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We study random walks with stochastic resetting to the initial position on arbitrary networks. We obtain
the stationary probability distribution as well as the mean and global first passage times, which allow us to
characterize the effect of resetting on the capacity of a random walker to reach a particular target or to explore
a finite network. We apply the results to rings, Cayley trees, and random and complex networks. Our formalism
holds for undirected networks and can be implemented from the spectral properties of the random walk without
resetting, providing a tool to analyze the search efficiency in different structures with the small-world property
or communities. In this way, we extend the study of resetting processes to the domain of networks.
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I. INTRODUCTION

When a stochastic process is occasionally reset, i.e., in-
terrupted and restarted from the initial state, its occupation
probability in the configuration space is strongly altered.
Interestingly, the mean time needed to reach a given target
state for the first time can often be minimized with respect
to the resetting rate [1–4]. Random search strategies can
thus be improved by resetting, a fact that finds applications
in statistical physics [5,6], computer science [7], enzymatic
reactions [8], or foraging ecology [9–11]. In recent years,
different types of resetting protocols have been considered
[12–15] on a variety of underlying processes, such as Brow-
nian motion [1,2,16], processes with a drift [17,18] or mod-
els of anomalous diffusion [19–22]. All these problems are
more conveniently studied in relatively simple search spaces,
mainly, the semi-infinite line, RD [23], bounded domains in
one dimension (1D) and in 2D [24–26], or on infinite regular
lattices [9,27,28].

Nevertheless, random walks and related dynamical pro-
cesses on more complex structures such as networks are at
the foundation of statistical physics [29–32] and of relevance
for a broad range of phenomena and applications [33,34].
Examples include data science [35,36], synchronization [37],
epidemic spreading [38,39], human mobility [40–42], ranking
and searching on the web [43–45], among others [46,47].
In particular, random walks on networks are relevant to
the understanding of contact networks between people [41],
which is crucial in problems of contact tracing in epidemics
such as the current coronavirus disease COVID-19 pandemic
[48]. Whereas lattice random walks have been explored for
decades [49–51], the study of local random walks on complex
networks is more recent and was introduced by Noh and
Rieger [31]. Network exploration by random walks is now
better understood [31,47,52], including nonlocal strategies
with long-range hops between distant nodes [53–59].

The mean first passage times (MFPT) of random walks
subject to resetting have been studied on small graphs or
particular social networks [60,61], but their properties on

arbitrary networks remain little understood, despite their im-
portance. Figure 1 illustrates a dynamics defined by some
transition probabilities between adjacent nodes and a resetting
probability γ to a particular node r. Three important features
of many complex and real-world networks are as follows:
their finiteness; the small-world effect, characterized by a
logarithmic growth of the diameter with the number of nodes
[62]; and the presence of communities, i.e., subsets of nodes
more densely connected to each other than to the other nodes
[63]. Both the network architecture and the choice of the
resetting node should impact significantly the MFPT to a
given target node, and more generally, the capacity of the
walker to explore the whole network.

In this contribution, we develop an extension to arbitrary
network topology of the diffusion problem with stochastic
resetting of Refs. [1,19]. We deduce general exact expressions
for the stationary probability distribution and the first passage
times. The analytical results can be expressed in terms of
the eigenvalues and eigenvectors of the transition matrix that
generates the random walk without resetting. The methods

FIG. 1. A random walker with resetting can be illustrated as a
tourist visiting places in a street network. In the present model, the
possible movements from a node l are as follows: a random walk step
to an adjacent node (with probability 1 − γ ) or a relocation to a fixed
node r (the hotel) with probability γ , from which the exploration of
the network is resumed.
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introduced here can be used to study the effects of resetting on
large networks. We apply our findings to regular lattices, trees,
random networks, and several well-known complex networks.

II. GENERAL THEORY

We study connected (single-component) networks of N
nodes labeled by i = 1, . . . , N , and of adjacency matrix A
whose elements are Ai j = Aji = 1 if there is a link between
the nodes i and j, and Ai j = Aji = 0 otherwise. The links are
thus undirected and we also set Aii = 0 to avoid self-loops.
The degree of the node i is denoted as ki = ∑N

l=1 Ail . On this
structure, we consider a random walker in discrete time and
starting at t = 0 from i. The walker performs at t = 1, 2, . . .

two types of steps: (1) a jump to one of the neighbors of the
node currently occupied (all neighbors being equiprobable)
and (2) a resetting to a fixed node r. Actions (1) and (2) occur
with probability 1 − γ and γ , respectively.

A. Occupation probability

Without resetting (γ = 0), the probability to hop to m from
l is wl→m = Alm/kl . This random walk is described by the
transition matrix W with elements wl→m for l, m = 1, . . . , N
[31]. With the incorporation of resetting, the occupation prob-
ability follows the master equation

Pi j (t + 1; r, γ ) = (1 − γ )
N∑

l=1

Pil (t ; r, γ )wl→ j + γ δr j, (1)

where Pi j (t ; r, γ ) denotes the probability to find the walker at
j at time t , given the initial position i, resetting node r and
resetting probability γ (δr j denotes the Kronecker delta). The
first term on the right-hand side of Eq. (1) represents hops
between adjacent nodes whereas the second term describes
resetting to r. Let us define the transition probability matrix
�(r, γ ) with elements πl→m(r, γ ) ≡ (1 − γ )wl→m + γ δrm.
Equation (1) takes the simpler form of a Markov chain

Pi j (t + 1; r, γ ) =
N∑

l=1

Pil (t ; r, γ )πl→ j (r, γ ), (2)

where
∑N

m=1 πl→m(r, γ ) = 1. The matrix �(r, γ ) completely
entails the dynamics with resetting. As we are considering
connected undirected networks, the process defined by Eq. (2)
is able to reach all the nodes of the network if the resetting
probability γ is <1. Like W, �(r, γ ) is a stochastic matrix:
Knowing its eigenvalues and eigenvectors allows the calcula-
tion of the occupation probability at any time, including the
stationary distribution, as well as the mean first passage time
to any node.

We first analyze how the eigenvalues and eigenvectors of
�(r, γ ) are related to those of W, which is recovered in
the limit γ = 0 and can be readily computed numerically
or analytically in some cases. Employing Dirac’s notation,
we denote the eigenvalues of the matrix W, which is not
symmetric in general, as λl (where λ1 = 1), and its right
and left eigenvectors as |φl〉 and 〈φ̄l |, respectively, for l =
1, 2, . . . , N . Similarly, the eigenvalues of �(r, γ ) are denoted
as ζl (r, γ ) and its eigenvectors as |ψl (r, γ )〉 and 〈ψ̄l (r, γ )|.

