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Complex systems often exhibit multiple levels of organization covering a wide range of physical scales, so
the study of the hierarchical decomposition of their structure and function is frequently convenient. To better
understand this phenomenon, we introduce a generalization of information theory that works with hierarchical
partitions. We begin revisiting the recently introduced hierarchical mutual information (HMI), and show that it
can be written as a level by level summation of classical conditional mutual information terms. Then, we prove
that the HMI is bounded from above by the corresponding hierarchical joint entropy. In this way, in analogy to
the classical case, we derive hierarchical generalizations of many other classical information-theoretic quantities.
In particular, we prove that, as opposed to its classical counterpart, the hierarchical generalization of the variation
of information is not a metric distance, but it admits a transformation into one. Moreover, focusing on potential
applications of the existing developments of the theory, we show how to adjust by chance the HMI. We also
corroborate and analyze all the presented theoretical results with exhaustive numerical computations, and include
an illustrative application example of the introduced formalism. Finally, we mention some open problems that
should be eventually addressed for the proposed generalization of information theory to reach maturity.
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I. INTRODUCTION

Information theory plays an important role in physics at
the fundamental, theoretical, and application levels [1–4]. In
particular, Jaynes [5] showed how to derive the ensembles of
statistical physics from information theory, simply consider-
ing the energy of the system as the available information. The
approach of Jaynes found many applications. For example,
Park and Newman [6] extended it to complex networks, pro-
viding an unbiased framework for their analysis, which was
later refined to study online social networks, the international
trade network, and financial networks [7].

The renormalization group theory of statistical mechanics
reveals how information aggregates through a wide range
of physical scales giving rise to emergent phenomena [8].
Analogously, in the context of complex systems, multiple
levels of organization often emerge, and their study through
the hierarchical decomposition of their structure and function
is generally convenient. The study of complex phenomena
through hierarchical representations has found several appli-
cations [9–21]. Certainly, the generalization of information
theory to hierarchical representations is an inquiring research
topic and our paper contributes to its development.

Most results in classical information theory could be
summarized in a few definitions [22]. For instance, many
information-theoretic quantities can be derived from the def-
inition of mutual information. This is useful for the gen-
eralization of classical information theory. A paradigmatic
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case is found in quantum mechanics [3], where entropies
can be redefined as operators over a Hilbert space instead of
functionals over probability distributions. The quantum me-
chanical generalization of information theory has influential
consequences. For example, despite the fact that conditional
probabilities operate differently in quantum mechanics and
classical physics, many results in classical information-theory
remain true in the quantum case. In a sense, probabilities
only provide a particular form of encoding information about
partitions, and information theory goes beyond probability
theory. Since hierarchical partitions constitute a generaliza-
tion of partitions, the recently introduced hierarchical mutual
information (HMI) [23] conveys a natural starting point for
a corresponding generalization of information theory. This is
the approach we decided to follow.

Finding appropriate hierarchical decomposition of the
structure and function of a system is a challenging issue
[24–31]. Here, to detect statistically significant hierarchical
decomposition, the adequate comparison of hierarchical struc-
tures is of crucial importance. Several comparison methods
already exist, including tree-edit distance methods [32–34], ad
hoc methods [19,35,36], and information-theoretic methods
[23,37]. In this regard, the HMI is a generalization of the
traditional mutual information (MI) [38] to the hierarchical
case, and it has already found successful applications in
the comparison of hierarchical community structures [39,40].
Notice, however, that without an appropriate theoretical back-
ground, the HMI can be easily criticized as a similarity
measure [19]. For example, a well-known problem of the
nonhierarchical mutual information is the necessity of a null-
model adjustment [4,41–43]. As we show in this work, the
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problem persists in the hierarchical case, but, thanks to the
theoretical development we provide, we fix this inconvenience
by rendering an adjusted version of the HMI. Moreover, we
also derive a hierarchical information-theoretic metric dis-
tance [41], enabling a potential geometrization of the space of
hierarchical partitions. We also study the numerical properties
of the introduced similarity and distance quantities, including
a simple example application in hierarchical clustering.

Let us summarize the content of the forthcoming sections.
In Sec. II, we introduce some preliminary definitions and
revisit the HMI. In Sec. III, we present the main results. In
Sec. III A, we prove some fundamental properties of the HMI.
In Sec. III B, we use the HMI to introduce other information-
theoretic quantities for hierarchical-partitions. In particular,
we study the metric properties of the hierarchical variation
of information (HVI) and introduce a metric distance. We
also define and study the statistical properties of an adjusted
HMI (AHMI). In Sec. III C, we show a simple application
of the introduced framework. In Sec. IV we discuss some
important consequences deriving from the presented results
and discuss corresponding opportunities for future works.
Finally, in Sec. V we provide a summary of the contributions.

II. THEORY

A. Preliminary definitions

Let T denote a directed rooted tree. We say that t ∈ T when
t is a node of T . Let Tt be the set of children of node t ∈ T . If
Tt = ∅ then t is a leaf of T . Otherwise, it is an internal node
of T . Let �t denote the depth or topological distance between
t and the root of T . In particular, �t = 0 if t is the root. Let T�

be the set of all nodes of T at depth �. Clearly T�+1 = ∪t∈T�
Tt .

