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Stochastic resonance and hysteresis in climate with state-dependent fluctuations
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We consider two aspects in climatic science where bistability between the two stable states of the systems is
observed. One is the transition between the glacial and the interglacial period in Earth’s glacial cycle. Another
is the thermohaline circulation in the North Atlantic ocean. Both of these phenomena can be modeled by the
overdamped dynamics of a Brownian particle in a double-well potential subject to periodic forcing. For the
former case, the two wells represent two different climates and the periodic forcing is sufficiently weak not
to cause a transition between the two states without the effect of the noise. Whereas in case of the latter
phenomenon, the two states correspond to the two different conditions of the flow and the strength of the periodic
forcing is high enough to give rise to hysteresis in the system. We propose that one important component
of the dynamics, short-term fluctuations related to weather, in both of these cases, depends on the current
climatic state of the system. This leads to introduction of the state-dependent diffusion coefficients in the
dynamics because the diffusion coefficient represents the strength of the fluctuations. We justify our argument by
analyzing the δ18O record for the glacial cycle model. We have shown that this consideration can produce certain
features in the dynamics which agree with the real observations in case of both glacial cycles and thermohaline
flow.
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I. INTRODUCTION

In their seminal paper [1], Benzi et al. introduced the
concept of stochastic resonance as a first example for the
constructive role of noise in nonlinear systems. In order to
explain the observed almost-periodicities in the glaciation of
the Earth they considered the stochastic forcing of a particle
in a double-well potential with periodic perturbations, where
the latter are too weak to make the particle hop from one
well to another. The noise amplitude can be translated into
a timescale through the Kramers escape rate, proportional
to e−�V/kT , where �V is the height of the potential barrier
between the two minima and kT stands for the intensity of
thermal fluctuations in terms of a diffusion constant. If this
timescale is of the order of the period of the weak periodic
driving, then there is a chance that the particle hops once per
half period due to the noise and hence is in almost-synchrony
with the periodic driver. Hänggi and Marchesoni and several
others [2–8] have refined this argument, so that today this phe-
nomenon is understood in great theoretical detail. Stochastic
resonance has been observed in many different settings since
then, among them are neuronal systems [9–11], environmental
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systems [12–14], and biochemical systems [15–17]. In several
of these cited works it has been highlighted that stochastic
resonance is a phenomenon where noise enhances a determin-
istic signal and thereby plays a constructive role. It is even
thought to be an amplification mechanism for nerve sensing
of signals of very small strength [18–20]. On the other hand,
more-detailed analysis has raised doubts about the relevance
of stochastic resonance for the system where it had been first
proposed, the alternation in the glacial states of the Earth [21].

In view of References [21,22], we propose here a techni-
cally simple but conceptually relevant extension of the classi-
cal stochastic resonance model, namely state-dependent noise
amplitude, sometimes also called multiplicative noise. For
simplicity and in order to keep the number of free parameters
small, the noise strength in our model will be constant within
each well but different for the two wells. In the simple inter-
pretation of the noise strength as the timescale for stochastic
hopping from one well to the other, our generalization means
that this timescale differs between the two potential wells.
While the overall features of stochastic resonance remain
unchanged, this additional freedom allows us to introduce
asymmetry into the problem and to adapt the model better to
properties of the system which one wants to design.

In the following, we will first introduce our generalized
stochastic resonance model and show some of its features. We
will then study two applications in detail, namely the well-
known glacial-interglacial oscillations [1,2,8,23–25], and a
model for oceanic circulation [26–28]. In the first case, our
model is able to reproduce asymmetries between warm and
cold periods which one observes in data, but moreover, by
data analysis, we can verify independently the existence of
different diffusion constants in the two potential wells. For
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the oceanic flow, we can reproduce asymmetries which have
be previously found in more complex models.

