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We consider a percolation process in which k points separated by a distance proportional the system size L
simultaneously connect together (k > 1), or a single point at the center of a system connects to the boundary
(k = 1), through adjacent connected points of a single cluster. These processes yield new thresholds pck defined
as the average value of p at which the desired connections first occur. These thresholds not sharp, as the
distribution of values of pck for individual samples remains broad in the limit of L → ∞. We study pck for
bond percolation on the square lattice and find that pck are above the normal percolation threshold pc = 1/2
and represent specific supercritical states. The pck can be related to integrals over powers of the function
P∞(p) equal to the probability a point is connected to the infinite cluster; we find numerically from both
direct simulations and from measurements of P∞(p) on L × L systems that for L → ∞, pc1 = 0.517 55(5),
pc2 = 0.532 19(5), pc3 = 0.544 56(5), and pc4 = 0.555 27(5). The percolation thresholds pck remain the same,
even when the k points are randomly selected within the lattice. We show that the finite-size corrections scale
as L−1/νk where νk = ν/(kβ + 1), with β = 5/36 and ν = 4/3 being the ordinary percolation critical exponents,
so that ν1 = 48/41, ν2 = 24/23, ν3 = 16/17, ν4 = 6/7, etc. We also study three-point correlations in the system
and show how for p > pc, the correlation ratio goes to 1 (no net correlation) as L → ∞, while at pc it reaches
the known value of 1.022.
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I. INTRODUCTION

Percolation is the study of long-range connectiveness in
systems such as graphs or lattices in which the sites or bonds
are randomly occupied with probability p. There is a well-
defined threshold pc at which the average size of a cluster
first becomes infinite. The threshold can also be defined by
considering finite systems (say an L × L square) and studying
the probability that a single cluster connects or spans two
opposite sides. The average value of p at which spanning first
occurs yields an estimate for pc(L), and by using finite-size
scaling one can predict the value of pc for L → ∞. In this
case, the threshold is sharp as L → ∞. For a square lattice
with bond percolation, one has pc = 1/2 [1,2].

Percolation has received a great deal of attention over the
years; some recent papers include a study of regular and
inverse percolation of rigid rods [3], continuum percolation of
overlapping polyhedra [4], percolation over varied ranges of
transmission [5], percolation on a distorted lattice [6], percola-
tion of k-mers undergoing random sequential adsorption [7],
percolation disassortativity on random networks [8], perco-
lation for random sequential adsorption with relaxation [9],
percolation over a range of interactions [10], percolation in
high dimensions and on a random graph [11], percolation on
hypercubic lattices in high dimensions [12,13], percolation of
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the elastic backbone [14], universality in explosive percola-
tion [15], crossing probabilities for polygons [16], rigorous
bounds for percolation thresholds [17], percolation on random
jammed sphere packings [18], and percolation on hyperbolic
manifolds [19]. Clearly, percolation remains a very active
field.

For the ordinary percolation problem in d dimensions,
the connectivity is usually considered between the pair of
opposite (d − 1) dimensional hypersurfaces. Naturally, the
question arises, what happens if the connectivity is con-
sidered between the (d − 2), (d − 3),.... dimensional hyper-
surfaces? In this paper, we try with the simplest possible
situation, which is the connectivity between the (d − 2)
dimensional hypersurfaces in d = 2. More specifically, we
study the percolation problem between the k widely sepa-
rated points (dimension 0) on the two-dimensional square
lattice or between a single point and the boundary of the
system.

The first threshold we consider is defined as the average
value of p at which a point in the center of a square system
first connects to any point on the boundary. This defines
the threshold pc1. The other thresholds are defined as the
average value of p at which k points separated far apart in a
periodic system all first connect; we call those thresholds pck .
These thresholds are all greater than pc, indicating that we
are in the supercritical regime of percolation where there is a
percolating net throughout the system. Being in a supercritical
state is expected, since connecting a large cluster to a specific
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single point at the normal critical point pc occurs with low
probability (unlike connecting to a boundary, for example,
which can occur through many paths and is much easier).
Connecting to a boundary is a universal property that survives
at the critical point when the lattice spacing goes to zero,
while in that limit the probability of connecting to a single
point goes to zero. When going to the supercritical regime, the
probability of connecting to a point can be raised to a signifi-
cant value, and this allows different points to connect together
simultaneously with a sufficient probability to be observed.