Let T t be the subtree obtained from t and its descendants
in T .

A hierarchical-partition T := {Ut : t ∈ T } of the universe
U := {1, . . . , n}, the set of the first n natural numbers, is
defined in terms of a rooted tree T and corresponding subsets
Ut ⊂ U satisfying

(i) ∪t ′∈Tt Ut ′ = Ut for all nonleaf t , and
(ii) Ut ′ ∩ Ut ′′ = ∅ for every pair of different t ′, t ′′ ∈ Tt .
For every nonleaf t , the set Tt := {Ut ′ : t ′ ∈ Tt } represents

a partition of Ut , and T� := {Ut : t ∈ T�} is the ordinary par-
tition of U determined by T at depth �. Furthermore, T t :=
{Ut ′ : t ′ ∈ T t } is the hierarchical-partition of the universe Ut

determined by the tree T t of root t . See Fig. 1 for a schematic
representation of a hierarchical-partition of the universe U =
{1, 2, . . . , 8}.

B. Hierarchical mutual information

The HMI [23] between two hierarchical-partitions T and
S of the same universe U reads

I (T ;S ) := I (T t0 ;Ss0 ), (1)

where t0 and s0 are the roots of trees T and S, respectively.
Here

I (T t ;Ss) := I (Tt ; Ss|ts)+
∑
t ′∈Tt

s′∈Ss

P(t ′s′|ts)I (T t ′
;Ss′

) (2)

1 2 3 4 5 6 7 8

1 4 5 8

1 5 8

2 3 6 7

5

4 2 6 3 7

1 8 2 6

FIG. 1. Schematic representation of a hierarchical-partition T of
the universe U = {1, 2, . . . , 8} with root a; five internal nodes includ-
ing a, b, and c; and six leaves including d, e, and f . Some leaves may
contain more than one element, e.g., Ue = {1, 8}. Different leaves
may exist at different depths �. For instance, leaf d is at depth � = 2
while leaf f is at depth � = 3. The subtree T b contains the nodes
b, c, d, e, and f . The set Tb contains the children c and d of b.

is a recursively defined expression for every pair of nodes
t ∈ T and s ∈ S with the same depth �t = �s. The proba-
bilities in P(t ′s′|ts) = P(t ′s′ts)/P(ts) are ultimately defined
from P(t ′s′ts) := |Ut ′ ∩ Us′ ∩ Ut ∩ Us|/|U | and the conven-
tion 0/0 = 0. The quantity

I (Tt ; Ss|ts) := H (Tt |ts) + H (Ss|ts) − H (Tt , Ss|ts), (3)

represents a mutual information between the standard parti-
tions Tt and Ts restricted to the subset Ut ∩ Us of the universe
U , and is defined in terms of the three entropies

H (Tt |ts) :=
∑
t ′∈Tt

−P(t ′|ts) ln P(t ′|ts), (4)

H (Ts|ts) :=
∑
s′∈Ss

−P(s′|ts) ln P(s′|ts), (5)

and

H (Tt , Ss|ts) :=
∑
t ′∈Tt

s′∈Ss

−P(t ′s′|ts) ln P(t ′s′|ts), (6)

where the convention 0 ln 0 = 0 is adopted. For details on how
to compute these quantities, please check our code [44].

III. RESULTS

For simplicity, we consider hierarchical-partitions T and
S with all leaves at depths � = L > 0. The results can be
easily generalized to trees with leaves at different depths at
the expense of using more complicated notation.

A. Properties of the HMI

It is convenient to begin rewriting the hierarchical mu-
tual information in the following alternative form, which
is useful for our purposes (see Appendix A for a detailed
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derivation)

I (T ;S ) = I (T t0 ;Ss0 )

=
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)I (Tt ; Ss|ts)

=
L−1∑
�=0

I (T�+1; S�+1|T�, S�), (7)

where P(ts) := P(ts|t0s0) and, as the reader can see, we
rewrote the HMI as a level by level summatory of classical
(i.e., nonhierarchical) conditional MIs. This is useful because
it allows us to study the difference between two hierarchical
partitions under a level by level basis [23]. Other methods
such as edit distances or ad hoc methods [19] do not offer
the possibility of studying the contribution of each vertex
or level of the hierarchy in an independent way. In partic-
ular, noninformative vertices or levels composed of trivial
partitions produce null contributions within the HMI, which
is convenient for the comparison of hierarchical partitions.
Later, in Sec. III C, we show the advantages of the properties
of the HMI in the analysis of an illustrative application.

Starting from Eq. (7), we prove the following property of
the HMI (see Appendix B for a detailed derivation)

0 � I (T ;S ) � I (T ; T ). (8)

In other words, this result states that the HMI between two
arbitrary hierarchical-partitions T and S of the same universe
U is smaller or equal to the mutual information between T
and itself (or analogously between S and itself) mimicking
in this way an analogous property that holds for the classical
mutual information [22].