Let us analyze the connection between the eigenvalues λl

and ζl (r, γ ). We may use the identity

�(r, γ ) = (1 − γ )W + γ�(r), (3)

where the elements of the matrix �(r) are 	lm(r) = δmr .
Namely, �(r) has entries 1 in the rth column and null entries
everywhere else. We obtain (see Appendix 1 for details)

ζl (r, γ ) =
{

1 for l = 1,

(1 − γ )λl for l = 2, 3, . . . , N.
(4)

This result reveals that the eigenvalues are independent of the
choice of the resetting node r. The left eigenvectors of �(r, γ )
are further given by (see also Appendix 1 for details)

〈ψ̄1(r, γ )| = 〈φ̄1| +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 〈φ̄m|, (5)

whereas 〈ψ̄l (r, γ )| = 〈φ̄l | for l = 2, . . . , N . Similarly, the
right eigenvectors are given by |ψ1(r, γ )〉 = |φ1〉 and

|ψl (r, γ )〉 = |φl〉 − γ

1 − (1 − γ )λl

〈r|φl〉
〈r|φ1〉 |φ1〉, (6)

for l = 2, . . . , N , where |r〉 denotes the vector with all
its components equal to 0 except the rth one, which
is equal to 1. With the left and right eigenvectors at
hand, one can use the spectral representation �(r, γ ) =∑N

l=1 ζl (r, γ )|ψl (r, γ )〉〈ψ̄l (r, γ )|.
This spectral approach for discrete-time random walks is

also valid for continuous-time random walks (this case is
analyzed in Appendix 2). At unit hopping rate, the dynamics is
defined by the modified Laplacian L̂(r, γ ) = 1 − �(r, γ ) (1
denotes the N × N identity matrix) which has the same eigen-
vectors of �(r, γ ) and eigenvalues ξm(r, γ ) = 1 − ζm(r, γ ).
Our findings for the spectral properties of L̂(r, γ ) coincide
with the general approach of Ref. [64] in the context of
classical and quantum transport with resetting.

In the discrete case, the occupation probability of the
process described by Eq. (2) is given by

Pi j (t ; r, γ ) = 〈i|�(r, γ )t | j〉. (7)

We deduce

Pi j (t ; r, γ ) = 〈i|ψ1(r, γ )〉〈ψ̄1(r, γ )| j〉

+
N∑

l=2

[(1 − γ )λl ]
t 〈i|ψl (r, γ )〉〈ψ̄l (r, γ )| j〉. (8)

The first term in Eq. (8) defines the long-time, station-
ary distribution P∞

j (r, γ ) = 〈i|ψ1(r, γ )〉〈ψ̄1(r, γ )| j〉. By us-
ing Eq. (5) and |ψ1(r, γ )〉 = |φ1〉, we obtain

P∞
j (r, γ ) = k j∑N

m=1 km

+ γ

N∑
l=2

〈r|φl〉〈φ̄l | j〉
1 − (1 − γ )λl

, (9)

where we have used the identity 〈i|φ1〉〈φ̄1| j〉 = k j∑N
m=1 km

for

the equilibrium distribution of the usual random walk on
networks [31,47]. The second term of P∞

j (r, γ ) in Eq. (9)
corresponds to a nonequilibrium part, which is a consequence
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of the resetting dynamics [1]. One obtains the occupation
probability in terms of the spectral properties of W

Pi j (t ; r, γ ) = P∞
j (r, γ ) +

N∑
l=2

(1 − γ )tλt
l

×
[
〈i|φl〉〈φ̄l | j〉 − γ

〈r|φl〉〈φ̄l | j〉
1 − (1 − γ )λl

]
. (10)

B. Mean first passage and return times

The expression for the MFPT to the target j starting from
i can be deduced from the general convolution property with
Pi j (t ; r, γ ) for Markov processes, see Appendix 1 c or [30]. It
is given by

〈Ti j (r, γ )〉 = 1

P∞
j (r, γ )

[
δi j + R(0)

j j (r, γ ) − R(0)
i j (r, γ )

]
, (11)

where

R(0)
i j (r, γ ) ≡

∞∑
t=0

[
Pi j (t ; r, γ ) − P∞

j (r, γ )
]
. (12)

Using Eq. (10), one obtains in the case of resetting to the
origin, i.e., r = i (see Appendix 1 c):

〈Ti j (γ )〉 = δi j

P∞
j (i, γ )

+ 1

P∞
j (i, γ )

N∑
l=2

〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉
1 − (1 − γ )λl

. (13)

Note that the case j = i corresponds to the mean first return
time to i, hence 〈Tii(γ )〉 is nonzero but equal to 1/P∞

i (i, γ ), in
agreement with Kac’s lemma on mean recurrence times [65].
It is also useful to quantify the ability of a process to explore
the whole network. To this purpose, we define T (i, γ ) as the
global MFPT starting from node i,

T (i, γ ) ≡ 1

N

N∑
j=1

〈Ti j (γ )〉. (14)

The results in Eqs. (4)–(13) apply to random walks with
resetting on any finite, connected and undirected network.
The eigenvalues and eigenvectors of W may be obtained by
direct numerical calculation or analytically in particular cases.
We next explore the effects of resetting in different network
topologies.

III. RINGS

We start our discussion with the analysis of the finite ring,
i.e., the one-dimensional lattice with periodic boundary condi-
tion. In this case, W is a circulant matrix [66,67] with eigen-
values λl = cos [ 2π (l−1)

N ] and eigenvectors with components

〈i|φl〉 = 1√
N

e−i 2π (l−1)(i−1)
N and 〈φ̄l | j〉 = 1√

N
ei 2π (l−1)( j−1)

N (here i ≡√−1) for l = 1, . . . , N . The stationary distribution (9) for a

ring takes the form

P∞
j (i, γ ) = 1

N
+ γ

N∑
l=2

〈i|φl〉〈φ̄l | j〉
1 − (1 − γ )λl

= 1

N
+ γ

N

N∑
l=2

e−i 2π (l−1)(i− j)
N

1 − (1 − γ ) cos
[ 2π (l−1)

N

]
= 1

N
+ γ

N

N∑
l=2

cos(ϕl di j )

1 − (1 − γ ) cos(ϕl )
(15)

with ϕl ≡ 2π
N (l − 1), and where di j is the distance between

i and j (note that cos [ϕl (i − j)] = cos (ϕl di j ), see also
Ref. [54]). For the MFPT, Eq. (13) is recast as

〈Ti j (γ )〉 =
δi j +∑N

l=2
〈 j|φl 〉〈φ̄l | j〉−〈i|φl 〉〈φ̄l | j〉

1−(1−γ )λl

P∞
j (i, γ )

=
δi j + 1

N

∑N
l=2

1−e−i 2π (l−1)(i− j)
N

1−(1−γ ) cos[ 2π (l−1)
N ]

P∞
j (i, γ )

= 1

P∞
j (i, γ )

[
δi j + 1

N

N∑
l=2

1 − cos(ϕl di j )

1 − (1 − γ ) cos(ϕl )

]
.

