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Grid pattern emerging from complex dynamics of defects
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The formation process and growth dynamics of the grid pattern, a cellular convective pattern in the
electroconvection of nematic liquid crystals, are investigated. The grid pattern appears via a disordered state
called defect turbulence with the increasing of an applied voltage. The averaged defect density increases with
the applied voltage and then the defects that have been in the continuous process of creation and annihilation
are frozen as grid cells forming domain structures. The area fraction of the grid domains is adopted as the order
parameter. The temporal growth of the area fraction for the step voltage was also measured. By applying the
Kolmogorov-Avrami model to the results, it is suggested that the growth dynamics of the grid domain is not
primarily governed by domain growth, but by the local transition of the rolls to the cellular flow via preliminary
grid structures that transiently appear.
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I. INTRODUCTION

In nonequilibrium open systems, a variety of spatial pat-
terns with different symmetries appear [1,2]. One of the typi-
cal examples of nonequilibrium open systems is a convective
system. In spatially extended convective systems, generally,
various spatial patterns appear resulting from successive bi-
furcations with increase of the control parameter. In this
picture of pattern formation, a new unstable mode with short
wavelength grows from thermal fluctuations at the bifurcation
point. Therefore, a pattern which appears via a bifurcation
has lower symmetry than the previous one. In theoretical
approaches, it is noted that this new mode has a long char-
acteristic time near the transition point. Based on the slaving
principle [3], convection pattern formation is described as the
dynamics of this mode, that is, the amplitude equation [4].
This approach has been considered to be available for the
formation of higher-order patterns as well as for the formation
by the primary instability.

Such aspect of pattern formation is similar to the structural
phase transition due to the excitation of a soft mode with a
decrease of temperature in equilibrium systems [5]. Namely,
the new mode in a convective system is also recognized as
a kind of a soft mode below the bifurcation point [6]. This
corresponds to the fact that the amplitude equation describing
the pattern formation of the convection system can be cate-
gorized in the Ginzburg-Landau theory. For nonequilibrium
open systems such as convective systems, although free en-
ergy cannot be defined, the dynamics of the new mode is rep-
resented by the variation of a potential (Lyapunov function)
[4]. The similarity to the phase transitions is also found in the
dynamics of the pattern formation. The formation dynamics
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of a convective pattern after a jump of the control parame-
ter across the threshold [7,8] is reminiscent of the ordering
processes of the lower-symmetry structures after quenching
of the temperature across the phase transition point [9,10].
Namely, the amplitude of the pattern grows homogeneously
in the whole system. Although incoherence of the phase of
the pattern exists in the beginning, the spatial variation of
the phase slowly diffuses and the system eventually reaches
a complete ordered state. Thus, it seems that pattern forma-
tion in nonequilibrium open systems and phase transition in
equilibrium systems possess some overlaps in their behaviors
and the interpretations. However, nonequilibrium dissipative
systems showing temporal behavior such as limit cycles and
chaos generally have no potential function which determines
the stationary states of the system with its minima. There-
fore, bifurcation in nonequilibrium open systems is generally
considered to be more complex than that in equilibrium
systems.

Compared to convective systems of isotropic fluids, elec-
troconvective systems of nematic liquid crystals have more
variety of spatial patterns due to the additional degree of
freedom brought by the anisotropy of the nematic director
[11,12]. In the electroconvective system, a grid pattern (GP)
is formed in a wide range of the relevant parameter [13]. The
GP is characterized by a cellular convective structure with
an additional wave vector perpendicular to the primary rolls
pattern (normal rolls). Although the GP has been known as
a typical higher-order pattern, the typical formation scenario
in which a new soft mode appears from thermal fluctuations
does not apply to its formation process. With an increasing of
an applied voltage, the GP appears via a disordered state in
which defects exhibit complex dynamics. This is in contrast
to the usual case of transitions of the pattern formation, in
which the pattern develops towards states that have lower
symmetries. In addition, the GP appears in an island shape
in the disordered state. Considering these aspects, the analogy
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with the emergence of the soft modes in equilibrium systems
does not seem to be applicable to the formation of the GP.