We carried out computer simulations to find the values of
pck directly for k = 1, 2, 3, and 4. We also developed a theory
to connect pck to P∞, the percolation function that gives the
probability a given point belongs to the infinite cluster, or the
largest cluster for a finite system. By directly simulating P∞
for this system, we are able to verify numerically that the
relation to pck is valid. The analysis also shows that, unlike
in the case of the usual percolation threshold, the distribution
of pck for individual systems is broad and does not become
sharp as the system size goes to infinity. That is, there are
large fluctuations in the states of these systems defined by
these percolation criteria.

In Fig. 1 we show pictures of simulations of a 64 × 64
periodic system in which the first connection between the two
anchor points occurred when 4415 bonds were placed down,
or at pc2 = 4415/8192 ≈ 0.538 94, and the same system at
the standard threshold p = 4096/8192 = 1/2 = pc, at which
point no connection exists between the two anchor points for
this system. The value of pc2 for this sample is close to the
average value pc2 = 0.5312 found by averaging over many re-
alizations. It can be seen that, at pc2, there is one overwhelm-
ing “infinite” cluster throughout the system, and finite clusters
are very small. This behavior illustrates the idea behind our
conjecture that in the supercritical region, the probability that
k points are connected together is equal to [P∞(p)]k .

In Fig. 2 we show a very rare case where the connection
between the anchor points occurred at a value substantially
below p = 1/2; for large systems such cases appear with very
low probability.

We also studied a ratio involving three-point correlations
and two-point correlations, and show how that varies with the
separation of the points compared with the size of the system.
This ratio has been studied previously at the critical point
only [20,21]; here we study it for all p.

In Sec. II we develop our theory for pck , including the
scaling of the estimates. In Sec. III we describe our simulation
methods, and in Sec. IV we give the results of our simula-
tions. In Sec. V we consider the problem of the three-point
correlation ratio. In Sec. VI we discuss our results and give
our conclusions.

II. THEORETICAL ANALYSIS

Here we develop a theory to predict pck from P∞(p) and
develop a scaling analysis that allows one to predict the
convergence exponents for pck .

A. Relation to P∞

The first assumption is that we must be in the supercritical
state, since only then will the k points be able to connect

(a)

(b)

FIG. 1. Two illustrations of the system are presented for a lat-
tice of size 64 × 64 with periodic boundary conditions, and with
k = 2 anchor points (marked by filled blue circles) separated by a
distance of 32 lattice units. Bonds of the largest occupied cluster
are shown in red (gray), and all other occupied bonds are shown
in black. (a) A system where the number of bonds is exactly 4096
or p = 4096/8192 = 1/2 = pc, without connection between the two
anchor points. (b) The same system where the number of occupied
bonds is increased to 4415 bonds or pc2 = 4415/8192 ≈ 0.538 94,
at which point connection between the anchors first occurred. This
is a typical example where the threshold is near the average value
of pc2 = 0.5322 and shows that in this supercritical regime there
is a percolating network that goes essentially throughout the entire
system.

together via the infinite network. At pc, the infinite cluster is
tenuous and fractal, and does not connect to given points with
a significant probability (for a large system), and below pc the
clusters are all small and it would be virtually impossible for
points far apart to connect together.

062143-2



BOND PERCOLATION BETWEEN k SEPARATED POINTS IN … PHYSICAL REVIEW E 101, 062143 (2020)

(a)

(b)

FIG. 2. (a) Here the density of occupied bonds at the first con-
nection occurs at p = pc2 = 3660/8192 = 0.446 78. (b) The same
system where p is increased to pc = 1/2 is shown. This is a very
rare system in which the connection between the anchor points first
occurs substantially below pc, where the point connecting cluster
(magenta or light gray bonds) is different from the largest cluster
(red or gray bonds). In fact, the spanning cluster is relatively small
and does not extend over the whole system. Such behavior where
spanning occurs below pc can only happen in smaller systems. In
most cases, the individual values of pc2 are larger than pc, and the
cluster connecting them is the “infinite” cluster that spreads over
virtually the entire system as in Fig. 1(b).