II. THE SYSTEM AND THE DYNAMICS

The Langevin dynamics of an overdamped Brownian par-
ticle in a bistable potential subject to periodic forcing can
be employed to understand the process of stochastic reso-
nance to explain glacial cycles [1,2,8,23–25] and hysteresis
in thermohaline circulation [26–28]. The equation of motion
in dimensionless form can be written as

ẋ = −ax3 + bx + A0sin(ωt ) +
√

Dξ (t ), (1)

where x is the dynamical variable and t represents time; a
and b are constants and are characteristics of the potential; A0

and ω are the amplitude and frequency of the periodic force,
respectively; and ξ (t ) is the zero-mean, Gaussian, white noise.
The strength of the noise is given by D which is dependent
on the temperature of the system. The properties of ξ (t ) are
given by

〈ξ (t )〉 = 0,

〈ξ (t )ξ (t ′)〉 = 2δ(t − t ′). (2)

In absence of any external force, the positions of the minima

are at ±
√

b
a and the depth of the potential is given by b2

4a . When
the forcing amplitude is not too large, the positions of the
minima and the barrier height of the potential do not change
significantly. Consequently, the two minima of the potential
correspond to the two states of the system. More accurately,
it can be said that the two wells of the potential represent the
two states at any instant of time and the states are quantified
by the positions near the minima in the asymptotic limit.

For the stochastic resonance model of glaciation, the dy-
namical variable x is related to the Earth’s global mean tem-
perature [1], and for the model corresponding to the Atlantic
thermohaline flow x represents North Atlantic Deep Water
(NADW) circulation [27]. The two minima of the bistable po-
tential represent two steady-state temperatures for the stochas-
tic resonance climate model and two steady-state flows for
the thermohaline circulation model. The weather-dependent
fluctuations are incorporated in the dynamics through the
noise term. In the theoretical studies on these phenomena, it
has been considered so far that the strength of the fluctuations
coming from the surroundings is the same for both the states.
Here, we argue that the environmental fluctuations will be
affected by the current state of the system. For example,
we consider that in case of the climate change model, the
weather-dependent fluctuations will be different for the low-
temperature and the high-temperature phases. The justifica-
tion for this argument is that the fluctuations appear from
the short-term weather change which is directly affected by
temperature. Similarly, it is considered that the fluctuations in
the thermohaline circulation depend on the state of the NADW
circulation to incorporate the environmental effect. There-
fore, the overdamped Langevin dynamics [Eq. (1)] can be
modified as

ẋ = −ax3 + bx + A0sin(ωt ) +
√

D(x)ξ (t ), (3)

where D(x) is the state-dependent strength of the fluctuations.
We assume that D(x) = D1 for the left potential well and
D(x) = D2 for the right potential well, for simplicity.

III. RESULTS AND DISCUSSIONS

A. Synchronization of the periodic forcing
and the response of the system

During stochastic resonance, the periodic drive and the
response of the system become synchronized to produce
amplification of weak periodic forcing in presence of noise.
We try to understand in detail this process of synchronization
in system with state-dependent fluctuations. Therefore, before
going into the discussion of the two models related to the
climate science, we present the results from our systematic
study to understand the course of synchronization of the
external periodic forcing and the feedback of the system with
state-dependent fluctuations. We compare our results with
classical stochastic resonance case.

To measure the extent of synchronization, we consider
the Fourier quantifier which is well known in the study of
stochastic resonance [29]. We estimate the cosine and sine
components (Ac and As, respectively,) of the response func-
tion, i.e., x(t )’s time series over a number of periods. The
components Ac and As can be represented as follows:

Ac = 1

nT

∫ nT

0
x(t )cos(ωt )dt,

As = 1

nT

∫ nT

0
x(t )sin(ωt )dt, (4)

where T = 2π/ω is the time period of the periodic forcing
and n is the number of periods. The response amplitude or the
Fourier quantifier Q has the form

Q =
√

A2
c + A2

s . (5)

To calculate Q in terms of Ac and As, we solve x(t )
considering the Langevin dynamics Eq. (3). We have used
improved Euler algorithm or Heun’s method which is essen-
tially a second order Runge-Kutta method [30] to solve the
dynamics [Eq. (3)]. The noise term has been generated using
Box-Muller algorithm. The time step has been taken to be
equal to 10−3. We have considered the parameter set used in a
previous study regarding stochastic resonance [5] to compare
our results with the classical case. The values of a and b are
taken to be equal to 1. The amplitude of the periodic drive
A0 is considered to be equal to 0.2 and its frequency ω has
been kept constant at 0.01. We have considered 1000 cycles
to calculate Q and the quantifier has also been averaged over
100 trajectories.