(16)

Figure 2 displays the analytical expressions in Eqs. (15) and
(16) for N = 100, as a function of the distance di j . These
quantities exhibit exponential behaviors.

In the limit N → ∞, we recover the infinite one-
dimensional lattice, where ϕ = 2π

N (l − 1) can be considered
as a continuous variable with dϕ = 2π

N . The stationary distri-
bution P∞

j (i, γ ) in Eq. (15) for the infinite ring takes the form

P∞
j (i, γ ) = γ

2π

∫ 2π

0

cos(di j ϕ)

1 − (1 − γ ) cos(ϕ)
dϕ. (17)

To evaluate Eq. (17), we define the integral

I (x, b) = 1

2π

∫ 2π

0

cos(xθ )

1 − b cos(θ )
dθ, 0 � b < 1, x � 0

(18)
and, by using b = 2a

1+a2 , we have

I (x, b) = a2 + 1

2π

∫ 2π

0

cos(xθ )

1 + a2 − 2a cos(θ )
dθ

= a2 + 1

(a2 − 1)ax
, for a2 > 1, (19)

where we have used the identity 1
2π

∫ 2π

0
cos(xθ )

1+a2−2a cos(θ ) dθ =
1

(a2−1)ax (see, e.g., Ref. [28]). Hence, using a = 1
b +

√
1
b2 − 1

1

2π

∫ 2π

0

cos(xθ )

1 − b cos(θ )
dθ =

(
1+√

1−b2

b

)−x

√
1 − b2

. (20)
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FIG. 2. Stationary distribution and MFPT for random walks with resetting on a ring with N = 100 nodes. (a) P∞
j (i, γ ) as given by Eq. (15)

and (b) 〈Ti j (γ )〉 as given by Eq. (16), as a function of the distance di j between the initial node i and the target node j for different values of γ .

Combining this result with b = 1 − γ in Eq. (17), we obtain

P∞
j (i, γ ) =

√
γ

2 − γ

[√
(2 − γ )γ + 1

1 − γ

]−di j

. (21)

In the limit of small resetting probability 0 < γ � 1,
√

γ

2−γ
=

√
2γ

2 + O(γ 3/2), and log [
√

(2−γ )γ+1
1−γ

] = √
2γ + O(γ 3/2). Con-

sequently, the stationary distribution satisfies

P∞
j (i, γ ) ≈

√
2γ

2
e−√

2γ di j for 0 < γ � 1, (22)

which coincides with the exponential nonequilibrium steady
state of the one-dimensional Brownian motion with diffusion
coefficient 1/2 and resetting rate γ [1]. We now specify our
results on the MFPT for an infinite ring. In the case N → ∞,
Eq. (16) takes the form

〈Ti j (γ )〉 =
δi j + 1

2π

∫ 2π

0
1−cos(di j ϕ)

1−(1−γ ) cos(ϕ) dϕ

P∞
j (i, γ )

(23)

with P∞
j (i, γ ) given by Eq. (21). In particular, if i = j, then

we obtain the mean first return time to the starting/resetting
point

〈Tii(γ )〉 = 1

P∞
i (i, γ )

=
√

2 − γ

γ
. (24)

On the other hand, if i 
= j, then

〈Ti j (γ )〉 = 1

P∞
j (i, γ )

1

2π

∫ 2π

0

1 − cos(di j ϕ)

1 − (1 − γ ) cos(ϕ)
dϕ

= 1

P∞
j (i, γ )

1

2π

∫ 2π

0

1

1 − (1 − γ ) cos(ϕ)
dϕ − 1

γ
.

(25)

Using the identity 1
2π

∫ 2π

0
1

1−(1−γ ) cos(ϕ) dϕ = 1
γ

√
γ

2−γ
,

〈Ti j (γ )〉 = 1

γ

[√
(2 − γ )γ + 1

1 − γ

]di j

− 1

γ
for i 
= j.

(26)

Combining the results in Eqs. (24) and (26) gives

〈
Ti j (γ )

〉 =
⎧⎨⎩
√

2−γ

γ
j = i,

1
γ

[(√
(2−γ )γ+1

1−γ

)di j − 1
]

j 
= i.
(27)

In particular, in the limit of small resetting γ � 1 and di j > 0,
on obtains 〈Ti j (γ )〉 ≈ 1

γ
[e

√
2γ di j − 1], which is nonmonotonic

with γ . Solving ∂〈Ti j (γ )〉/∂γ = 0 we deduce the value of
γ , γ ∗ � 1.26982/d2

i j , that minimizes the MFPT to a target at
distance di j 
 1. These results also coincide with those of the
continuous limit [1].

IV. CAYLEY TREES

We now consider finite Cayley trees of coordination num-
ber z and composed of n shells (see Fig. 3). The nodes of
the last shell have degree 1, whereas the other nodes have
degree z. We display the MFPT 〈Ti j (γ )〉 as a function of γ in
Fig. 3(a), where n = 7 and z = 3 (N = 382). The starting and
resetting position i is the central node. Keeping the distance
di j (= 0, 1, . . . , n) between i and the target j fixed, we see how
resetting modifies the MFPT in comparison with the normal
random walk (γ = 0). The mean first return time 〈Tii(γ )〉 (or
di j = 0) decreases monotonically with γ , whereas for each
positive distance there is a value γ � for which 〈Ti j (γ ∗)〉 is
minimum, namely, that optimizes the capacity to reach a target
at distance di j . Figure 3(b) displays a similar behavior for the
global time T (i, γ ), see Eq. (14), in several Cayley trees of
varying n. Clearly, γ ∗ decreases with n.

The limit n → ∞ can be solved analytically by using a
general relation between the survival probabilities of discrete-
time processes with and without resetting [19]. We recall
some basic results on the first passage properties of simple
random walks on Cayley trees, see e.g., Refs. [68,69], as
a preliminary step to further incorporate resetting. Let us
consider an infinite Cayley tree with coordination number z, a
random walk initially at the origin node 0, and a target node
at a distance d . We define the survival probability Q(0)

d (t ) as
the probability that the walker has not reached the target site
after t steps, in the absence of resetting. Due to translational
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FIG. 3. Random walks with stochastic resetting to the central node on Cayley trees with coordination number z = 3 and n shells. (a) MFPT
〈Ti j (γ )〉 vs. γ in a Cayley tree with n = 7 shells (N = 382 nodes). The results are presented as a family of curves defined by the distance di j

(shown in the color bar) between the central node i and the target node j. (b) Global MFPT T (i, γ ) defined in Eq. (14) with 0 � γ � 0.99 for
different Cayley trees with n shells. In each curve we include the number n and the circles indicate the minima for Cayley trees with different
numbers of shells.