Thus, for k widely separated points to be all connected
together, we hypothesize that they must be part of the infinite
cluster in the supercritical state. The probability a single point
belongs to the infinite cluster is denoted as P∞(p); for a finite
system we can define P∞(p, L) = smax/L2, where smax is the
number of sites in the largest cluster in the system. Thus, we
conjecture that the probability that k widely separated points

are connected must be equal to [P∞(p)]k . The probability
density that they first connect when the occupation probability
is p is then

Pr = (d/d p)[P∞(p)]k = k[P∞(p)]k−1P′
∞(p), (1)

and the average value of p at which the k points first connect
will be given by

pck = 〈p〉 =
∫ 1

0
p(d/d p)[P∞(p)]kd p. (2)

Integrating by parts, we find

pck = 1 −
∫ 1

0
[P∞(p)]kd p =

∫ 1

0
(1 − [P∞(p)]k )d p. (3)

For the problem of a single site connected to the boundary
(corresponding to pc1), the above formulas also apply, taking
k = 1. In this case, the largest cluster surely connects to the
boundary, so we are asking for just the probability that a point
connects to the largest cluster, which is given by P∞(p). Note
that for the case of k = 1, we do not use periodic boundary
conditions.

For k > 1 the value of pck should be independent of the
exact configuration of the k points, as long as their relative
distances grow with L, so that they become infinitely far apart
as L → ∞ and greater than the correlation length ξ , which is
finite for any given p > pc. For finite systems, the specific
configuration of the points will be relevant for the precise
threshold.

We can make a very useful approximation for calculat-
ing pck from P∞(p) for finite systems by simply assuming
P∞(p) = 0 for p < pc, which is true for an infinite system.
Then the integrand in the second form of Eq. (3) is exactly 1
in the interval 0 < p < pc, and we can write as an alternative
to (3)

pck = pc +
∫ 1

pc

(1 − [P∞(p)]k )d p, (4)

where pc = 1/2 for bond percolation on the square lattice.
Equations (3) and (4) are identical when L → ∞, but it will
turn out that (4) gives a much better estimate of pck for
finite L.

B. Scaling of the estimates

If we assume that the mapping of our problem to [P∞(p)]k

is correct for finite systems characterized by P∞(p, L), we can
then estimate the scaling behavior of the estimates from finite-
size scaling theory. That theory states that for L → ∞ and
p − pc → 0 with (p − pc)L1/ν constant,

P∞(p, L) ∼ aL−β/νF [b(p − pc)L1/ν], (5)

where a and b are system-dependent constants (“metric fac-
tors”), while β, ν, and F (z) are universal quantities, having
the same values and behavior for all systems of a given
dimensionality, and also a given system shape for the case of
F (z). For d = 2, one has β = 5/36 and ν = 4/3 [1].

We will apply this scaling to the estimate for pck given by
Eq. (3). First we consider the interval p = (0, pc). In this inter-
val, we assume that the finite-size effects are essentially those

062143-3



S. S. MANNA AND ROBERT M. ZIFF PHYSICAL REVIEW E 101, 062143 (2020)

given by the scaling function F (z), because when p < pc,
P∞(p,∞) = 0. That is, we assume the nonscaling corrections
are unimportant for large L for p < pc.

Putting (5) into the integral in Eq. (3) over the interval p =
(0, pc), we find∫ pc

0
[P∞(p)]kd p = ak

∫ pc

0
L−kβ/ν[F (b(p − pc)L1/ν )]kd p,

(6)
and a change of variables yields∫ pc

0
[P∞(p)]kd p = akb−1L−(kβ+1)/ν

∫ 0

−bpcL1/ν

[F (z)]kdz

≈ akb−1L−(kβ+1)/ν
∫ 0

−∞
[F (z)]kdz, (7)

where z = b(p − pc)L1/ν . In the second integral in (7) we
extended the lower limit to −∞, valid for large L because
the integrand decays exponentially for negative z.