The general idea to visualize stochastic resonance using
the quantifier Q is to estimate the measure by varying the
noise strength D and find its maxima as a function of D. In
resonance condition, the periodic forcing and the response
of the system are synchronized to the maximum extent. The
greater is the degree of synchronization, the larger is the value
of Q. Therefore, Q exhibits a maximum at a value of D
which corresponds to the resonance situation. For the above-
mentioned parameter set, the resonance is observed close to

062145-2



STOCHASTIC RESONANCE AND HYSTERESIS IN … PHYSICAL REVIEW E 101, 062145 (2020)

FIG. 1. Representative variations of Q versus D1 for several
values of D2. The values of a and b are 1. The amplitude of the
periodic forcing A0 is 0.2 and the corresponding frequency ω is
0.01. The solid black line represents the curve obtained for classical
stochastic resonance case.

D = 0.06 [5]. We keep the diffusion coefficient of the right
potential well, i.e., D2 fixed and vary the diffusion coefficient
of the left potential well, i.e., D1 to calculate Q. We vary D1

starting from 0.02 to 0.56 and calculate Q for several values
of D2 ranging between 0.02 and 0.56. We have illustrated the
variations of Q as a function of D1 for some representative
values of D2 in Fig. 1. In our case, we have two noise
parameters D1 and D2. Our study shows that for different
values of D2, we get maximum of Q corresponding to different
values of D1 and the numerical values of Q representing the
maxima also vary depending on the combination of D1 and
D2. The easiest way to quantitatively compare the present
scenario with the classical stochastic resonance case is to join
the maximum of the Q versus D1 curve for several values D2

and correlate it with the typical variation of Q against D for the
standard case. However, for the present study, the maximum
of Q is a function of two independent variables D1 and D2.
We observe that the highest maximum appears in the Q versus
D1 curve for D2 = 0.06 and the corresponding D1 value is
also 0.06. This result agrees with the classical stochastic
resonance case where one observes maximum of Q at D =
0.06. We note that near the peak of the Q versus D1 curve,
the maximum of Q occurs when D1 = D2, suggesting the
fact that synchronization is most effective when the diffusion
timescales of the two wells are equal. The numerical values of
Q in the curve which has been obtained by linking the maxima
of the Q versus D1 curve for different values of D2 are same as
that in the classical curve close to the peak. However, the two
curves deviate away from the peak. We have presented this
result in Fig. 2(a). We also detect that the maximum in the Q
versus D1 curve emerges for the condition D1 �= D2 when one
is away from the peak [Fig. 2(b)] and the value of Q is higher
for the present scenario as compared to the classical stochastic
resonance case. This result suggests that when one is away
from the resonance condition, i.e., when synchronization is
not so effective, a difference in the value of noise strength in
different wells can act to bring better synchrony in the periodic
signal and the response of the system. This points toward a

FIG. 2. (a) Comparison of the variation of the Q versus noise
strength of one of the well (here right well) for the system with
state-dependent diffusion coefficient with the classical stochastic
resonance case. The parameter set is the following: a = b = 1, A0 =
0.2, and ω = 0.01. (b) D1 as a function of D2 corresponding to the
maximum of the Q versus D1 plot for several values of D2 for the
same parameter set. The black line represents the D1 = D2 condition.

subtle difference in the characteristic of our study with the
conventional stochastic resonance case.

B. Glaciation stages

The concept of stochastic resonance was first introduced
to interpret the recurrent occurrence of glacial and inter-
glacial periods [1,23,24]. The double-well potential represents
Earth’s climate. The two minima of the double-well potential
represent two stable temperatures; one corresponds to the
glacial and the other to the interglacial climate. There occurs
very small periodic modulation of the Earth’s orbital eccen-
tricity which is represented by the weak periodic perturbation.
Annual fluctuations of solar radiation can be considered as the
short-term environmental fluctuations and it is modeled by the
zero-mean, Gaussian white noise. Equation (1) can represent
this dynamics. In the standard model, the dimensionless con-
stants a and b have values equal to 1 which gives potential
minima at xm = ±1, the amplitude of the periodic forcing A0

is 0.11, and the frequency of modulation ω is considered to be
2π/6000 and the value of D is varied between 0.01 to 0.3 [24].