invariance, we write the “backward” equation

Q(0)
d (t ) = z − 1

z
Q(0)

d+1(t − 1) + 1

z
Q(0)

d−1(t − 1), (28)

which asserts that, after the first step (thus with t − 1 steps to
go), with probability 1/z, the walker can be one unit closer to
the target, or with probability (z − 1)/z, one unit further away.
The boundary and initial conditions are

Q(0)
0 (t ) = 0 and Q(0)

d>0(t = 0) = 1. (29)

We introduce the discrete Laplace transform Q̃(0)
d (s) =∑∞

t=0 st Q(0)
d (t ), which from Eq. (29) must satisfy Q̃(0)

0 (s) = 0
and Q̃(0)

d>0(s = 0) = 1. Transforming Eq. (28) gives, for d > 0,

Q̃(0)
d (s) = 1 + s

z − 1

z
Q̃(0)

d+1(s) + s

z
Q̃(0)

d−1(s). (30)

We look for solutions of the form Q̃(0)
d (s) = a + Yd . By

substitution we find a = 1/(1 − s) and that Yd obeys the
recursion relation

s
z − 1

z
Yd+1 − Yd + s

z
Yd−1 = 0, (31)

which is easily solved as Yd = C1ν
d
1 + C2ν

d
2 , with

ν1(s) = z −
√

z2 − 4(z − 1)s2

2s(z − 1)
,

ν2(s) = z +
√

z2 − 4(z − 1)s2

2s(z − 1)
,

(32)

and C1, C2 two constants. From Q(0)
d (t = 0) = 1, the condition

lims→0 Q̃(0)
d (s) → 1 must be fulfilled for all d > 0. Whereas

ν1 � s/z → 0 at small s, ν2 � z
s(z−1) → ∞, which imposes

C2 = 0. The second condition Q̃(0)
0 (s) = 0 is enforced by

choosing C1 = −1/(1 − s). We deduce

Q̃(0)
d (s) = 1 − [ν1(s)]d

1 − s
. (33)

The large-time behavior of Q(0)
d (t ) is deduced from that of

Q̃(0)
d (s) as s → 1. Noting that 1/(1 − s) is the Laplace trans-

form of 1 and that lims→1 ν1(s) < 1, we deduce from Eq. (33)
that limt→∞ Q(0)

d (t ) = 1 − νd
1 (s = 1) or

Q(0)
d (t ) → 1 − (1 − z)−d as t → ∞. (34)

Hence, the probability that the walker ever reaches the tar-
get is (z − 1)−d [68]. The MFPT is readily deduced from
the general relation 〈Td〉 = ∑∞

t=0 Qd (t ) = Q̃d (s = 1), which,
from Eq. (33), is infinite.

When resetting is present, we can use the renewal approach
exposed in Ref. [19], allowing to derive the survival prob-
ability in the Laplace domain, Q̃d (s), as a function of this
quantity in the absence of resetting, Q̃(0)

d (s). One notices that
Qd (t ) can be decomposed as the sum of two contributions: (i)
Either the walker has never reset since t = 0, which happens
with probability (1 − γ )t , or (ii) the last reset happened at a
time 1 � τ � t , an eventuality that occurs with probability
γ (1 − γ )t−τ . One obtains [19]

Qd (t ) = (1 − γ )t Q(0)
d (t )

+
t∑

τ=1

γ (1 − γ )t−τ Qd (τ − 1)Q(0)
d (t − τ ). (35)

The second term asserts that the walker has survived the first
τ − 1 time steps following the dynamics with resetting, as
well as the last t − τ steps following the reset-free process.
Taking the discrete Laplace transform of Eq. (35) gives

Q̃d (s) = Q̃(0)
d [s(1 − γ )]

1 − γ sQ̃(0)
d [s(1 − γ )]

. (36)

The MFPT 〈Td〉 = Q̃d (s = 1) is deduced from Eq. (36) and
Eq. (33)

〈Td〉 = 1

γ
[ν1(1 − γ )−d − 1], (37)
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which is a finite quantity. Hence, with Eqs. (32)–(33), the
complete expression is

〈Td〉 = 1

γ

⎧⎨⎩
[

2(1 − γ )(z − 1)

z −
√

z2 − 4(1 − γ )2(z − 1)

]d

− 1

⎫⎬⎭. (38)

It is easy to check that 〈Td〉 � [ν1(1)−d − 1]/γ → ∞ as γ →
0 and that 〈Td〉 � zd/(1 − γ )d → ∞ as γ → 1. Thus 〈Td〉 has
a minimum for some optimal value γ ∗. The optimal resetting
probability is obtained from solving ∂〈Td〉/∂γ = 0 or

1 − ν1(1 − γ ∗)d = dγ ∗ ν ′
1(1 − γ ∗)

ν1(1 − γ ∗)
. (39)

In the limit d 
 1, one can neglect ν1(1 − γ ∗)d in Eq. (39) to
obtain

γ ∗ � 1

d

(
z − 2

z

)
. (40)

Hence the optimal resetting rate tends to 0 at large d dif-
ferently than on regular lattices, where γ ∗ ∼ 1/d2 [1]. This
is due to the fact that random walks on Cayley trees are
effectively drifting away from their starting point [69] and
thus travel a distance d during a time of order d , instead of
d2. The MFPT at optimality is readily obtained by substituting
Eq. (40) into (38)

〈T ∗
d 〉 � d

z(z − 1)d

z − 2
. (41)

This result can be interpreted as follows. The quantity z(z−1)d

z−2
in Eq. (41) represents the total number of nodes located at
a distance d or smaller from the origin, that we denote as Nd .
It stems from the equality Nd = 1 + z

∑d−1
k=0 (z − 1)k � z(z−1)d

z−2

at large d . We deduce d � ln Nd
ln(z−1) and

〈T ∗
d 〉 � Nd ln Nd

ln(z − 1)
. (42)

Hence, the optimized MFPT grows slightly faster than linearly
with Nd , the minimal size of the subtree to be explored to
find the target. It is instructive to compare this time with the
average time 〈T (syst)

d 〉 it would take to find the target by using
a systematic search strategy, consisting in visiting only once
each site located at a distance d from the origin, without going
further than d . This systematic search is the best possible
strategy (if the searcher is informed that the target is located
at a distance d). The minimal total number of steps necessary
to visit all the sites at a distance d one by one is twice
the number of links Ld of the Cayley tree with Nd nodes.
This can be understood by noting that the walker needs to
cross a link once on its way to the boundary and once on
its way back toward the origin. Since on average, the target
will be found after visiting half of the nodes at a distance d ,
〈T (syst)

d 〉 = 2Ld/2 = Ld . Noting that Ld � Nd for large Cayley
trees, we obtain 〈

T (syst)
d

〉 � Nd . (43)

We hence come to the conclusion that the random walk with
optimized resetting will take only ln Nd (or d) times longer

than the best possible strategy

〈T ∗
d 〉〈

T (syst)
d

〉 � ln Nd

ln(z − 1)
� d. (44)

On regular D-dimensional lattices, this multiplicative factor is
much larger, of O(N1/D

d ) [23]. Hence, searches with optimized
resetting are very efficient on Cayley trees, and possibly on
other large networks where the number of nodes increases
exponentially with the distance, which is the case of many
complex networks.