Therefore, this contribution to the integral in (3) should
scale as L−1/νk with

1/νk = (kβ + 1)/ν = 36 + 5k

48
, (8)

so that 1/ν1 = 41/48 = 0.854 166 and 1/ν2 = 23/24 =
0.958 333 etc.

For p > pc, it is not clear how to attack the finite-size
corrections of the integral in (3), because there are large
nonscaling contributions to P∞ whose behavior we do not
know, but it seems reasonable to assume that the finite-size
corrections for p > pc scale the same as those we found for
p < pc, so we conjecture that the exponents νk above should
characterize the full finite-size corrections to pck . That is, we
conjecture

pck (L) = pck + cL−1/νk , (9)

where c is a constant and νk is given by Eq. (8). The constant
term on the right-hand side, pck , derives from the nonscaling
parts of P∞ for p > pc. Note that it also follows from the scal-
ing arguments above that Pr = k[P∞(p)]k−1P′

∞(p) behaves
with L in the scaling regime as

Pr ∼ kak−1L−(k−1)β/ν{F [b(p − pc)L1/ν]}k−1

× aL−β/νF ′[b(p − pc)L1/ν]bL1/ν

∼ L−(kβ−1)/νG[b(p − pc)L1/ν]. (10)

III. SIMULATION METHODS

A. Simulation method to find pck

We carried out computer simulations of these processes
on systems of size L × L for bond percolation, with periodic
boundary conditions. For the case k = 1, we consider L odd
and add bonds until the center point connects to the boundary
for p = pc1. Repeating this process many times, we average
the values of pc1 to find pc1. For k = 2, 3, and 4, we consider
periodic L × L systems with L = 2n, n = 5, 6, . . . 12. For
k = 2 we consider the connectivity between a point at the
origin (0,0) and a point at (0, L/2). For k = 3, the connectivity
between the three points (0,0), (L/2, 0), and (0, L/2), and
for k = 4, the connectivity between the four points (0,0),

(L/2, 0), (0, L/2), and (L/2, L/2) is considered. Note that
for k = 3, the three points are the vertices of a right triangle
rather than an equilateral triangle, so the distances between
pairs of points are not identical, but this is not important—all
that matters is that the three points are relatively far apart from
each other. The average value of p at the first connection gives
pck .

It is clear from Eq. (1) that the values of the thresholds pck
should depend only on the value of k and not on the actual
distribution of the k points. We have numerically verified this
issue for k = 2 by randomly distributing these two points on
the lattice for every configuration. Our simulation results show
that the values of pc2 remain unchanged.

We also studied the average p at which the origin connects
to point x = 1, x = 2, ..., x = L/2, and y = 0 for systems of
different L. We discovered that pc2(x) does not noticeably
depend upon L as along as x 	 L, indicating that the size of
the system is unimportant for shorter-range connections.

B. Simulation method to find P∞

To test the conjecture relating pck to P∞, we carried out
measurements of P∞(p) using the method of Newman and
Ziff (NZ) [22,23], which involves adding bonds one at a time
to the system and using the union-find procedure to merge
clusters and keep track of the cluster distribution. This method
allows one to effectively measure a quantity Q(p) [such as
P∞(p)] for all values of p in a single simulation. In this
method, one first determines the “microcanonical” Qn (here
P∞,n), when exactly n bonds have been placed down, and then
determines the “canonical” Q(p) [here P∞(p)] by carrying
out a convolution with the binomial distribution B(N, n, p) =(N

n

)
pn(1 − p)N−n:

Q(p) =
N∑

n=0

(
N

n

)
pn(1 − p)N−nQn, (11)

where N is the total number of bonds in the system, in
this case 2L2. For large systems, the differences between the
microcanonical Qn with n = pN and Q(p) are small, except
for regions of high curvature or second derivative, but the
convolution serves a further purpose of smoothing out the
data and connecting it with a continuous curve rather than
the discrete values p = 1/N, 2/N, . . .. To integrate P∞(p) [as
required for pc1 according Eq. (3) or (4)], one can just as well
sum the microcanonical values because of the identity [24]

∫ 1

0
Q(p)d p =

N∑
n=0

(
N

n

)
Qn

∫ 1

0
pn(1 − p)N−nd p

= 1

N + 1

N∑
n=0

Qn. (12)

Likewise, it follows that

∫ 1

0
pQ(p)d p = 1

(N + 1)(N + 2)

N∑
n=0

(n + 1)Qn. (13)

To integrate [Q(p)]k = [P∞(p)]k for k > 1 with respect to p,
it is most straightforward to first carry out the convolution
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to find P∞(p) and then numerically integrate the [P∞(p)]k at
equally spaced values of p.