In our model, we consider that the short-term fluctuations
in solar radiation affects the glacial and the interglacial cli-
mate differently. Physically, it can be explained like this.
The cloud coverage over the Earth controls the amount of
solar radiation entering the Earth’s atmosphere and also the
reflection of the ultraviolet radiation outside, not entering
the system. The extent of cloud coverage over the Earth is
supposed to be different for two different climates, the glacial
and the interglacial climates. Therefore, effectively the solar
radiation fluctuations affect these two different climates with
different strength. So, we argue that the strength of the noise
or the diffusion coefficient associated with the two climatic
states would be different.

For the system considered, the potential minima are at
±1 in absence of any external bias. Let us consider that
the dynamical variable at the potential minimum which is
xm = 1 corresponds to the interglacial climate and that at the
xm = −1 represents the glacial atmosphere. Due to the effect
of the weak periodic forcing and noise, transitions take place
between the two wells of the bistable potential, i.e., between
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FIG. 3. Time series of the dynamical variable x(t ) (noisy lines)
along with the periodic forcing A(t ) (smooth lines) for four different
values of D1 at (a) 0.01, (b) 0.04, (c) 0.06, and (d) 0.07. The value
of D2 has been kept constant at 0.07. a and b have been taken to be
equal to 1. A0 is 0.11 and ω has value equal to 2π/6000.

the two different climates. We have used the same method as
described in the previous subsection to solve the Langevin
dynamics [Eq. (3)] and to generate the noise term with the
same time step value equal to 10−3. To establish our case,
we proceed with Eq. (3) and simulate the dynamics with the
same parameter set as described in Ref. [24] but with two
different diffusion coefficients corresponding to the two wells.
We have kept the diffusion coefficient of the right well D2 to
be fixed at 0.07 and varied D1 starting from 0.01. In Fig. 3
we have represented the time series of the periodic signal
and the dynamical variable x(t ) for four different values of
D1 at 0.01, 0.04, 0.06, and 0.07. The time series of x(t ) at
the lowest value of D1, i.e., at 0.01 [Fig. 3(a)] suggests that
there occurs no transition between the climatic states if the
noise strength is too small. The transitions take place if D1 is
increased. This is observed in Figs. 3(b)–3(d). The interesting
point to note here is that the residence time at the two states are
different if the values of the respective diffusion coefficients
D1 and D2 are different. For example, at D1 = 0.04 and
D1 = 0.06 (which are less than D2 = 0.07), the dynamical
variable spends more time at the glacial state, whereas at
D1 = 0.07 (which is equal to the value of D2) the residence
time at both the states; i.e., at the glacial and at the inter-
glacial climate, is the same. This is an important observation
because our consideration of different strength of short-term
climate fluctuations corresponding to two different states,
supports the asymmetric nature of the glacial cycles [22]
and also the fact that the glacial periods are in general
longer than the interglacial periods [31]. The numerical results
obtained from our model suggest that assigning lower level
of weather related fluctuations to the glacial period makes
the climate to stay at this state for a longer span of time as
compared to the interglacial period.

FIG. 4. Hysteresis curves, 〈x(t )〉 versus A(t ), for four different
values of D1 at (a) 0.01, (b) 0.04, (c) 0.06, and (d) 0.07. The value
of D2 has been kept constant at 0.07. a and b have been taken to be
equal to 1. A0 is 0.11 and ω has value equal to 2π/6000.

The response of the system, x(t ), does not show hysteretic
behavior with respect to the periodic perturbation for a single
trajectory. However, interestingly, the average value 〈x(t )〉
forms hysteresis loops when plotted against the periodic driv-
ing A(t ). This has been shown in Figs. 4(a)–4(d) for four dif-
ferent values of D1 at D2 = 0.07. Here we have presented the
results obtained by averaging over 106 number of trajectories.
The same can be obtained by taking long-time average of the
x(t ) time series. The hysteresis cycles are asymmetric around
the origin if the values of the noise strength associated with
the two wells are different. So, for D1 less than D2, we get
asymmetric hysteresis loops [Figs. 4(a)–4(c)] and the equal
value of D1 and D2 gives rise to symmetric hysteresis loop
[Fig. 4(d)].