It is known that the Kolmogorov-Avrami (KA) model
successfully describes the dynamics of nucleation and domain
growth in the crystal growth [14]. The model does not depend
on the microscopic physical process of the system. Therefore,
the KA model could be used to analyze nonequilibrium open
systems [15] as well as other material systems [16] if the
transition from an unstable state to another stable state occurs
through nucleation and domain growth. It is expected that by
applying the KA model to the temporal growth of the area
fraction of the GP, the formation mechanism of the GP can
be discussed from the viewpoint of nucleation and domain
growth. Despite a number of studies on the GP [11,17–20],
the formation scenario and the dynamics of the GP have not
yet been sufficiently explained. It is not clear how the system
enters into the ordered state suppressing the chaotic motions
of defects. In this paper, the formation and growth dynamics
of the GP have been experimentally investigated by defining
an order parameter of the GP state.

II. EXPERIMENT

We used the nematic liquid crystal p-methoxybenzilidene-
p’-n-butylaniline (MBBA), which was filled into the space
between two parallel glass plates. The separation between
the two glass plates was maintained by a polymer spacer.
The surfaces of the glass plates were coated with transparent
electrodes (indium tin oxide) of size 1.0 × 1.0 cm2. In order
to realize the planar alignment of nematics in the x-y plane
which is parallel to the glass plates, the surfaces of the
glass plates were rubbed in one direction (defined as the x
direction) after treatment of a surfactant (polyvinyl alcohol).
The liquid crystal was doped with tetra-n-butyl-ammonium
bromide (TBAB) in order to control electric conductivity. The
experimental temperature was controlled at 30.00 ± 0.03 ◦C
by using a control system that consists of a Ni-Cr-wire
heater, Pt resistance, and a proportional-integral-differential
(PID) regulator. The relative dielectric constant of the sample
cell was ε⊥ = 4.8 and the electric conductivity was σ⊥ =
1.1 × 10−7 �−1 m−1. The thickness of the sample cell was
d = 29.3 μm. Thus, the aspect ratio of the convective system
was � = 341. The sample cell was observed in a polarizing
microscope (Nikon) equipped with an insulated hot stage. An
ac voltage Vac(t ) = √

2V cos(2π f t ) was applied to the sample
in the z direction using a digital synthesizer (NF1946). The
frequency f was set to 300 Hz. The image data were taken
by a charge coupled device (CCD) camera (HAMAMATSU
C4880-80) mounted on the microscope. The observation area
was 36.3d × 27.4d and the image was digitized with the size
of 656 × 494 pixels. The self-made software was used for the
image analysis.

III. RESULTS AND DISCUSSION

A. Formation scenario

When the applied voltage is increased, normal rolls begin
to fluctuate beyond a threshold voltage. Consequently, defects
(dislocations) of the rolls’ pattern appear and exhibit complex
dynamics. The defects are randomly created in space and time
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FIG. 1. (a) Image of the coexistence of a GP and a disordered
state called defect turbulence. (b) Binary picture obtained by the
image processing for (a), where white and black regions indicate the
GP and the defect turbulence, respectively. The image represents a
state in Fη = 50%.

and actively glide through the system. When a defect collides
with another one that has the opposite sign, both the defects
annihilate. With further increasing the voltage, the transition
to GP occurs locally, whereas in the other area complex
dynamics of defects still remain, as shown in Fig. 1(a). That
is, the GP state and the disordered state coexist during the
transition process to the GP. At a constant voltage, the GP
domains do not largely deform. Therefore, it is considered that
the area fraction of the GP is an appropriate order parameter
of the formation of the GP. A snapshot image was divided
into a GP and disordered state by detecting the characteristic
wave number qGP of the GP in the y direction by using Fourier
image analysis [see Fig. 1(b)] [21,22]. The area fraction of the
GP was defined as Fη = SGP/S0, where SGP and S0 indicate
the total GP area and the whole observed area, respectively.
The applied voltage V was increased with a step of 0.2V ,
and the image was recorded after a waiting time of 5 min
in each voltage increase. Figure 2 shows the dependence of
the area fraction of the GP on the normalized voltage, η =
(V 2 − VGP

2)/VGP
2. VGP indicates the voltage beyond which

SGP becomes SGP > 0. Fη increases with η to the maximum
value of ∼80 %, and turns to decrease as the GP gradually
dissolves into a turbulent state. Finally, the whole system
reaches the turbulent state (dynamic scattering mode 1).