Now we exploit the result of Eq. (8) to show that the HMI
can be properly normalized. Namely, if M(x, y) is any gen-
eralized mean [45] [like the arithmetic-mean M(x, y) = (x +
y)/2, the geometric-mean M(x, y) = √

xy, the max-mean
M(x, y) = max(x, y) or the min-mean M(x, y) = min(x, y)]
then the normalized HMI (NHMI)

i(T ;S ) := I (T ;S )

M[H (T ), H (S )]
(9)

satisfies 0 � i(T ;S ) � 1. Both inequalities follow from
Eq. (8).

B. Deriving other information-theoretic quantities

Given the HMI, hierarchical versions of other information-
theoretic quantities can be obtained by following the rules
of the standard classical case. For example, the hierarchical
entropy (HE) of a hierarchical-partition T can be defined as

H (T ) := I (T ; T ) =
L−1∑
�=0

H (T�+1|T�)

=
L−1∑
�=0

(H (T�+1, T�) − H (T�))

=
L−1∑
�=0

(H (T�+1) − H (T�))

= H (TL ), (10)

FIG. 2. Complementary cumulative distribution of inequalities
�V for the hierarchical variation of information V for different hi-
erarchy sizes n. Negative values exist, breaking triangular inequality,
although most of them are positive and over a wider range.

where we used that H (T�+1, T�) = H (T�+1) [see Eq. (D6)].
Similarly, we can write down the hierarchical joint entropy
(HJE) as

H (T ,S ) := H (T ) + H (S ) − I (T ;S ) (11)

and the hierarchical conditional entropy (HCE) as

H (T |S ) := H (T ,S ) − H (S ) = H (T ) − I (T ;S ). (12)

Furthermore, we can define the HVI as

V (T ;S ) := H (T |S ) + H (S|T )

= H (T ) + H (S ) − 2I (T ;S )

= H (T ,S ) − I (T ;S ). (13)

Because of Eq. (8), the properties H (T ,S ) � H (T ) �
H (T |S ) � 0 and V (T ;S ) � 0 follow, generalizing cor-
responding properties of the classical case. Unfortu-
nately, we found counterexamples violating the triangle
inequality for the HVI, failing to generalize its clas-
sical counterpart in this particular sense [41]. For in-
stance, for the hierarchical-partitions T = [[[1, 2], [3]], [4]],
S = [[2], [[3], [1, 4]]], and R = [[1], [2], [[3], [4]]], we find
V (T ;S ) + V (S;R) − V (T ;R) ≈ −0.17, which is a neg-
ative quantity. It is important to remark, however, that
the violation of the triangular inequality is relatively
weak. For instance, for n = 4 the maximum difference
is found to be ≈5.55 for T = [[[1], [2]], [[3], [4]]], S =
[[[1], [3]], [[2], [4]]], and R = [[[1], [2]], [[3], [4]]], which is
significantly larger than 0.17. In fact, as shown in Fig. 2 where
the complementary cumulative distribution of differences

�V (T ,S,R) := V (T ;S ) + V (S;R) − V (T ;R) (14)

is plotted for all T , S , and R without repeating the symmetric
cases �V (T ,S,R) and �V (R,S, T ), and for different sizes
n, the overall contribution of the negative values is small,
not only in magnitude but also in probability. Results for
larger values of n are not included since the number of triples
(T ,S,R) grows quickly with n, turning impractical their
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FIG. 3. Complementary cumulative distribution of inequalities
�dn for the distance metric dn derived from the hierarchical variation
of information V for different hierarchy sizes n. All values are
nonnegative in agreement with the theory.

exhaustive computation. See Appendix C for how to generate
all possible hierarchical-partitions for a given n.

Although the HVI fails to satisfy the triangular inequality,
the transformation

dn(T ,R) = 1 − e−n ln 2
2 V (T ,R) (15)

of V does it (see Appendix D for a detailed proof). In other
words, dn is a distance metric, so the geometrization of the set
of hierarchical-partitions is possible. We confirm this in Fig. 3
by running computations analogous to those of Fig. 2, but for
�dn instead of �V . Notice, however, that the distance metric
dn is nonuniversal, because it depends on n. In fact, for n →
∞ it holds dn(T ;S ) → 1 − δT ,S which is a trivial distance
metric (known as the discrete metric) that can only distinguish
between equality and nonequality. These properties follow
because, for fixed-size n, the nonzero V ’s are bounded from
below by a finite positive quantity that tends to zero when
n → ∞. We also remark that other concave growing functions
besides that of Eq. (15) [or more specifically Eq. (D1)] can
be used to obtain essentially the same result, i.e., a distance
metric.

Although the classical VI is a distance metric (which is a
desirable property for the quantitative comparison of entities)
it also presents some limitations [46]. Hence, besides the HVI,
the HMI, and the NHMI, it is convenient to consider other
information-theoretic alternatives for the comparison of hier-
archies. This is the case of the AMI [42], which is devised to
compensate for the biases that random coincidences produce
on the NMI, and which we generalize into the hierarchical
case by following the original definition recipe

A(T ;S ) := I (T ;S ) − 〈I (T ;S )〉
M[H (T ), H (S )] − 〈I (T ;S )〉 . (16)

We called the generalization, the AHMI. The definition of
the AHMI requires the definition of a hierarchical version
(EHMI)

〈I (T ;S )〉 :=
∑
R,Q

P(R,Q|T ,S )I (R;Q) (17)

of the expected mutual information (EMI) [42]. Here, the
distribution P(R,Q|T ,S ) represents a reference null model
for the randomization of a pair of hierarchical-partitions. Like
in the original classical case [42], we define the distribution in
terms of the well-known permutation model. It is important to
remark, however, that other alternatives for the classical case
have been recently proposed [4].