To assess our argument by analyzing the real data, we
consider benthic δ18O record proposed by Lisiecki et al. [32].
The data have been presented in Figs. 5(a) and 5(b). The
curves represent composite deep sea foraminiferal isotope

FIG. 5. Composite deep sea foraminiferal isotope record
(Lisiecki and Raymo 2005 [32]) for (a) 0 to 1000 kyr before present
time and (b) 1000 to 2000 kyr before present time.
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FIG. 6. Variation of the state-dependent drift D(1)(x) with respect
to x for the δ18O record (Lisiecki and Raymo 2005 [32] considering
up to 600 and 1000 kyr before present time). The two states, glacials
and interglacials, and their corresponding diffusion coefficients D1

and D2 have also been indicated. The thick lines indicate the values
of D1 and D2 for the time span of 600 kyr before present time and
the thin lines represent the same when we consider up to 1000 kyr
before present time.

record [22,32]. The middle Pleistocene transition is seen
around 1 million years before the present time. The char-
acteristics of the cycles up to 1000 kyr before present time
are different from earlier cycles (1000 to 2000 kyr before
present time). The former cycles are asymmetric [Fig. 5(a)]
and the latter are symmetric [Fig. 5(b)]. We concentrate on
the asymmetric cycles which correspond to the slow cooling
from the interglacials to glacials and fast warming from the
glacials to interglacials [22]. The related model temperature
anomaly data qualitatively follow the same structure as that of
the δ18O record as shown in Figs. 5(a) and 5(b) [22]. We take
an average of the data and consider that there exist two states,
one below the average value and the other above the average
value. One of the states corresponds to the glacials and the
other to the interglacials. For the δ18O data, the values below
the average represent interglacial climate and that above the
average correspond to glacial period. We calculate the state-
dependent drift D(1)(x) [33–37] following the equation

D(1)(x) = lim
�→0

1

�
〈xt+� − xt 〉x. (6)

where the average 〈. . .〉x represents the conditional average
that xt = x. D(1)(x) represents the deterministic force, i.e., the
negative gradient of the potential [38]. Here we can expect the
dependence of D(1)(x) with respect to x to be like x − x3 as
the underlying potential is supposed to possess bistability. We
have presented the result of our analysis in Fig. 6. Probably,
due to the limitation on the availability of the data, we are
unable to see the clear trend of the cubic function in the
calculated force arising from the bistability of the potential.
Still we observe that the drift D(1)(x) is a decaying function
of x which has a metastable point very close to the average
value of x. Therefore, we consider the two states to lie below
and above the average value of x. We present the variation
of D(1)(x) with respect to x considering the data up to 600
and 1000 kyr before present time. Both of the curves show
similar behavior. We measure the state-dependent diffusion

coefficients [33–37] corresponding to these two states, i.e., the
two climates following the equation

D(x) = lim
�→0

1

2�
〈(xt+� − xt )

2〉x. (7)

Here also the average 〈. . .〉x measures the conditional average
that xt = x. The calculations show that the diffusion coef-
ficient corresponding to the interglacial period is higher as
compared to the glacial period. If we consider up to 600 kyr
before present time, then the effective diffusion coefficients
are 4.965 × 10−3 and 5.648 × 10−3 for the glacials and in-
terglacials, respectively. When we take into account time up
to 1000 kyr before present time the values of D1 and D2

become 5.023 × 10−3 and 5.334 × 10−3, respectively. The
errors in the values of D1 and D2 are of the order of 10−5

in all cases. These effective diffusion coefficients have been
presented in Fig. 6 by D1 and D2. Although up to 1000
kyr before present time the cycles show similar behavior, we
suggest that it is relevant to calculate the drift and diffusion
coefficients of the time series for 600 kyr before the present
time because within this time segment successive data are
available for the smallest time interval [32]. Therefore, this
time duration provides a greater number of data at hand for
a given time span and a better statistics. We also see that the
difference in values of D1 and D2 is more significant when
we consider up to 600 kyr before the present time. As the
temperature anomaly data follow the same structure as that
of the δ18O data, one can expect the diffusion coefficients
corresponding to the temperature data to behave in a similar
way, i.e., the diffusion coefficient representing the interglacial
climate would be higher as compared to that corresponding
to the glacial atmosphere. This is what we have considered
while simulating our model [Eq. (3)] and observed that the
glacials last longer than the interglacials. The evaluation of
the two different diffusion coefficients corresponding to the
two different climatic states from the real data supports our
argument. The analysis of our model shows that the consider-
ation of different strength of short-term weather fluctuations,
i.e., the diffusion coefficients of the two climatic states can
explain different duration of glacials and interglacials.