To understand the transition to the GP, it is important to
perceive the origin and the intrinsic properties of the complex
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FIG. 2. Dependence of the area fraction Fη of the GP on the

normalized voltage η.

dynamics of defects. It is thought that the mechanism of gen-
eration and the dynamics of defects can be explained by the
following. In the electroconvective effect, convection occurs
such that the direction of the wave vector of the convective
rolls’ pattern is parallel to the director of the nematic liquid
crystals. On the other hand, the two-dimensional director
C, which is the projection of nematic director n onto the
x-y plane, is constantly subjected to viscous torque from
the convective flow [23]. When ε is relatively small, the
rotation of the director due to the torque is suppressed by
the planar anchoring. Thus, the normal rolls are kept stable.
When ε is beyond a threshold value, however, the director
rotates, surmounting the anchoring. This rotation also makes
the convective wave vector rotate because its direction prefers
to be parallel to the nematic director by the electroconvective
effect. The azimuths of the C director and the convective wave
vector form an activator-inhibitor system, which causes the
Hopf instability due to frustration between the viscous torque
and the electroconvective effects. In small convective systems
of which the aspect ratio is O(1), this instability appears as
a limit-cycle oscillation in the angle of the convective wave
vector [24]. In convective systems with large aspect ratio, on
the other hand, this instability occurs incoherently in space
and time. The rotation of the convective wave vector leads
to the skewed varicose instability and the zigzag instabil-
ity [25], and, consequently, defects in the rolls’ pattern are
randomly created in space and time. This state appearing in
large systems has been traditionally called defect chaos or
defect turbulence [26,27]. In the defect turbulence, since the
randomly created defects largely glide in the system, limit-
cycle oscillation is not observed clearly, unlike the small sys-
tems. However, recent research has revealed that oscillatory
components are included in the dynamic structure factor of
the defect turbulence [28].

It is revealed from detailed observations that the formation
of the GP occurs in the following steps. When V is increased
to an adequately higher value from the threshold voltage of the
defect turbulence, oscillation between two convective modes

of q1 and q2, which are reflection symmetric to the x direction,
begins to occur locally, as shown in Fig. 3 [11,29,30]. During
the change from q1 to q2, both the q1 and q2 modes transiently
coexist. In the coexistent state, due to the modulation with
q2 − q1, defects are created by the pinching of rolls along
the modulation lines, as also reported in Ref. [11]. At the
instant when the amplitudes of q1 and q2 become the same
magnitude, a cellular structure appears by superposition of
q1 and q2, as shown at the center in Fig. 3. Hereafter, this
state is called “pre-GP.” The pre-GP appears only transiently
in time and locally in space. With further increase of V , the
tilt angles of q1 and q2 with respect to the x direction become
larger and the wave number |q2 − q1| of the modulation also
becomes larger. As the wave number |q2 − q1| increases, the
distance between defects decreases and the averaged defect
density increases in the defect turbulence, as shown in Fig. 4
[30]. When V is beyond VGP, the oscillation of the local
wave vector ceases and the pre-GP freezes to a new stable
state, stationary GP, which is the GP being focused on here.
In the GP, the structure of the convective flow changes to
cellular [11]. This cellular convection could be recognized as
a metastable state that has a characteristic wave number qGP

in the y direction. Therefore, it is considered that the pre-GP
changes to the stationary GP when the y component of the q1

(and q2) becomes equal to qGP by an increase of V .
The stationary grid state and the related oscillation of the

convective rolls are also observed in other systems [31,32].
However, the GP is formed in a strongly nonlinear regime
differently from those systems in which the parameter is
restricted in the weakly nonlinear regime just beyond the
convective threshold.

Since, as mentioned above, the defect is created at the point
where the roll is pinched, as seen in Fig. 3, a grid point of the
GP corresponds to a defect. It is thought that the reason why
the increasing rate of the defect density changes at η = 0 in
Fig. 4 is because the defects that have been in the continuous
process of creation and annihilation in the defect turbulence
are frozen and no longer vanish when the GP is formed.

In the region of the defect turbulence, the variance of the
distances among defects is relatively large. Inside the GP
domain, in contrast, it is considered that the defects arrange
periodically and the distances between neighboring defects
are almost constant since a grid point corresponds to a defect,
as mentioned above. In addition, as shown in Fig. 5, it is
confirmed that the averaged area occupied by a grid point in
the GP region stays constant for increasing V , even though the
averaged area occupied by a defect for the defect turbulence
region continues decreasing. Thus, it can be assumed that the
GP has a close-packed structure of the defect.

