
dependence of the envelope function f(x) solely through the
energy differences €; — ¢; but not on individual energies, has
approximately also been found for local observables in inter-
acting lattice-particle models, see Refs. [17,22,39]. Currently
discussed structural differences of local observables in phys-
ical chaotic systems from the ETH as formulated in [18] in-
clude non-Gaussian distributions of the matrix elements [40]
and correlations between individual matrix elements [36].
While nonsystematic checking indicates that non-Gaussian
distributions in Eq. (2) leave the validity of Eq. (4) unaltered,
the impact of correlations is open and subject to further
research. However, some evidence for the applicability of the
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FIG. 5. For the dynamics of the eigenstates, corresponding to the
eigenvalues a;, the fidelity has been plotted over time. The fidelity
rapidly decays and does not show any significant recurrences. Espe-
cially at the position of the recurrence peak 7z (of the expectation-
value dynamics) the fidelity is less than 0.01.

overall concept discussed in the paper at hand to currents in
spin chains comes from Ref. [17].

APPENDIX B: DECAY OF FIDELITY

In this section we check the overlap of the evolved state
with the initial state, to exclude that the revival peaks in Fig. 2
are due to Poincaré-recurrences. We therefore calculate the
fidelity F' of the time-evolved state U (¢)|a;) and the respective
initial state |a;):

F(t) = [(YolU®)|o) |

U (t) denotes the time-evolution operator for the time . The
fidelity rapidly decays during the initial relaxation of the
expectation value (Fig. 5). There is no significant increase of
F () at any later time, including the revival time of the expec-
tation value tg. Thus the second peak in the expectation-value
dynamics (at time tg) is not due to any Poincaré recurrence.

(BI)

APPENDIX C: EFFECTIVE DIMENSION OF
VARIOUS INITIAL STATES

A sufficiently large effective dimension of the initial state
is a necessary condition, when trying to prove the emergence
of thermodynamic behavior in closed quantum systems on the
basis of equilibration on average (see Sec. I). Table I lists
the effective dimensions deg(]y/)) of various initial states that
are either eigenstates |a;) of A or members of the unbiased
ensemble |v¥,), Eq. (3). For the latter the parameter A has
been chosen such that the expectation value of A for the en-
semble average is equal to (A) = 0.25, 0.50, 0.70. Obviously,
desr(]r)) is rather large at all instances.

TABLE 1. We calculated the effective dimension for various
initial states. The data refers to the recurrence dynamics (2).

Initial State Effective Dimension d.g

la;), a; = 0.25 6500
la;), a; = 0.50 6500
la;), a; = 0.75 6400
la;), a; = 1.00 4700
1), (A(0)) = 0.25 9900
1Y), (A(0)) = 0.50 8900
1), (A(0)) = 0.75 7500

APPENDIX D: EXPLICIT CALCULATION OF THE
AUTOCORRELATION FUNCTION

Within this section we calculate the autocorrelation func-
tion that follows from Eq. (2):

Tr(A(A} = C ) lau|* cosl(e; — €;)t] (D1)
il

~ C? Zf(e, —¢;)cos[(e; — €] (D2)
Jsl

~ C; / f(w) cos(wt)dw (D3)

« f(t) for t>0. (D4)

Equation (D2) follows from the law of large numbers and for
Eq. (D3) we exploit the uniform density of states of H and
E > wma. Cs is a pertinent constant. In Eq. (D4) we used
the definition of the positive Fourier transform. Hence this
construction implemented by Eq. (2) essentially produces a
autocorrelation function following predefined target dynamics
f(¢) while being in accord with the ETH.

APPENDIX E: ANALYSIS OF THE VALIDITY OF EQ. 4)

According to Eq. (1) the expectation value dynamics of the
observable A is proportional to its autocorrelation function for
exceedingly many initial states. While this statement cannot
be true for all initial states, we stress within this section that it
holds for huge classes of physically relevant initial states.