V. RANDOM AND COMPLEX NETWORKS

With the help of Eqs. (9)–(14), we further analyze different
types of networks of relatively small size (N = 100) for clarity
in the visualizations.

Figure 4(a) displays the global time T (i, γ ) as a function
of γ on a Barbell graph, i.e., a network model with two
well-defined communities composed of two fully connected
networks (of 45 nodes each) connected by a chain (of 10
nodes) [70]. Whereas network exploration depends remark-
ably little on the initial node for the simple random walk
(γ = 0), it becomes extremely sensitive to the position of
i as soon as resetting is switched on. A moderate resetting
probability can either increase or reduce T (i, γ ) by orders
of magnitude depending on the centrality Ci of the starting
node. Network exploration becomes very efficient and can be
optimized at a nonzero resetting probability when one chooses
a resetting node of high centrality, that lies in-between the two
communities.

Figure 4(b) shows qualitatively similar results for a Watts-
Strogatz network [62] generated from a ring with nearest-
neighbor and next-nearest-neighbour links and a rewiring
probability of p = 0.01. The shortcuts break the translational
invariance of the ring geometry and the resetting nodes of
higher closeness centrality Ci, those close to a shortcut, tend to
produce lower global MFPT, although the trend is less marked
than in the previous example.

The network in Fig. 4(c) is the giant component of an
Erdös-Rényi (ER) random network [71] with Poisson de-
gree distribution and average degree 〈k〉 = 2.72. Conversely,
Fig. 4(d) corresponds to a scale-free Barabási-Albert (BA)
network with power-law distributed node degrees, generated
with the preferential attachment rule [72]. As in the previous
cases, the more peripheral resetting nodes (in red) usually
cause a monotonous increase of the global MFPT with γ ,
whereas for the central nodes a minimum may exist. This
situation is similar to the one described for diffusion with
resetting in 1D bounded domains with reflective boundaries
[24]. These examples also illustrate that the degree ki of the
starting node plays a lesser role. The value of Ci alone does
not determine the shape of the MFPT, as network exploration
is sensitive to the network architecture. For instance, when
the network diameter is small, as it is the case for ER and BA
networks, differences between the nodes tend to mitigate.

VI. CONCLUSIONS

We have explored a stochastic process on networks that
combines random walk steps to adjacent nodes and resetting

062147-6



RANDOM WALKS ON NETWORKS WITH STOCHASTIC … PHYSICAL REVIEW E 101, 062147 (2020)

FIG. 4. Global time in networks with N = 100 nodes: (a) Barbell, (b) Watts-Strogatz, (c) Erdös-Rényi, and (d) Barabási-Albert, where
each newly introduced node connects to m previous nodes (m = 1). We depict the global time T (i, γ ) as a function of γ for all the nodes
i = 1, . . . , N . To identify the effects of resetting, we colored each node i and its corresponding curve according to its closeness centrality
Ci ≡ N∑N

j=1 di j
.

to the initial node. Our formalism analyzes the dynamics in
terms of the spectral representation of the transition matrix
that defines the random walk strategy without resetting. We
apply these results to characterize the dynamics on rings,
Cayley trees, and random networks, including scale-free and
small-world networks. In Cayley trees, and possibly in many
networks with few loops, the walk with an optimized resetting
probability perform nearly as well as the best possible search
strategy to find a target at a given distance. In a simple network
model with communities, the efficiency of searches under
reset can be increased or decreased by orders of magnitude,
depending on the centrality of the resetting node. These results
indicate that processes with resetting are promising strategies
for exploring complex networks. The methods introduced are
general and pave the way to further extensions of the study
of resetting processes, which may be useful to investigate the
structure of complex networks.
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APPENDIX

1. General properties

a. Eigenvalues and eigenvectors of �(r, γ )

We analyze the eigenvalues and eigenvectors of the matrix

�(r, γ ) = (1 − γ )W + γ�(r), (A1)

where r = 1, . . . , N is the node to which resetting occurs with
probability 0 � γ < 1. The elements �, m of the matrix �(r)

are 	�m(r) = δmr . We express the results in terms of the left
and right eigenvectors {〈φ̄�|}N

�=1, {|φ�〉}N
�=1 of the transition

matrix W with eigenvalues {λ�}N
�=1. We have W|φ�〉 = λ�|φ�〉

and 〈φ̄�|W = λ�〈φ̄�| for � = 1, . . . , N , where the set of eigen-
values is ordered in the form λ1 = 1 and 1 > λl � −1 for l =
2, 3, . . . , N . We define |i〉 as the vector whose components are
0 except the ith one, which is 1. In the following we denote as
{|i〉}N

i=1 the canonical base of RN .
With the right eigenvectors we define a matrix Z with

elements Zi j = 〈i|φ j〉. The matrix Z is invertible, and a new
set of vectors 〈φ̄i| is obtained by (Z−1)i j = 〈φ̄i| j〉, then

δi j = (Z−1Z)i j =
N∑

�=1

〈φ̄i|�〉〈�|φ j〉 = 〈φ̄i|φ j〉 (A2)

and

1 = ZZ−1 =
N∑

�=1

|φ�〉〈φ̄�|, (A3)

where 1 is the N × N identity matrix. In addition, by nor-
malization of the probability, the matrix W is such that∑N

�=1 wi→� = 1, which implies that |φ1〉 ∝
(

1
1
. . .

1

)
. By using

〈φ̄�|φ1〉 = ∑N
i=1 〈φ̄�|i〉〈i|φ1〉 = δ�1 and considering the vector

〈i|φ1〉 = 〈r|φ1〉 = constant for r = 1, . . . , N ; we obtain

N∑
i=1

〈φ̄�|i〉 = δ�1

〈r|φ1〉 . (A4)
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Hence, from relations in Eqs. (A2)–(A4), we have

�(r) =
N∑

�=1

N∑
m=1

|φ�〉〈φ̄�|�(r)|φm〉〈φ̄m|

=
N∑

�=1

N∑
m=1

N∑
u=1

N∑
v=1

|φ�〉〈φ̄�|u〉〈u|�(r)|v〉〈v|φm〉〈φ̄m|

=
N∑

�=1

N∑
m=1

N∑
u=1

N∑
v=1

|φ�〉〈φ̄�|u〉δvr〈v|φm〉〈φ̄m|

=
N∑

�=1

N∑
m=1

N∑
u=1

|φ�〉〈φ̄�|u〉〈r|φm〉〈φ̄m|

=
N∑

�=1

N∑
m=1

|φ�〉
[

N∑
u=1

〈φ̄�|u〉
]
〈r|φm〉〈φ̄m|

=
N∑

�=1

N∑
m=1

|φ�〉 δ�1

〈r|φ1〉 〈r|φm〉〈φ̄m|. (A5)