In the present case, the transition to the stationary GP
occurs locally and the other area stays in the defect turbulence
or pre-GP structure, as shown in Fig. 1. Thus, the long
correlation length associated with a transition that arises with
the soft mode is not recognized in the formation process of the
GP. From this observation, it seems that the GP is not formed
by the soft-mode-like mechanism, but by the local transition
of the convective structure. The domain structure of the GP
is analogous to that of the crystal growth from nucleation in
supersaturated solutions. In this analogy, defects and GP cells
in the present system, respectively, correspond to dissociation
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FIG. 3. Schematic representation and the corresponding images of oscillation between the two convective modes, q1 and q2.

and crystallization of monomers in the crystal growth. And
the area fraction Fη of the GP, which is the order parameter in
the GP formation, corresponds to the degree of crystallinity,
which is the order parameter characterizing the state in the
crystal growth.

B. Growth dynamics

As mentioned in Sec. I, the dynamics of nucleation and do-
main growth as seen in the crystal growth can be described by
the KA model. According to the model, the growth dynamics
of the area fraction of a state which spreads from nuclei in a
two-dimensional system is described by

S(t )

S0
= 1 − exp

[
−

∫ t

0
J (τ )σ (t, τ )dτ

]
, (1)

where S(t ) and S0 are the area of the solid state and the whole
system, respectively. Here, σ (t, τ ) is the area of the state that
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FIG. 4. Dependence of the defect density ρ on the normalized
voltage η. A grid point of the GP and the pre-GP is regarded as a
defect. The number Nd of defects (including grid points of the pre-
GP) in the defect turbulence region and the number Ng of grid points
in the GP region were measured in a snapshot recorded at each value
of η. ρ is defined as ρ ≡ (Nd + Ng)/S0.

spreads from a nucleus generated at time τ and expressed
as σ (t, τ ) = π{rc + v(t )(t − τ )}2, where rc and v(t ) are the
nucleus radius and the velocity of a domain front, respectively.
J (τ ) is the nucleation rate. If J (τ ) and v(t ) are assumed to be
constant, then a simple formula,

S(t )

S0
= 1 − exp

{
−πJ0

3v0

[
(rc + v0t )3 − r3

c

]}
, (2)

is obtained from Eq. (1), where J0 and v0 are the constant
nucleation rate and the constant front velocity, respectively.

For the present case, the left-hand side of Eq. (2) should be
F (t )/F∞, where F (t ) indicates temporal growth of the area
fraction of the GP, and F∞ is the area fraction in saturation at
each value of the voltage, which corresponds to Fη in Fig. 2.
In the case of the turbulence-turbulence (dynamic scattering
mode 1-2) transition in electrohydrodynamic systems of ne-
matic liquid crystals, it has been reported that the nucleus
radius rc can be assumed to be zero, similar to most of
the cases of crystal growth because the size of the nucleus
is microscopic [15]. In the present system, in contrast, the
pre-GP structures transiently exist just below the threshold
VGP and play a role of nucleus in the growth dynamics.
Therefore, rc remains a finite value. Thus, Eq. (2) should be
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FIG. 5. Dependence of the averaged area occupied by a defect
on the normalized voltage η. �d ≡ (S0 − SGP )/Nd (open square) and
�g ≡ SGP/Ng (closed circle) indicate the averaged area occupied by
a defect for the whole defect turbulence region and the averaged area
occupied by a grid point for the whole GP region, respectively.
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FIG. 6. Temporal growth of the area fraction F (t ) of the GP
scaled by the saturated value F∞ of F (t ) for η = 0.50 (green circles),
0.92 (blue triangles), and 1.35 (red squares). The solid lines represent
least-squares fittings with Eq. (3).

transformed to

F (t )

F∞
= 1 − exp

{
−πJ0

∗

3v0
∗ [(1 + v0

∗ t )3 − 1]

}
. (3)

Here the new parameters are introduced as J0
∗ = J0r2

c and
v0

∗ = v0/rc for the sake of decreasing the number of the
parameters.

In order to compare the growth dynamics of the GP with
Eq. (3), we measured the temporal growth of the area fraction
F (t ) of the GP for step voltages. The applied voltages were
jumped from a value slightly below VGP to different values
above VGP at t = 0. The values chosen are η = 0.50, 0.92, and
1.35, which are below the peak of Fη with respect to η (see
Fig. 2), almost at the peak, and beyond the peak, respectively.
Temporal growth F (t ) of the area fraction of the GP was
calculated from the sequences of the images taken with a
time interval of 1.05 sec by using the method introduced in
Sec. III A to obtain Fη.