C. Thermohaline circulation

Bistability in climatic science is also observed in the
case of North Atlantic thermohaline circulation [26–28]. The
present-day Gulf Stream carries a large amount of heat from
the tropical region to the very north of the Atlantic ocean.
This heat transport occurs due to the vertical reversing of
the cell linked to the NADW formation [26]. Warmer surface
water flows to the northand then goes down the surface and
circulates toward the south as cold deep water. This is the
reason for the milder climate in Western Europe (northern
North Atlantic) compared to the regions in the Pacific of
the same latitude. However, there is another stable state for
the thermohaline circulation which transports a lesser amount
of heat to the north. It is considered that in the past the
thermohaline flow was confined to that state [26,28].

The observed bistability suggests that NADW circulation
is a nonlinear system and the model studies have shown that
the system exhibits hysteresis behavior between the two states
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if the freshwater forcing exceeds a certain value [26,39–43].
The model proposed by H. Stommel, which is known as
Stommel’s box model [39], explains the bistability in NADW
circulation. In that model, the ocean at the low latitude and at
the high latitude are represented by two different boxes and
two different values of temperature and salinity are assigned
to these boxes. The dynamics of the temperature difference
and the salinity difference between the two regions can be
modeled in different ways [44] and their dynamics is coupled
through the density difference [28]. Taking into account of the
fact that the coupled dynamics represents a slow-fast system,
the two-dimensional dynamics can be reduced to the form
of Eq. (1) [28]. Here the dynamical variable x represents a
quantity that signifies NADW circulation, the periodic forcing
term A0sin(ωt ) is proportional to the freshwater circulation
which is affected by the imbalances between the evaporation
prevailing at the low amplitudes and precipitation dominating
at the high amplitudes. The noise term

√
Dξ (t ) represents

weather-dependent fluctuations.
Here also we consider that the weather-dependent fluc-

tuations which arise as a consequence of the variation of
evaporation and precipitation affect the two stable states of
the system, i.e., the two different conditions of the NADW
flow, differently. Different situations of the NADW flow in-
fluence the change in weather, for example, the temperature
of the atmosphere directly. These distinct weathers control
the process of evaporation and precipitation in their particular
way. Consequently, the fluctuations coming from the weather
depend on the current state of the weather itself. Therefore,
one can expect the short-term weather fluctuations to regulate
the two states of the NADW flow in different manner. So we
assign two different values of the noise strength or diffusion

FIG. 7. Time series of the dynamical variable x(t ) (noisy lines)
along with the periodic forcing A(t ) (smooth lines)for four different
values of D1 at (a) 0.01, (b) 0.04, (c) 0.06, and (d) 0.07. The value
of D2 has been kept constant at 0.07. a and b have been taken to be
equal to 1. A0 is 0.4 and ω has value equal to 0.005.

FIG. 8. Hysteresis curves, 〈x(t )〉 versus A(t ), for four different
values of D1 at (a) 0.01, (b) 0.04, (c) 0.06, and (d) 0.07. The value of
D2 has been kept constant at 0.07. a and b have been taken to be equal
to 1. A0 is 0.4. For each D1 value three different ω values (0.001,
0.005, and 0.01) have been considered. The loop area increases with
increasing ω. So we get the smallest hysteresis loop at ω = 0.001
and the hysteresis loop has the maximum size at ω = 0.01.

coefficient corresponding to the two wells and solve the
dynamics [Eq. (3)]. We consider that a and b have values
equal to 1 and A0 is 0.4, an amplitude value of the periodic
forcing that is high enough to cause hysteresis. We consider
D2 to be fixed at 0.07 and change D1 starting from 0.01 to
0.07. The time series of x(t ) along with the periodic forcing
A(t ) has been presented in Figs. 7(a)–7(d) for these four
D1 values at D2 = 0.07 and ω = 0.005. The observations
suggest that there is delay in response of the system with
respect to the periodic forcing which ultimately gives rise
to hysteresis and the delay is more prominent when the
difference of the values of D1 and D2 is more. To understand
the effect of the hysteresis better, we take an average over
106 number of trajectories. This can also be thought as a
long time average of x(t ) and considered to represent the
equilibrium feature of the dynamics. The results have been
shown in Figs. 8(a)–8(d) for the same parameter set as in
Figs. 7(a)–7(d) with three different ω values of 0.001, 0.005,
and 0.01. 〈x(t )〉 has been plotted against −A(t ) to match
the directionality in previous studies [26,27]. It is observed
that the consideration of the different values of D1 and D2