To describe the permutation model, let us first introduce
some definitions. A permutation τ is a bijection e ↔ τ (e) over
U . We can define τT := {τUt : t ∈ T } as the hierarchical-
partition of the permuted elements where τUt := {τ (e) : e ∈
Ut } for all t ∈ T . In this way, τT� := {τUr : r ∈ T�} becomes
the partition emerging at depth � obtained from the permuted
elements.

Now we are ready to define the permutation model for
hierarchical-partitions. Consider a pair of permutations τ and
σ over U acting on corresponding hierarchical-partitions T
and S . The permutation model is defined as

P(R,Q|T ,S ) := 1

(n!)2

∑
τ,σ

δR,τT δQ,σS . (18)

In this way, Eq. (17) can be written as

〈I (T ;S )〉 = 1

(n!)2

∑
τ,σ

I (τT ; σS ) = 1

n!

∑
ρ

I (ρT ;S ), (19)

where the simplification ρ = τσ−1 can be used because the
labeling of the elements in U is arbitrary.

The exact computation of Eq. (19) is expensive, even if the
expressions are written in terms of contingency tables and cor-
responding generalized multivariate two-way hypergeometric
distributions. This is because, at variance with the classical
case, independence among random variables is compromised.
Hence, we approximate the EHMI by sampling permutations
ρ until the relative error of the mean falls below 0.01.

In Fig. 4 we show results concerning how similarities
occurring by chance result in nonnegligible values of the
EHMI for randomly generated hierarchical-partitions. The
cyan curve of crosses depicts the average of the HMI between
pairs of randomly generated hierarchical-partitions of n ele-
ments. In Appendix E we describe the algorithm we use to
randomly sample hierarchical-partitions of n elements. The
previous curve overlaps with the black one of open circles
corresponding to the average of the EHMI between the same
pairs of randomly generated hierarchical-partitions. This re-
sult indicates that the permutation model is a good null model
for the comparison of pairs of hierarchical-partitions with-
out correlations. Moreover, these curves exhibit significant
positive values, indicating that the HMI detects similarities
occurring just by chance between the randomly generated
hierarchical-partitions. To determine how significant these
values are, the curve of the magenta solid circles corresponds
to the average of the hierarchical entropies of the generated
hierarchical-partitions. As can be seen, the averaged hierar-
chical entropy lies significantly above the curve of the EHMI.
On the other hand, their ratio, which is a quantity in [0,1], is
≈0.3 over the whole range of studied sizes, as indicated by the
green curve of solid squares. In other words, the similarities
by chance affect nonnegligibly the HMI. The curve of open
blue squares depicts the averaged EHMI but for S = T . The
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FIG. 4. How similarity, by chance, affects the hierarchical mu-
tual information (HMI) I . In cyan crosses, values of I averaged
by sampling pairs of randomly generated hierarchical-partitions T
and S of the universe with n elements. In solid magenta circles,
the average hierarchical entropy over the sampled T s. In open
black circles, the expected hierarchical mutual information (EHMI)
averaged over the same pairs of partitions. In solid green squares, the
ratio between the first and the second curves. In open blue squares,
the EHMI for T = S averaged over T . Each point is averaged by
sampling 1000 pairs of randomly generated hierarchical-partitions.
The EHMI is computed by sampling permutations ρ until the relative
standard error of the mean falls below 0.01.

curve lies above but follows closely that of the EHMI between
different hierarchical-partitions. This indicates that the effect
of a randomized structure has a marginal impact besides that
of the randomization of labels.

In Fig. 5 we show how the HMI between two hierarchical-
partitions T and S decays with k, when S is obtained from
shuffling the identity of k of the elements in U . Here, the HMI

FIG. 5. Average hierarchical mutual information (HMI) I (solid)
and adjusted hierarchical mutual information (AHMI) A (dotted)
between randomly generated hierarchical-partitions T and corre-
sponding hierarchical-partitions S obtained from T by randomly
shuffling the identity of k of the elements in U . Different symbols
represent hierarchical-partitions of different sizes n. Each point is
averaged over 10 000 samples of T . The EHMI within the AHMI is
computed as in Fig. 4.

is averaged by sampling randomly generated hierarchical-
partitions T at each n and k. As expected, the average HMI
decays as the imposed decorrelation increases. In fact, for
k = n the obtained values match those of the EHMI (blue
curve of open squares in Fig. 4). In the figure, we also show
the AHMI as a function of k for the different n. Notice how, at
difference with the HMI, the AHMI goes from A = 1 at k = 0
to A = 0 at k = n.

The previous results highlight the importance of the
AHMI, in the sense that it conveys as a less biased measure
of similarity as compared to the HMI.

C. Example application

Let us show a simple example application of the presented
framework. The small animals dataset (see [47], p. 295)
considers 6 boolean features for 20 rather arbitrarily selected
animal species. Within the 300 entries of the species-features
boolean matrix, there are 5 missing or unspecified values. In
our example, we exploit the HMI and the HVI to infer the
unspecified values and to analyze how the variation of these
values affects the hierarchical classification of the species.