Therefore,

�(r) =
N∑

m=1

〈r|φm〉
〈r|φ1〉 |φ1〉〈φ̄m|. (A6)

In the following, we explore the right and left eigenvectors of
�(r, γ ), denoted as |ψ�(r, γ )〉 and 〈ψ̄�(r, γ )|, and satisfying
the relations

�(r, γ )|ψ�(r, γ )〉 = ζ�(r, γ )|ψ�(r, γ )〉,
〈ψ̄�(r, γ )|�(r, γ ) = ζ�(r, γ )〈ψ̄�(r, γ )|,

for � = 1, 2, . . . , N , where the eigenvalues of �(r, γ ) are
ζ�(r, γ ). From the result in Eq. (A6), we see that �(r)|φ1〉 =
|φ1〉. Therefore, one sees that |ψ1(r, γ )〉 = |φ1〉, since

�(r, γ )|φ1〉 = [(1 − γ )W + γ�(r)]|φ1〉
= (1 − γ )|φ1〉 + γ�(r)|φ1〉

= (1 − γ )|φ1〉 + γ

N∑
m=1

〈r|φm〉
〈r|φ1〉 |φ1〉〈φ̄m|φ1〉

= (1 − γ )|φ1〉 + γ

N∑
m=1

〈r|φm〉
〈r|φ1〉 |φ1〉δm1

= (1 − γ )|φ1〉 + γ |φ1〉 = |φ1〉
= |ψ1(r, γ )〉 = ζ1(r, γ )|ψ1(r, γ )〉, (A7)

where ζ1(r, γ ) = 1.
In a similar way, we see that 〈φ̄�|�(r) = 0 for � =

2, 3, . . . , N . As a consequence, we deduce that 〈ψ̄�(r, γ )| =
〈φ̄�| for � = 2, 3, . . . , N , since

〈φ̄�|�(r, γ ) = 〈φ̄�|[(1 − γ )W + γ�(r)]

= (1 − γ )λ�〈φ̄�| + γ 〈φ̄�|�(r)

= (1 − γ )λ�〈φ̄�| + γ

N∑
m=1

〈r|φm〉
〈r|φ1〉 〈φ̄�|φ1〉〈φ̄m|

= (1 − γ )λ�〈φ̄�| + γ

N∑
m=1

〈r|φm〉
〈r|φ1〉 δ�1〈φ̄m|

= (1 − γ )λ�〈φ̄�| = ζ�(r, γ )〈ψ̄�(r, γ )|. (A8)

This result shows that 〈ψ̄�(r, γ )| = 〈φ̄�| and ζ�(r, γ ) = (1 −
γ )λ� for � = 2, 3, . . . , N . Now we deduce the rest of the
eigenvectors. For 〈ψ̄1(r, γ )|, we use the ansatz

〈ψ̄1(r, γ )| = 〈φ̄1| +
N∑

m=2

am〈φ̄m|. (A9)

This choice is motivated by the structure of the matrix �(r) in
Eq. (A6). Here the goal is to deduce the values {am}N

m=2. We
know that 〈ψ̄1(r, γ )|�(r, γ ) = 〈ψ̄1(r, γ )|. Therefore

〈ψ̄1(r, γ )|�(r, γ )

=
(

〈φ̄1| +
N∑

m=2

am〈φ̄m|
)

[(1 − γ )W + γ�(r)]

= (1 − γ )〈φ̄1| + γ

N∑
m=1

〈r|φm〉
〈r|φ1〉 〈φ̄m|

+ (1 − γ )
N∑

m=2

am λm〈φ̄m|

= 〈φ̄1| +
N∑

m=2

[
γ

〈r|φm〉
〈r|φ1〉 + (1 − γ )am λm

]
〈φ̄m|. (A10)

This requires am = γ
〈r|φm〉
〈r|φ1〉 + (1 − γ )am λm. Therefore am =

γ

1−(1−γ )λm

〈r|φm〉
〈r|φ1〉 . Hence, we have

〈ψ̄1(r, γ )| = 〈φ̄1| +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 〈φ̄m|. (A11)

Finally, we consider the eigenvectors |ψ�(r, γ )〉 for � =
2, 3, . . . , N . From Eq. (A6) we know that �(r)|φ�〉 =
〈r|φ�〉
〈r|φ1〉 |φ1〉, which motivates the ansatz

|ψ�(r, γ )〉 = |φ�〉 + b�|φ1〉 for � = 2, 3, . . . , N.

(A12)
Since �(r, γ )|ψ�(r, γ )〉 = (1 − γ )λl |ψ�(r, γ )〉, we have

�(r, γ )|ψ�(r, γ )〉 = [(1 − γ )W + γ�(r)](|φ�〉 + b�|φ1〉)

= (1 − γ )λ�|φ�〉 + γ
〈r|φ�〉
〈r|φ1〉 |φ1〉

+ (1 − γ )b�|φ1〉 + γ b�|φ1〉

= (1 − γ )λ�

[
|φ�〉 + 1

(1 − γ )λ�

×
(

b� + γ
〈r|φ�〉
〈r|φ1〉

)
|φ1〉

]
. (A13)

By identification, b� = 1
(1−γ )λ�

(b� + γ
〈r|φ�〉
〈r|φ1〉 ), therefore b� =

− γ

1−(1−γ )λ�

〈r|φ�〉
〈r|φ1〉 . Then, for � = 2, 3, . . . , N

|ψ�(r, γ )〉 = |φ�〉 − γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 |φ1〉. (A14)
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In summary, for the transition matrix �(r, γ ), we obtained the
set of right eigenvectors

|ψ�(r, γ )〉 =
{|φ1〉 � = 1,

|φ�〉 − γ
〈r|φ�〉
〈r|φ1〉

1−(1−γ )λ�
|φ1〉 � = 2, . . . , N,

(A15)

and the left eigenvectors

〈ψ̄�(r, γ )| =
{

〈φ̄1| +∑N
m=2

γ
〈r|φm 〉
〈r|φ1〉

1−(1−γ )λm
〈φ̄m|, � = 1,

〈φ̄�| � = 2, . . . , N,
(A16)

with eigenvalues

ζ�(r, γ ) =
{

1 for � = 1,

(1 − γ )λ� for � = 2, 3, . . . , N.
(A17)

b. Orthonormalization and completeness relation

Now we check the orthonormalization property
〈ψ̄�(r, γ )|ψm(r, γ )〉 = δ�m and the completeness relation∑N

�=1 |ψ�〉〈ψ̄�| = 1 satisfied by the eigenvectors of �(r, γ )
in Eqs. (A15) and (A16).