In the main text the validity of (4) has been exemplarily
proven for initial states p o AN with N € 2,3. In the first
part of this section we extend this proof to arbitrary but fixed
N at large d. This also ensures the validity of (4) for initial
states that are analytical functions of A, e.g., exp(AA), r(A)
for sufficiently large d. In the second part we numerically
address the range of validity by checking the expectation-
value dynamics of all eigenstates of A.

1. Evaluation of Tr{A (#)A") for arbitrary but fixed N at large d

Before embarking on a concrete estimate of Tr{A(z)A"},
the maximum N for which Eq. (4) needs to be established
should be settled. This maximum N is N = d. To justify this,
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consider the following reformulation of Eq. (4):

d

D lanlAt)lag)a) o« Tr{A()A}.

n=1

If this holds for N < d it must hold for all (a,|A(?)|a,)
individually, i.e.,

(EL)

(an|A()lan) oc Tr{A(1)A} (E2)

since the @ form a set of linearly independent functions of .
Having established this we are set to work towards Eq. (4)
To begin with, consider

fﬁ) = A - Z (AbilAi1i2 o .AiN—ZiN—lAiN—]a)’

i1,.dn—1

(E3)

where the addends are products of N matrix elements A;;.
Obviously fa]\; is a Fourier component of Tr{A(:)AY} with
time dependence proportional to exp(—i(e, — €,)t). Since A
is essentially a random matrix [see Eq. (2)], most addends
in Eq. (E4) are products of independent random numbers.
As such they will be real random numbers themselves, with
zero mean. Hence, to an accuracy set by the law of large
numbers, these addends will sum up to zero. However, there
are index combinations for which the respective addends
are not just products of independent random numbers but
necessarily real and positive. (These are also the only addends
that would survive an averaging of Eq. (E4) over concrete
implementations of A as may be inferred from Isserlis theorem
[41].) First we focus exclusively on these addends to find the
systematic part of Tr{A(t)AV}. We come back to the random
or fluctuating part below.

An index combination yields a sure positive, systematic
contribution if and only if each individual matrix element A;;
in Eq. (E3) appears for an even number of times. Since for
even N there is an odd number of matrix elements in Eq. (E3),
the systematic contribution vanishes in this case. This already
establishes Eq. (4) for even N. For N odd there are very many
index combinations for which each individual matrix element
appears for an even number of times. Consider first the two
following types of such index combinations:

&;Vb = A - Z (Abi]Ai]iz . 'Aileba)a

i1y d(N=1)/2

Bé\]b = Aab . Z (AbaAail t 'AizilAila)'

i1,...i(N,])/2

(E4)

(ES)

These two contributions to f1} feature the maximum number
of free indices, i.e., indices that are summed over, under the
condition that each matrix element has to appear at least
twice. This number is (N — 1)/2. There are much more sure
positive index combinations, however, they all have at most
(N — 3)/2 free indices. The number of free indices is crucial
since each free index gives rise to a multiplicity on the order
of d to the respective contribution due to the corresponding
summation. The number of index combinations that lead to
sure positive index combinations with less than (N — 1)/2
free indices depends on N. Their number grows (rapidly) with
N. However, at any fixed N the contributions &, 8% will
become more and more dominant with larger dimension d.

Above some d we may thus approximate

fab = gy + Bap- (E6)
While it is not obvious if this approximation is justified up
to N = d, we focus on cases where Eq. (E6) is valid in the
paper at hand. A more thorough analysis of the N ~ d case is
a subject for further research. Taking Eq. (E6) for granted we
obtain

ar = A (P +FY) (E7)
Z (ApiAiiy -+ Aiyp).