We generate 25 = 32 variants of the species-features ma-
trix by setting candidate values to the unspecified features.
From the matrices, we compute 32 corresponding hierarchical
clusterings using the average-linkage clusterization algorithm
equipped with the Manhattan distance [47]. Then, by remov-
ing the splitting distances, we convert the hierarchical clus-
terings into hierarchical partitions. Here, nonbinary partitions
result from degenerate splitting distances. The obtained en-
semble of 32 hierarchical partitions embodies the uncertainty
generated by the missing features.

The eccentricity of the αth hierarchical partition Tα is
defined by Cα := (1/32)

∑
β V (Tα; Tβ ), i.e., it is the average

HVI between Tα and the other hierarchical partitions in the
ensemble. The central hierarchical partition T̂ is the one
minimizing the eccentricity, and it represents a parsimonious
inference of the unspecified features. The inference predicts
that lobsters live in groups while frogs and salamanders do
not, and that lions belong to an endangered species while
spiders do not. These are reasonable predictions.

To see how informative is each vertex of the most parsi-
monious hierarchical partition, we study the corresponding
distribution of terms I (T̂ t ; T s

α ) [see Eq. (2)] generated by
the ensemble. Here, we consider the different pairs of same
level vertices t and s found in the hierarchical partitions T̂
and Tα , respectively, for the different α = 1, . . . , 32. From
the distribution of values of I (T̂ t ; T s

α ), we compute three
statistical estimators at each vertex t of T̂ . The magnitudes of
these values are depicted by the color intensities of Fig. 6. The
mean is in panel a, the standard deviation in Fig. 6(b), and the
standard deviation relative to the mean in Fig. 6(c). The largest
values of the mean and the standard deviation are found on the
upper vertices since they correspond to the splitting of large
groups of species, which produce large information gains.
On the other hand, the higher relative uncertainty is found
in the vertices at the bottom (excepting leaves) since these
vertices participate in the splitting of significantly different
small groups of species as α varies.
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(a)

(b)

(c)

FIG. 6. All panels show the most parsimonious hierarchical
partition T̂ of 20 animal species classified by 6 boolean features.
The most parsimonious hierarchical partition is selected among the
25 = 32 candidates generated by varying the truth table of the five
unspecified feature values found in the dataset. All hierarchical
partitions in the ensemble are obtained from corresponding hier-
archical clusterings computed with the average-linkage algorithm
with Manhattan distance. The selection minimizes the average HVI
between the candidate hierarchical partition and the remaining ones.
The color intensities indicate statistical values of the HMI between
the vertices of T̂ and the vertices of all the hierarchical partitions in
the ensemble. The mean in panel (a), the standard deviation in (b),
and the standard deviation relative to the mean in (c). As can be seen,
uncertainty accumulates on top of the hierarchy since the vertices
split large groups of species. Relative uncertainty accumulates on the
bottom splits.

IV. DISCUSSION

Our work shows that many similarities exist between
classical information theory and the proposed generalization.
In this way, it significantly advances the generalization of
information theory to hierarchical partitions. We remark, how-
ever, that as with the quantum mechanical generalizations,
significant differences also exist. For instance, according to
Eq. (10), multiple hierarchical partitions maximize the hier-
archical entropy, as only the partition defined at the leaves
contributes to the maximization, while the contribution of the
internal levels produces no effect. This result has relevant
consequences. For example, a straightforward generalization
of the MaxEnt principle [22] becomes ill-defined. On the
other hand, a slightly different reformulation of the princi-
ple solves the issue. Namely, MaxEnt must be replaced by
the maximization of the HMI with a reference hierarchical
partition. Since the classical MaxEnt is broadly applied in
physics, our work can stimulate analogous contributions for
the hierarchical case. Another significant difference concerns
the HVI. Unlike its classical counterpart, we found that the
HVI violates the triangular inequality. On the other hand, we
also found a transformation dn of the HVI satisfying the metric
properties, consequently enabling the geometrization of the
space of hierarchical partitions, although not in a universal
way because the transformation is size-dependent.

Despite the significant contribution of our work, many
important questions remain open for future investigation. For
instance, the cross-entropy plays an important role in the
classical case. It enables the definition of the information
divergences, from where crucial results within classical in-
formation theory can be proven, such as the strong-additivity
theorem [3]. Our work provides no hierarchical generalization
of the cross-entropy, nor the divergences and the properties
deriving from them. It may be possible, however, a potentially
equivalent proof of the monotonicity of the HMI. Another
open research question is the generalization of the HMI to the
multivariate case. Finally, how the generalization of informa-
tion theory is related to encoding is also a topic for future
research. Progress on all these open issues must be achieved
for the theory to mature.