produces hysteresis loops which are asymmetric around the
origin [Figs. 8(a)–8(c)] and the curves are symmetric for the
equal values of D1 and D2 [Fig. 8(d)]. This is consistent
with the previous observations in model experiments [26]
and the features of the hysteresis loops studied with different
theoretical models [27] which are much more complex and
have higher dimensionality than that of our current model.
These earlier investigations also suggest that the right branch
of the hysteresis loop is rounded. This is expected because of

062145-6



STOCHASTIC RESONANCE AND HYSTERESIS IN … PHYSICAL REVIEW E 101, 062145 (2020)

the existence of the underlying parabolic equilibrium curve
that is obtained from the Stommel’s model [26,27]. This
characteristic feature is reflected in the hysteresis loops when
D1 and D2 are much different [Fig. 8(a)]. It was observed
before that with increasing periodic forcing, the right half of
the hysteresis loops shifts toward the left [26]. Our model
study also supports this fact. The point to be mentioned here
is that we have arbitrarily assigned lower and higher values to
D1 and D2, respectively. Nonetheless, the consideration of the
reverse will not change the argument about the asymmetric
nature and the other characteristics of the observed hysteresis
loops. The important aspect to note here is that to explain
the hysteresis phenomenon in thermohaline circulation many
models of high to intermediate complexity have been intro-
duced [27]. However, despite the simplicity of the current
one-dimensional model representing NADW circulation, we
can capture the features of the hysteresis behavior exhibited
by the system when we consider that the short-term weather
related fluctuations depend on the current state of the system.

IV. CONCLUSION

We consider two phenomena in climate science where
bistability between two states is observed. One is the tran-
sition between the two climatic states, the glacial and the
interglacial periods. Here these two states can be represented
by the two minima of a double-well potential. Another one
is the thermohaline circulation in North Atlantic ocean where
two different conditions of the NADW flow are considered
to form the two states of the system. This system can also
be modeled with a bistable potential, the two wells signifying
two different types of the flow. In both cases, the dynamics are
subject to a periodic forcing. For the climate change model the
periodic forcing is connected to the change of Earth’s orbital
eccentricity and is very weak in nature. On the other hand, the
periodic perturbation in NADW circulation has large ampli-
tude to cause hysteresis in the system and it is equivalent to the
freshwater flux. The other important factor that controls the

dynamics is the short-term weather-dependent fluctuations.
This is represented by Gaussian, white noise in the dynamics.
The strength of the noise dictates the extent of fluctuations and
is a measure of the diffusion coefficient.

We take into account the Langevin dynamics of an over-
damped Brownian particle in a bistable potential, subject to
periodic forcing to represent the two systems. This is the
simplest model that can capture the essential dynamics. In all
of the previous studies, it has been considered that the short-
term weather-dependent fluctuations affect the two states in a
similar way. Here in this paper, we argue that there is reason
to assume that the effect of the fluctuations on the two states
of the systems is different as the fluctuations bear the char-
acteristics of the corresponding state. This hypothesis makes
the diffusion coefficient state dependent. Introduction of the
idea of the different diffusion coefficients corresponding to
the two different states helps to reproduce important features
of the dynamics with the help of the simple bistable model.
For the climate change model, consideration of the lower
diffusion coefficient associated with the state of the glacial
period makes the system to stay for longer time at the glacials
compared to the interglacials. We justify this assumption by
analyzing δ18O records obtained in previous observation. This
investigation shows that the diffusion coefficients calculated
from the real data are also different for the two states and it
has smaller value for the state corresponding to the glacial
for the first one million year. The observation of the longer
duration of the glacial period as compared to the interglacial
period in our simulation study is in agreement with what one
views in Earth’s glacial cycle. In thermohaline circulation
model, assignment of varied strength of weather-dependent
fluctuations produces asymmetric hysteresis loops which were
also observed in previous model experiments and theoretical
studies. Therefore, we propose that the consideration of the
state-dependent diffusion coefficients is important in these
two climate models because this assumption can generate
some actual features of the dynamics when incorporated in
the standard model.
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