iy d(N=1)/2

Pév =

PZ,V may be interpreted as a sum over certain paths on the
set of the indices where each path features a corresponding
weight: Each path has to start at b, it has to end at b and
it must take each transition for an even number of times,
i.e., at least twice. The total number of transitions is N — 1.
The number of different indices through which such a path
ventures is the number of free indices, thus the paths with
the largest number of different indices feature (N — 1)/2 free
indices, in accord with the above statement. The weight of
each path is the product of all the squares A?; of the matrix el-
ements corresponding to the transitions through which it went.
Calculating (an estimate) of Pﬁ’ is an ambitious endeavor,
closely related to the derivation of Wigner’s semicircle law
for the spectra of random matrices. Fortunately there is no
need to do this here. The following two observations suffice.
(i) The statistical properties of the matrix A do not depend
on individual indices, they only depend on the differences
€; — €;. Hence, up to a (small) statistical error, P,ﬁv cannot
depend on b (up to finite-size effects, cf. below). Much like the
return probability of a particle in a disordered but homogenous
medium does not depend on the starting point. (ii) For each
path that ventures through the transition a <> b two, four,
etc. times, there are (at least) «d paths that do not do so.
Thus at large d, these paths have negligible weight. As a
consequence :f,’) has a dominant contribution proportional to
A2, and only negligible contributions proportional to A%,, A%, |
etc. While the first observation is strictly correct in the limit
of wmax/E — 0, it is not strictly correct outside this limit.
If b is close to one of the edges, i.e., €, &~ +E, the paths
become affected by the vicinity to the edge. Much like the
above return probability may be different if the starting point
is sufficiently close to an edge of the disordered medium. Here
we assume, however, that the resulting dependence of P,f’ is
such that P} = PN(e;) does not change much on the scale
of wmax. Equipped with these observations we now return to
Eq. (E7). Recalling that Z}', are the Fourier components of the
respective correlation functions yields:

Tr{A(t )AN}sur. pos.

o Y A2 exp(—i(e, — e,))(PY +PY).  (E8)
a,b
Employing the index transformation
LR S =
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Equation (E8) may be rewritten as:

TI'{A(I )AN }sur. pos.

oc Y A%, exp(—iwt) (P, + PY,p).  (E10)

We proceed by exploiting two facts: (i) the A%w and the PY, /2
are (approximately) uncorrelated; (ii) the A%w depend on €
only statistically, the systematic dependence is only on w, cf.

Eq. (2). Exploiting these facts allows to recast Eq. (E10) as

Tr{A)A Yur pos. ¢ ) _ AZ, exp(—iet)

Z (P2, tw/2 +PY 02)-

€

(E11)

The second sum over € is approximately independent of
(< wmax) unless a substantial fraction of the weight of the
function Pé" (0) is concentrated within a range of width @p,x
at the edges —F, E. Following the above observation (i),
however, this is not to be expected. Hence Eq. (E10) may
again be rewritten as

Tr{A(t)AY }sur. pos. ¢ Y AZ,,. exp(—iwt).

€,w

(E12)

Realizing that the right-hand side is just the Fourier transform
of Tr{A(t)A} this yields

Tr{A®)AY }ur pos. ¢ Tr{A(1)A) (E13)

and thus completes the justification of Eq. (4).

In the remainder we analyze the influence of the non-
sure positive contribution, which mainly gives rise to
deviations/fluctuations, i.e., the ~ relation in Eq. (4). We aim
at estimating the scaling of these (squared) deviations with the
dimension d. To this end we define xy (¢):

() = %(Tr{A(r)AN} — TrH{AWA Ysur pos)- (E14)
Note that the prefactor of d~! renders d~'Tr{A(¢)A"} itself
independent of d in the limit of large d. Again, we are even-
tually interested in the sure positive contributions to |xy(t)|%,
denoted as [xy(t)[%, pos. The other contributions are expected
to be of vanishing impact in the limit of large d. Writing
|xy(2)|* out explicitly yields

E AabAbl] t lN 2a

1ndlces\a B
© Acadjy - Ajy e

- exp(—i(e, — € — € +€)t),

oy (D] =

(E15)

where indices \ «, B stands for: all indices, i.e., index com-
binations, but without those that give rise to the &, Y in
Eq. (E4). This somewhat involved construction ensures the
subtraction of the sure positive part as defined in Eq. (E14).
Again, the sure positive contributions to |xy(z)|* arise from
index combinations for which all matrix elements appear to
an even power, i.e., at least squared. Following the same
scheme as in Eq. (E4) we find that the index combinations
with the largest number of free indices are characterized by

a=c,b=d,i, = j,. This yields:

1
2 ~
|xN(t)|sur4 pos. E Z hAhl] : zN ~a*

indices\«, B

(E16)

The index combinations that would appear in Eq. (E16)
but are excluded by the \«, 8 are the ones for which
each Ai2j appears at least twice (such as to form Afj).
Consequently the number of free indices corresponding
to those excluded index combinations is of order N/2
while the number of the free indices of the nonex-
cluded index combinations in the summation of Eq. (E16)
is of order N. Thus, creating only a negligible error,
we may drop the exclusion of said index combinations,
obtaining

1
d_2 Z A bAbl] : IN 2a° (E17)

indices

2 ~
en ()G pos. ~

As, according to Eq. (2) the N matrix elements scale as Aizj x
d~" and there are N summations of d indices in Eq. (E17) we

eventually find

|xN(l)|§ur. pos. & (E13)

1
ﬁ.

While this result could in principle be compared to nu-
merics directly, we resort here to a check of consistency of
our much more detailed numerical findings with the result
in Eq. (E18). Rather than addressing the Tr{A(t)A"} (for
limited N) we numerically analyze dynamics of the form
(aj|A(t)la;). These data are more detailed in the sense that
Tr{A(t)AY} may conveniently be computed from the set of
all {(a;|A(t)|a;). This way the consistency will eventually be
demonstrated. We start, however, by postulating a specific
form of the (a;|A(t)|a;), which is suggested by the numerical
findings, cf. Fig. 3:

g;(t)
NZ

where Y; are independent random Gaussian numbers with
zero mean and unit variance. g;(t) is a function that varies
very mildly with j. Recalling Eq. (E1) and identifying
> aN“f(t) = Tr{A(t)A" }ur. pos. We re-express xy () based
on Eq (E19):

(ajlA(t)|a;) —ajf(t)—i- —VY;, (E19)

xn(@) = (E20)

1 v &)
- 2 a Y,
J J
d J Vd
Exploiting Eq. (E19) it is straightforward to compute

@ 1
dZZ 2Ng2 o< (E21)

Comparing this result to Eq. (E18) completes the demon-
stration of consistency and strongly supports the conjecture
implemented by Eq. (E19).

(w01

2. Numerical checkup of (1) for eigenstates of A

We now turn to the numerical check of the expectation-
value dynamics of the eigenstates of the observable. We
generated the observable in such a way that its autocorrelation

062205-8



MODERN CONCEPTS OF QUANTUM EQUILIBRATION DO ...

PHYSICAL REVIEW E 101, 062205 (2020)

function Tr{A(¢)A} is proportional to g(¢). For our numerical
investigations we chose the reference function redrawing the
contours of the Burj-Kalifa [g(¢)]. Some dynamics are shown
in Fig. 1. The expectation-value dynamics of each eigenstate
laj) of A appear to be very similar to this autocorrelation
function. To quantify the error we define the deviation at time
t in the following way:

Tr{AA(t))

D, = (@jlAWlay) —a; = o

a

(E22)

Formally this quantity is very similar to gjé)lfj defined in
gi)

(E19), but while the properties of i Y; are simply conjec-
tured, D;j refers to numerical data. One aim in the following
analysis is to show that the actual distribution of errors is
compatible with the statistical properties of g/—jf;)Y .

We start by checking the dependence of the errors on the
index of the eigenstate j. We therefore fix t = 10 and d =
7000, 50000 and plot the errors as a function of the eigenvalue
a; of the initial state oo = |a;){a;| (Fig. 3).

Figure 3 indicates that there is no systematic dependence
of the error on the position in the spectrum. Moreover the
errors appear to be normal distributed. The numerics clearly
show that the absolute errors decrease with dimension d. This
dependence on d is studied in more detail in a finite-size
scaling at the end of this section.