V. CONCLUSION

In several contexts of complex systems, information the-
ory, and statistical physics appear as an interwoven point of
view, starting from the work of Jaynes [5]. Nevertheless, the
study of an extension to hierarchical systems, while being cru-
cial, for instance, for the comparison of various hierarchical
structures, has been limited [23]. In this work, we proposed
the generalization of information theory for hierarchical-
partitions. We analytically show that the HMI generalizes an
important inequality of the classical non-hierarchical case. We
derive other information-theoretic quantities from the HMI:
the hierarchical entropy, the hierarchical conditional entropy,
the hierarchical variation of information (HVI), and the ad-
justed hierarchical mutual information (AHMI). We studied
the metric properties of the HVI, finding counterexamples
violating the triangular inequality, and thus showing that the
HVI fails to have the metric property of its nonhierarchical
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analogous. On the other hand, we found a transformation dn

of the HVI satisfying the metric properties, and thus enabling
a geometrization of the space of hierarchical partitions. Addi-
tionally, we supported the analytical findings with correspond-
ing numerical experiments and an illustrative application with
the hierarchical clustering of animal species. We offer open-
source access to our code [44], including the code for the
generation of hierarchical-partitions.

Our work opens new possibilities in the study of hierar-
chically organized physical systems, from the information-
theoretic side, the statistical side, as well as from the appli-
cations point of view. From the theoretical point of view, we
outlined several topics for future research that could fur-
ther contribute to the development of the generalization of
information theory for hierarchical partitions. For instance,
future studies may consider to incorporate a multivariate ex-
tension, the hierarchical cross-entropy, and the generalization

of related divergences. From the statistical point of view,
future research may consider the generalization of the MaxEnt
principle to the hierarchical case. Finally, from the application
point of view, it would be interesting to perform a compar-
ative analysis including the information-theoretic metrics or,
among similar possibilities, to use them to compute consensus
taxonomic and phylogenetic trees [20,48].
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APPENDIX A: REWRITING THE HMI

It is convenient to begin rewriting the hierarchical mutual information in the following alternative form, which is more
convenient for our purposes:

I (T ;S ) = I (T t0 ;Ss0 )

= I
(
Tt0 ; Ss0 |t0s0

) +
∑

t1∈Tt0 ,s1∈Ss0

P(t1s1|t0s0)

⎧⎨
⎩I (Tt1 ; Ss1 |t1s1) +

∑
t2∈Tt1 ,s2∈Ss1

P(t2s2|t1s1)I
(
Tt2 ;Ss2

)⎫⎬⎭
= I

(
Tt0 ; Ss0 |t0s0

) +
∑

t1∈T1,s1∈S1

P(t1s1|t0s0)I
(
Tt1 ; Ss1 |t1s1

) +
∑

t2∈T2,s2∈S2

P(t2s2|t0s0)I
(
Tt2 ;Ss2

)
...

=
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)I (Tt ; Ss|ts). (A1)

Here, we used the definition P(ts) := P(ts|t0s0) = |Ut ∩ Us|/|U | = nts/n. Similarly∑
t∈T�,s∈S�

P(ts)H (Tt , Ss|ts) =
∑

t∈T�,s∈S�

P(ts)
∑

t ′∈Tt ,s′∈Ss

−P(t ′s′|ts) ln P(t ′s′|ts)

=
∑

t∈T�,s∈S�

∑
t ′∈Tt ,s′∈Ss

−P(t ′s′ts)[ln P(t ′s′ts) − ln P(ts)]

=
∑

t∈T�,s∈S�

∑
t ′∈T�+1,s′∈S�+1

−P(t ′s′ts) ln P(t ′s′ts) −
∑

t∈T�,s∈S�

∑
t ′∈T�+1,s′∈S�+1

−P(t ′s′ts) ln P(ts)

=
∑

t∈T�,s∈S�

∑
t ′∈T�+1,s′∈S�+1

−P(t ′s′ts) ln P(t ′s′ts) −
∑

t∈T�,s∈S�

−P(ts) ln P(ts)

= H (T�+1, S�+1, T�, S�) − H (T�, S�)

= H (T�+1, S�+1|T�, S�), (A2)

where we used that
∑

t∈T�

∑
t ′∈T�+1

≡ ∑
t∈T�

(
∑

t ′∈Tt
+∑

t ′∈T�+1/Tt
) ≡ ∑

t∈T�
(
∑

t ′∈Tt
+0) because P(t ′s′ts) = 0 whenever t ′ is not

a child of t . The entropies in the last two lines are written in terms of the standard nonhierarchical or classical definition, for
which

H (X ′,Y ′|X,Y ) =
∑

x∈X,y∈Y

P(xy)
∑

x′∈X ′,y′∈Y ′
−P(x′y′|xy) ln P(x′y′|xy). (A3)

062148-7



PEROTTI, ALMEIRA, AND SARACCO PHYSICAL REVIEW E 101, 062148 (2020)

Finally, combining Eqs. (A1) and (A2) we arrive at

I (T ;S ) =
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)I (Tt ; Ss|ts) =
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)[H (Tt |ts) + H (Ss|ts) − H (Tt , Ss|ts)]

=
L−1∑
�=0

[H (T�+1|T�, S�) + H (S�+1|T�, S�) − H (T�+1, S�+1|T�, S�)] =
L−1∑
�=0

I (T�+1; S�+1|T�, S�). (A4)

APPENDIX B: HMI INEQUALITY

The first inequality in Eq. (8) follows because I (T�+1; S�+1|T�, S�) � 0 for any �. For the second inequality, we start from
Eq. (A1). We can write