Each F (t ) monotonously increased and saturated to a final
value. The saturation value F∞ obtained by least-squares
fitting of F (t ) with Eq. (3) was 59%, 82%, and 54% for
η = 0.50, η = 0.92, and η = 1.35, respectively. The results
of F (t )/F∞ are shown in Fig. 6. The solid lines indicate
least-squares fittings with Eq. (3).

Here, rc is assumed to be independent of η because it
corresponds to the size of the pre-GP that appears below the
threshold VGP. The resulting values of J0

∗ and v0
∗ are shown

in Table I. From the fact that J0
∗ increases systematically

with η, it is thought that the dependence of the growth rate

TABLE I. Resulting fitting values of the experimental data ob-
tained by the least-squares fit of F (t ) shown in Fig. 6 with Eq. (3).

η J0
∗ (1/sec) v0

∗ (1/sec)

0.50 0.015 0.00078
0.92 0.028 −0.010
1.35 0.037 −0.0094

of F (t ) on η observed in Fig. 6 is led by the effect of J0
∗.

On the other hand, v0
∗ have extremely small values for all

the values of η. The minus signs of the v0
∗ likely came

from the fitting errors. Judging from the small values of
the front velocity, domain growth is not a primary process
in the formation dynamics of the GP for step voltage. This
indicates that aggregation of the defects seldom occurs. In
the experimental observations, the GP was formed locally by
freezing of the incessant motion of the rolls seen in Fig. 3.
Thus it may be concluded that the formation of the GP is
not governed by domain growth dynamics, but by the local
transition of the rolls to cellular flow in the turbulent bulk. For
example, molecules in the crystal growth tend to aggregate
regularly to reduce the chemical potential. In contrast, in the
formation of the GP, which occurs in a nonequilibrium open
system, such potential energy governing the state of the whole
system cannot be defined. This could be one of the reasons
why aggregation of the defects seldom occurs.

IV. CONCLUSION

The formation and the growth dynamics of the GP emerg-
ing from the defect turbulence, in which defects exhibit com-
plex dynamics, have been investigated. In the defect turbu-
lence, the averaged defect density increases with the applied
voltage and, when the distance between defects sufficiently
decreases, the local convective structure transforms from rolls
to cellular flow. The cellular structure first appears transiently
in time and locally in space as pre-GP. For further increasing
of the applied voltage, the pre-GP becomes stationary GP.
Since the GP has domain structure and the pre-GP struc-
ture plays a role of nucleus, the GP formation seems to be
analogous to the crystal growth in supersaturated solutions.
The temporal growth of the area fraction of GP for step
voltages was measured in order to compare the domain growth
dynamics of the GP with the Kolmogorov-Avrami model. By
applying the Kolmogorov-Avrami model to the experimental
results, we found that the growth dynamics of the GP for the
step voltage is not described as a domain growth phenomena,
but rather governed by a local transition from the rolls to
the GP.

As mentioned in Sec. I, the soft mode plays an important
role in the theoretical approaches for the convective pattern
formation. However, in the case where two or more states co-
exist, other approaches are desired. Such coexistent state often
appears in the transition between the ordered state and the
disordered one in nonequilibrium open systems. The system
in which the two states are separated by a well-defined bound-
ary is called spatiotemporal intermittency (STI) [33–36]. In
the STI, the shape of the boundary and the area fractions of
the both states fluctuate in space and time. The coexistence
of the stationary grid structures and the defect turbulence in
the present system is regarded as an STI one. From recent
progress in the studies of the STI, it has been accepted that
the transition to turbulence in shear flows is described by
the directed percolation model [37–40]. However, since the
ordered state emerges from the disordered state in the present
system in the transition to the GP, it is thought that the
GP should be regarded as a different type of STI from the
above ones.
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One may also think of exploiting the concept of metastabil-
ity for the coexistence of the two states. Usually alternation of
the stabilities of two states can be represented by deformation
of the double-well potential, which is induced by a change
of the control parameter and, subsequently, the subcritical
transition is realized. A Langevin-type equation with a poten-
tial function and a random force may be suitable to describe
the transition of the present GP system [41]. It is expected

that the construction of such type of phenomenological model
provides a hint for further understanding of STI and brings a
different concept to the field of pattern formation.
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