Up to now we focused on a single point in time. To drop
this random choice, we define two new error measures: D,
which quantifies the squared deviation of a dynamics averaged
over time and Dy, which is the squared deviation averaged
over time and over all eigenstates of A:

1 M—1 R
Daf = A_/I Z (DZ;.AZ)

(E23)

m=0

1 d
Dy=- ;Daj. (E24)

At = 0.25 and M = 200 denote the (numerical) time step and
the number of steps in time, respectively.

Figure 6 shows the averaged deviations of the expectation-
value dynamics from the reference function for all eigenstates
of A. The errors appear to be only marginally dependent on
the position in the spectrum of A.

Figure 6 furthermore indicates that the deviations from the
reference function decrease for larger dimension d. To address
the dependence of the errors on the system size d we plot the
averaged errors Dy as a function of the reciprocal dimension
1/d (Fig. 4).

This finite-size scaling indicates that the mean quadratic
error D is proportional dl. This suggests that the variances of
the errors Dﬁlj each are proportional to }1' Thus the properties
of the error distribution are in accord with the assumptions
made in (E19), which in turn implies the #-error scaling for
N < d found in (E21).

APPENDIX F: TYPICALITY

In this section a derivation of Eq. (12) is presented. It
is similar to a comparable analysis in Ref. [32]. Consider a

0.00020
o Errors Da].
=3
000015 ¢
o < £
@©
o © o &
0.000104° . % o° ‘

0.00005

08 -06 -04 -02 0 0 6 08 g

‘ < Dimension d = 7000 < Dimension d = 50 000 ‘

FIG. 6. The time-averaged quadratic error D,; only marginally
depends on the eigenstate py = |a;)(a;|, which serves as the initial
state. Furthermore the deviations from the reference function in the
larger system d = 50000 are significantly smaller than the corre-
sponding deviations for d = 7000.

ensemble of pure states given by

lp) = Vr(A)[§), (F1)

where r(A) is a non-negative, smooth function, i.e., |[r(a;+1) —
r(aj)l/laj41 — a;| < d, with respective expectation values

(WIADOIY)

V) = (pld)~"/*1),

(EIVTr(AA@)VT(A)IE)
A = . F2
(WIADOIY) EIrAIE) (F2)

We analyze the statistical properties of the numerator first. Let
the overbar ~~~ indicate the average over all |&) and o%(- - -)
the respective variance. Following [7,42] we obtain:

(ElVrAM)YrA)E) = E[r(DA®)], (F3)
o> ((EIV AV r(A)E)) = (F4)

X2 [VrA@)/rA)] < E[r(A)A%]
d+1 S od41

, (F5)

where E[---] denotes the mean and XZ[' --] the variance
of the spectrum of the respective operator. As E[r(A)A?]
converges against a fixed value for large d and smooth r(A),

the variance o 2((£|v/r(A)A(t)/r(A)|E)) has an upper bound

that essentially scales as d~'. Hence

T A)A
(E1V/rDAWVFANE) ~ E[rAA®)] = S AAO)

(F6)

is a very good approximation for all |€) except for a fraction
of size of at most oxd~'/2. We now perform an analogous
analysis for the denominator of Eq. (F2):

2[r(A
(&lrA)I&) = E[r(A)], _ x[r@d)]

2
o ((§1f(A)IE)) = PEEIR

F7)

As x?[r(A)] converges against a fixed value for large d and
smooth r(A), the variance o2((£|f(A)|€)) essentially scales
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as d~!. Hence
Tr{r(A)}
d

is a very good approximation for all |€) except for a fraction of
size of ocd /2. Inserting Eq. (F6) and Eq. (F6) into Eq. (F2)

(Elr(A)Ié) ~ E[r(A)] = (F8)

yields
_ Tr{r(A)A@)}
(WIADIY) =~ W

as a good approximation for all |) except for a fraction of
size of at most ocd ~!/2. This establishes Eq. (12).

(F9)
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