We start with the completeness relation
∑N

�=1 |ψ�(r, γ )〉
〈ψ̄�(r, γ )| = 1, we have

N∑
�=1

|ψ�(r, γ )〉〈ψ̄�(r, γ )|

= |ψ1(r, γ )〉〈ψ̄1(r, γ )| +
N∑

�=2

|ψ�(r, γ )〉〈ψ̄�(r, γ )|

= |φ1〉〈φ̄1| +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 |φ1〉〈φ̄m|

+
N∑

�=2

|φ�〉〈φ̄�| −
N∑

�=2

γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 |φ1〉〈φ̄�|

= |φ1〉〈φ̄1| +
N∑

�=2

|φ�〉〈φ̄�| =
N∑

�=1

|φ�〉〈φ̄�| = 1. (A18)

Now, let us check that 〈ψ̄�(r, γ )|ψm(r, γ )〉 = δ�m. We have the
following cases:

(i) Calculation of 〈ψ̄1(r, γ )|ψ1(r, γ )〉:
〈ψ̄1(r, γ )|ψ1(r, γ )〉

= 〈φ̄1|φ1〉 +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 〈φ̄m|φ1〉 (A19)

= 1 +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 δm1 = 1. (A20)

(ii) Calculation of 〈ψ̄1(r, γ )|ψ�(r, γ )〉 for � =
2, 3, . . . , N :

〈ψ̄1(r, γ )|ψ�(r, γ )〉

=
[
〈φ̄1| + γ

N∑
m=2

1

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 〈φ̄m|

]

×
[
|φ�〉 − γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 |φ1〉

]

= 〈φ̄1|φ�〉 +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉

×
[
〈φ̄m|φ�〉 − γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 〈φ̄m|φ1〉

]
− γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 .

Therefore

〈ψ̄1(r, γ )|ψ�(r, γ )〉 = δ1� +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉

×
[
δ�m − γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉δm1

]
− γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 . (A21)

However, since � = 2, 3, . . . , N , we have

〈ψ̄1(r, γ )|ψ�(r, γ )〉 = γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉

− γ

1 − (1 − γ )λ�

〈r|φ�〉
〈r|φ1〉 = 0 for � = 2, 3, . . . , N. (A22)

(iii) We have 〈ψ̄�(r, γ )|ψ1(r, γ )〉 = 0 for � = 2, 3, . . . , N ,
since:

〈ψ̄�(r, γ )|ψ1(r, γ )〉 = 〈φ̄�(r, γ )|φ1(r, γ )〉 = δ�1 = 0. (A23)

(iv) We have 〈ψ̄�(r, γ )|ψm(r, γ )〉 = δ�m for �, m =
2, 3, . . . , N , since:

〈ψ̄�(r, γ )|ψm(r, γ )〉

= 〈φ̄�|
[
|φm〉 − γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 |φ1〉

]
= δ�m − γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 δ�1 = δ�m, (A24)

for �, m = 2, 3, . . . , N . The results presented in this section
prove that relations in Eqs. (A15)–(A17) define the eigen-
values and eigenvectors of the transition matrix �(r, γ ) that
describes the dynamics with resetting to the node r. The
sets composed of the left and right eigenvectors form an
orthonormalized base, a result that allows us to deduce ana-
lytical expressions for different quantities of interest for the
dynamics of a random walker with resetting.

c. Stationary distribution and mean first passage time

In this part we present the general expressions for the
occupation probabilities and mean first passage times. We
center our discussion on the analysis of a Markovian process
defined by the transition matrix �(r, γ ), and then specify
the results for random walks with resetting on networks. The
occupation probability Pi j (t ; r, γ ) can be expressed as [30,31]

Pi j (t ; r, γ ) = δt0δi j +
t∑

t ′=0

Pj j (t − t ′; r, γ )Fi j (t
′; r, γ ), (A25)

where Fi j (t ; r, γ ) is the probability of finding the process at
j for the first time after t steps, starting from i. Using the
discrete Laplace transform f̃ (s) ≡ ∑∞

t=0 e−st f (t ) in Eq. (A25)
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we have [31]

F̃i j (s; r, γ ) = P̃i j (s; r, γ ) − δi j

P̃j j (s; r, γ )
. (A26)

The MFPT 〈Ti j (r, γ )〉, defined as the mean number of steps
taken to reach j for the first time, starting from i [30], can be
obtained through the series expansion of F̃i j (s; r, γ )

F̃i j (s; r, γ ) = 1 − s〈Ti j (r, γ )〉 + s2

2

〈
T 2

i j (r, γ )
〉+ . . . , (A27)

where 〈T 2
i j (r, γ )〉 is the second moment of Fi j (t ; r, γ ) or the

ensemble average (over trajectories) of the squares of the
first passage time from i to j. In addition, the stationary
distribution P∞

j (r, γ ) of the process is defined as

P∞
j (r, γ ) ≡ lim

T →∞
1

T

T∑
t=0

Pi j (t ; r, γ ), (A28)

which is assumed to be independent of the initial con-
dition and gives the probability to occupy j when t →
∞. Now, given P∞

j (r, γ ), let us define the moments

R(n)
i j (r, γ ) ≡ ∑∞

t=0 t n {Pi j (t ; r, γ ) − P∞
j (r, γ )}. The expansion

of P̃i j (s; r, γ ) in powers of s can be written as

P̃i j (s; r, γ ) = P∞
j (r, γ )

(1 − e−s)
+

∞∑
n=0

(−1)nR(n)
i j (r, γ )

sn

n!
. (A29)

Substituting this result into Eq. (A26) and performing a series
expansion of F̃i j (s; r, γ ), we obtain, by identification

〈Ti j (r, γ )〉 = R(0)
j j (r, γ ) − R(0)

i j (r, γ ) + δi j

P∞
j (r, γ )

. (A30)

To further calculate P∞
j (r, γ ) and 〈Ti j (r, γ )〉, we need to

obtain Pi j (t ; r, γ ). We start with the matrix form of the master
equation �P(t ; r, γ ) = �P(0)�(r, γ )t , where �P(t ; r, γ ) is the
probability vector at time t . Using Dirac’s notation

Pi j (t ; r, γ ) = 〈i|�(r, γ )t | j〉, (A31)

where {|m〉}N
m=1 represents the canonical base of RN . In terms

of the eigenvectors and eigenvalues of �(r, γ ), we have the
spectral representation

�(r, γ ) =
N∑

�=1

ζ�(r, γ )|ψ�(r, γ )〉〈ψ̄�(r, γ )|. (A32)

The spectral form of the transition matrix in Eq. (A32) allows
us to obtain Pi j (t )

Pi j (t ; r, γ ) =
N∑

�=1

[ζ�(r, γ )]t 〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉. (A33)

Therefore, the stationary distribution P∞
j (r, γ ) in Eq. (A28) is

P∞
j (r, γ ) = lim

T →∞
1

T

T∑
t=0

N∑
�=1

(ζ�(r, γ ))t 〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉

=
N∑

�=1

[
lim

T →∞
1

T

T∑
t=0

(ζ�(r, γ ))t

]
× 〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉

= ζ1(r, γ )〈i|ψ1(r, γ )〉〈ψ̄1(r, γ )| j〉
= 〈i|ψ1(r, γ )〉〈ψ̄1(r, γ )| j〉. (A34)

The property 〈i|ψ1(r, γ )〉 = const makes the stationary dis-
tribution P∞

j (r, γ ) independent of the initial position. In a

similar way, by using the definition of R(0)
i j (r, γ ), we have

R(0)
i j (r, γ ) =

∞∑
t=0

(Pi j (t ; r, γ ) − P∞
j (r, γ ))

=
∞∑

t=0

N∑
�=2

[ζ�(r, γ )]t 〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉

=
N∑

�=2

1

1 − ζ�(r, γ )
〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉.