I (T ;S ) =
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)I (Tt ; Ss|ts) �
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)H (Tt |ts)

=
L−1∑
�=0

∑
t∈T�,s∈S�

P(ts)
∑
t ′∈Tt

−P(t ′|ts) ln P(t ′|ts) =
L−1∑
�=0

∑
s∈S�

∑
t∈T�

∑
t ′∈Tt

−P(t ′s) ln P(t ′|ts)

�
L−1∑
�=0

∑
t∈T�

∑
t ′∈Tt

−
(∑

s∈S�

P(t ′s)

)
ln

(∑
s∈S�

P(t ′s)∑
s∈S�

P(ts)

)

=
L−1∑
�=0

∑
t∈T�

P(t )
∑
t ′∈Tt

−P(t ′|t ) ln P(t ′|t ) =
L−1∑
�=0

∑
t∈T�

P(t )H (Tt |t ) =
L−1∑
�=0

H (T�+1|T�)

=
L−1∑
�=0

[H (T�+1|T�, T�) + H (T�+1|T�, T�) − H (T�+1, T�+1|T�, T�)] =
L−1∑
�=0

I (T�+1; T�+1|T�, T�) = I (T ; T ). (B1)

Here, in the first inequality, we used a well-known property of the entropy, while in the second inequality, we used the log-sum
inequality [22].

APPENDIX C: GENERATING HIERARCHICAL
PARTITIONS

Before showing how to generate all hierarchical-partitions
of a set, let us first review a way to generate all standard
partitions (see Sec. 7.2.1.7 of [50]). Consider we have a way
to generate all partitions of the set Un := {1, 2, . . . , n}. Then,
we can easily generate all the partitions of the set Un+1 =
{1, 2, . . . , n, n + 1} as follows. For each partition of the set
Un, generate all the partitions that can be obtained by adding
the element n + 1 to each part P together with extending
the partition with the part {n + 1}. For example, given the
partition {{1, 2}, {3}} of {1, 2, 3}, then we generate the par-
titions {{1, 2, 4}, {3}}, {{1, 2}, {3, 4}}, and {{1, 2}, {3}, {4}} of
{1, 2, 3, 4}. In other words, this algorithm recursively imple-
ments induction.

To generate hierarchical-partitions, we follow a similar
procedure to the one discussed for standard partitions. Con-
sider we have an algorithm to generate all hierarchical-
partitions of Un. Then, for each hierarchical-partition T of Un,
we generate the hierarchical-partitions T ′ of Un+1 that can be
obtained by applying the following operations to each of the
nodes t ∈ T :

(1) If t is a leaf, add n + 1 to Ut .
(2) If t is not a leaf, add the child t ′ to t with Ut ′ =

{n + 1}.
(3) Replace t by a new node t ′′ with t and t ′ as children.
For example, the hierarchical-partitions of U2 = {1, 2} are

{1, 2} and {{1}, {2}}. Then the following applies.

Operation 1 applied to the first hierarchical-partition re-
sults in {1, 2, 3}. Operation 1 applied to the second results
in {{1, 3}, {2}} and {{1}, {2, 3}}. Operation 2 on the second,
results in the hierarchical-partitions {{1}, {2}, {3}}. Opera-
tion 3 on the first, results in {{1, 2}, {3}}. Operation 3 on
the second, results in {{{1}, {2}}, {3}}, {{{1}, {3}}, {2}}, and
{{1}, {{2}, {3}}}. For more details, please check our code for
an implementation of the algorithm [44].

APPENDIX D: FORCING TRIANGULAR INEQUALITY
FOR THE HIERARCHICAL VARIATION

OF INFORMATION

Let

dV0 (T ;S ) := 1 − e−V (T ;S )/V0 (D1)

be defined for some arbitrary V0 > 0. Then, for an appropriate
choice of V0, dV0 becomes a distance metric satisfying the
triangular inequality. The proof is as follows. First, dV0 is
clearly a distance since (i) dV0 is a growing function of V ,
(ii) dV0 (T ,S ) = 0 ⇔ T = S when V0 > 0, and (iii) dV0 is
symmetric in its arguments. It remains to be shown that dV0

satisfies the triangular inequality for an appropriate choice of
V0. The triangular inequality for dV0 reads

�dV0 (T ;S;R) := dV0 (T ;S ) + dV0 (S;R) − dV0 (T ;R)

� 1 − e−V (T ;S )/V0 − e−V (S;R)/V0

� 1 − 2e− min{V (T ;S ),V (S;R)}/V0 . (D2)
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We can show that, for an appropriate choice of V0,
last line is always nonnegative, given that nonzero val-
ues of V cannot be arbitrarily small. Thus, let us find
a lower bound for the nonzero values of the Variation
of Information between hierarchical-partitions. To do so,

first, we notice that the variation of information between
hierarchical-partitions can be decomposed into a sum-
mation of nonnegative quantities over the different lev-
els. Namely, following Eqs. (7), (10), and (13), we can
write