(A35)

Substitution of Eq. (A35) into (A30) yields

〈Ti j (r, γ )〉 = 1

P∞
j (r, γ )

{
δi j +

N∑
�=2

1

1 − ζ�(r, γ )
[〈 j|ψ�(r, γ )〉

× 〈ψ̄�(r, γ )| j〉 − 〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉]
}

.

(A36)

We now use our previous findings, in Eqs. (A15)–(A17),
that established a connection between the eigenvalues and
eigenvectors of the matrix �(r, γ ) and the matrix W for a
random walker without resetting. We obtain for the stationary
distribution in Eq. (A34)

P∞
j (r, γ ) = 〈i|ψ1(r, γ )〉〈ψ̄1(r, γ )| j〉

= 〈i|φ1〉
[
〈φ̄1| j〉 + γ

N∑
m=2

〈r|φm〉
〈r|φ1〉

1 − (1 − γ )λm
〈φ̄m| j〉

]

= 〈i|φ1〉〈φ̄1| j〉 + γ

N∑
m=2

〈r|φm〉〈φ̄m| j〉
1 − (1 − γ )λm

. (A37)

Here 〈i|φ1〉〈φ̄1| j〉 is the stationary distribution of the random
walker without resetting. In the particular case of a stan-
dard random walker with transition probabilities wi→ j = Ai j

ki
,

〈i|φ1〉〈φ̄1| j〉 = k j∑N
m=1 km

[31].

For the mean first passage time, we have, for � = 2, . . . , N ,

〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉

=
[
〈i|φ�〉 − γ

1 − (1 − γ )λ�

〈r|φ�〉
]
〈φ̄�| j〉

= 〈i|φ�〉〈φ̄�| j〉 − γ

1 − (1 − γ )λ�

〈r|φ�〉〈φ̄�| j〉. (A38)

Therefore

〈 j|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉 − 〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉
= 〈 j|φ�〉〈φ̄�| j〉 − 〈i|φ�〉〈φ̄�| j〉 � = 2, . . . , N. (A39)

This expression is independent of the node r and of the
probability γ . Substituting Eq. (A39) into (A36), we obtain
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〈Ti j (r, γ )〉:

〈Ti j (r, γ )〉 = δi j

P∞
j (r, γ )

+ 1

P∞
j (r, γ )

×
N∑

�=2

〈 j|φ�〉〈φ̄�| j〉 − 〈i|φ�〉〈φ̄�| j〉
1 − (1 − γ )λ�

. (A40)

2. Continuous-time random walks

We now discuss the relation between the discrete-time
random walker with resetting defined in terms of the transi-
tion matrix �(r, γ ) and the continuous-time version of this
dynamics. Considering that each step in the discrete case
is performed with regular time increments �t , the master
equation becomes

pi j (t + �t ; r, γ ) =
N∑

�=1

pi�(t ; r, γ )π�→ j (r, γ ). (A41)

For �t small, we have pi j (t + �t ; r, γ ) ≈ pi j (t ; r, γ ) +
�t ∂ pi j (t ;r,γ )

∂t . Hence,

∂ pi j (t ; r, γ )

∂t
= −

pi j (t ; r, γ ) −
N∑

�=1
pi�(t ; r, γ )π�→ j (r, γ )

�t

= − 1

�t

N∑
�=1

[δ� j − π�→ j (r, γ )]pi�(t ; r, γ ).

(A42)

Introducing the modified Laplacian operator L̂(r, γ ) with
elements Li j (r, γ ) = δi j − πi→ j (r, γ ), we have the master
equation

∂ pi j (t ; r, γ )

∂t
= − 1

�t

N∑
�=1

pi�(t ; r, γ )L� j (r, γ ). (A43)

In the following we redefine the time t as t/�t , which is
equivalent to set �t = 1 above, i.e., the hopping rate is unity.

In matrix form, L̂(r, γ ) = 1 − �(r, γ ) and it is straight-
forward to see that the matrices �(r, γ ) and L̂(r, γ ) have
the same set of left and right eigenvectors {〈ψ̄m(r, γ )|}N

m=1

and {|ψm(r, γ )〉}N
m=1. The eigenvalues of L̂(r, γ ) denoted as

{ξm(r, γ )}N
m=1, satisfy

ξm(r, γ ) = 1 − ζm(r, γ ) for m = 1, 2, . . . , N. (A44)

Once the spectral properties of L̂(r, γ ) are known, the occu-
pation probability pi j (t ; r, γ ) to reach j at time t starting from
i is given by

pi j (t ; r, γ ) =
N∑

�=1

exp[−ξ�t]〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )| j〉. (A45)

This expression allows us to deduce different quantities of
interest for the continuous-time random walker, such as the
average probability of return

p̄0(t ; r, γ ) ≡ 1

N

N∑
i=1

pii(t ; r, γ )

= 1

N

N∑
i=1

N∑
�=1

exp[−ξ�t]〈i|ψ�(r, γ )〉〈ψ̄�(r, γ )|i〉

= 1

N

N∑
�=1

exp[−ξ�t]
N∑

i=1

〈ψ̄�(r, γ )|i〉〈i|ψ�(r, γ )〉

= 1

N

N∑
�=1

exp[−ξ�t] (A46)

or the stationary distribution

p∞
j (r, γ ) ≡ lim

t→∞ pi j (t ; r, γ ) = 〈i|ψ1(r, γ )〉〈ψ̄1(r, γ )|i〉,
(A47)

which stems from the fact that ξ1(r, γ ) = 0 and ξm(r, γ ) > 0
for m = 2, 3, . . . , N . The stationary distribution in Eq. (A47)
agrees with that of the discrete-time dynamics.

The results presented in this section reveal the connec-
tion between discrete and continuous random walkers. Our
findings for the spectral properties of the modified Laplacian
L̂(r, γ ) coincide with the general formalism introduced by
Rose et al. [64] in the context of classical and quantum
transport with resetting.
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