V (T ;S ) =
L−1∑
�=0

[H (T�+1|T�) + H (S�+1|S�) − 2I (T�+1; S�+1|T�, S�)] =:
L−1∑
�=0

V (T�+1; S�+1|T�, S�), (D3)

with V (T�+1; S�+1|T�, S�) � 0 for every � due to Eq. (8). Now, if the hierarchical-partitions T and S are equal up to level �′
included (i.e., as stochastic variables, T� = S� for all � � �′) then

I (T ;S ) =
�′∑

�=0

I (T�+1; S�+1|T�, S�) +
L−1∑

�=�′+1

I (T�+1; S�+1|T�, S�) = I (T�′+1; S�′+1|T0, S0) +
L−1∑

�=�′+1

I (T�+1; S�+1|T�, S�) (D4)

because
�′∑

�=0

I (T�+1; S�+1|T�, S�) = I (T�′+1; S�′+1|T�′ , S�′ ) +
�′−1∑
�=0

I (T�+1; S�+1|T�, S�) = I (T�′+1; S�′+1|T�′ , S�′ ) +
�′−1∑
�=0

H (T�+1|T�)

= H (T�′+1|T�′ ) + H (S�′+1|S�′ ) − H (T�′+1, S�′+1|S�′ ) +
�′−1∑
�=0

[H (T�+1, T�) − H (T�)]

= H (T�′+1, T�′ ) − H (T�′ ) + H (S�′+1, S�′ ) − H (S�′ ) − H (T�′+1, S�′+1, T�′ , S�′ ) + H (T�′ , S�′ )

+
�′−1∑
�=0

[H (T�+1, T�) − H (T�)]

= H (T�′+1) − H (T�′ ) + H (S�′+1) − H (S�′ ) − H (T�′+1, S�′+1) + H (S�′ ) + H (T�′ ) − H (T0)

= H (T�′+1) + H (S�′+1) − H (T�′+1, S�′+1) − 0 = I (T�′+1; S�′+1|T0, S0). (D5)

Here, we used identities such as

H (T�+1, T�) =
∑
t∈T�

∑
t ′∈T�+1

−P(t ′t ) ln P(t ′t )

= −
∑
t∈T�

⎛
⎝∑

t ′∈Tt

P(t ′t ) ln P(t ′t ) +
∑

t ′∈T�+1/Tt

P(t ′t ) ln P(t ′t )

⎞
⎠

= −
∑
t∈T�

( ∑
t ′∈Tt

P(t ′t ) ln P(t ′t ) + 0

)
, because if t ′ /∈ Tt then P(t ′t ) = 0,

= −
∑
t∈T�

∑
t ′∈Tt

P(t ′t ) ln P(t ′t )

= −
∑
t∈T�

∑
t ′∈Tt

P(t ′t ) ln P(t ′), because P(t ′t ) = P(t ′) since Ut ′ ⊆ Ut whenever t ′ ∈ Tt ,

= −
∑
t∈T�

∑
t ′∈T�+1

P(t ′t ) ln P(t ′), because of the same trick as in the second and third lines,

= −
∑

t ′∈T�+1

ln P(t ′)
∑
t∈T�

P(t ′t ) = −
∑

t ′∈T�+1

P(t ′) ln P(t ′) = H (T�+1), (D6)

and H (T�′ , S�′ ) = H (S�′ ). Combining Eqs. (D3) and (D5) we
can write

V (T ;S ) = V (T�′+1; S�′+1|T0, S0) +
L−1∑

�=�′+1

V (T�+1; S�+1|T�, S�).

(D7)

Now, as shown in [41], the variation of information between
two different classical partitions cannot be smaller than 2/n
when the size of the universe is n = |U |. In consequence,
since T0 = S0 = U , then V (T ;S ) � V (T�′+1; S�′+1|T0, S0) �
2/n. Finally, from this lower bound and Eq. (D2) we have
�dV0 (T ;S;R) � 1 − 2e−2/(nV0 ) from where, by setting the
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right-hand side (r.h.s.) to zero, we obtain V0 = 2/(n ln 2). In
other words, we showed that

dn(T ;S ) := 1 − e−n
ln 2
2 V (T ;S ) (D8)

satisfies the triangular inequality and thus is a distance metric
with image in [0, dmax] with dmax � 1.

APPENDIX E: GENERATING RANDOM
HIERARCHICAL-PARTITIONS

To generate or sample random hierarchical-partitions in
a nonnecessarily uniform manner, we propose a recursive
application of an algorithm to generate random partitions from
a set of elements U .

To generate random partitions of a set U of n elements, we
first draw a number z of “splitters” uniformly at random from
the set {0, 1, 2, . . . , n}. Then, we generate a sequence concate-
nating the z splitters | with the n elements of U . Then, we
randomly shuffle the sequence. Then, we split the sequence
by removing the splitters and use the obtained nonempty parts
to construct a partition. For example, if U = {1, 2, 3, 4, 5}
and z = 3, then we generate the sequence |||12345 which
after shuffling may result in 12|3||45 from where the partition
{{1, 2}, {3}, {4, 5}} is obtained.

To generate random hierarchical-partitions, we recursively
apply the previous algorithm, first to U , then to the obtained
parts of U , then to the parts of the parts, and so on until
nondivisible sets are obtained. For details please check our
code [44].
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