Derivatives of Q(p) can also be found directly from the
Qn [24]:

Q′(p) =
N∑

n=0

(
N

n

)
Qn

d

d p
[pn(1 − p)N−n]

= 1

p(1 − p)

N∑
n=0

(n − N p)

(
N

n

)
[pn(1 − p)N−n]Qn

= 〈(n − N p)Qn〉
p(1 − p)

, (14)

and likewise,

Q′′(p)

= 〈n2Qn〉−(2(N − 1)p + 1)〈nQn〉+N (N − 1)p2〈Qn〉
p2(1−p)2

= 〈(n − N p)2Qn〉+(2p−1)〈(n−N p)Qn〉−N p(1 − p)〈Qn〉
p2(1−p)2

,

(15)

where the averages are over the binomial distribution
B(N, n, p). Note that in Ref. [24], there is a typo in Eq.
(32) for Q′′(p) in which the last term should have the factor
(N − n − 1) rather than (N − n + 1).

To find P∞(p) we simulated 107 samples each for L =
64, 128, 256, and 512 on L × L periodic systems, saving the
2L2 microcanonical values of smax in a file. For the largest
system L = 512, the simulations took several days on a
laptop computer. Then we used a separate program to read
the files and calculate P∞(p) = smax/L2 for 104 points p =
0, 0.0001, . . . , 1.0000 using the convolution (11). We also
calculated P′

∞(p) and P′′
∞(p) using the formulas of Eqs. (14)

and (15). We used the recursive method described in Ref. [23]
to calculate the binomial distribution for each p. To find the
integrals of [P∞(p)]k for Eqs. (3) and (4), we carried out
numerical integration of the 104 points using the trapezoidal
rule (namely, counting the two endpoints with relative weight
1/2 and all other points with weight 1). We compared some
of the integrals using 103 and 105 points and did not find a
significant difference in the results, and used 104 values of p
in our calculations.

IV. RESULTS

Figure 3(a) shows the probability distribution Pr (pc2, L)
of the percolation threshold pc2 of connecting two anchor
points from direct measurements. Note pc2 is the value of p
at which the connection first takes place in a given sample, as
opposed to pc2 which is the average value over many samples.
Figure 3(b) shows a scaling plot of the data using the scaling
implied in Eq. (10).

Figure 4 shows the predicted behavior of Pr from the ansatz
of Eq. (1) using the simulation results of P∞ rather than
measuring Pr directly. These curves can be compared with
those of Fig. 3(a), and the two can be seen to agree.

Figure 5 shows the predicted scaling behavior of Pr from
the ansatz of Eq. (1), and the results can be seen to be

0.45 0.50 0.55 0.60p
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c
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0.0

0.5

1.0

1.5

P
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β−
1)

/ν

(a)

(b)

FIG. 3. Simulation result: (a) The probability distribution
Pr (pc2, L) of the percolation threshold pc2 of connecting two an-
chor points has been plotted against pc2 for L = 128 (black or
lower curve), 256 (green or middle curve), 512 (red or upper, most
peaked curve). (b) The scaling plot of the probability distribution
Pr (pc2, L)L(2β−1)/ν against (pc2 − pc )L1/ν with β = 5/36, ν = 4/3
with pc = 1/2. Bottom to top L = 128, 256, and 512.

similar to the scaling plot of the directly measured Pr given
in Fig. 3(b).

Figure 6 shows plots of the predicted distributions of the
probabilities of first connection, (d/d p)[P∞(p)]k , for k = 1,

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
0

10

20

30

40

p

FIG. 4. Plots of Pr (p, L) = 2P∞(p)P′
∞(p) for L = 128, 256, and

512, bottom to top at peaks. These are the analogous curves as given
in Fig. 3(a), calculated from P∞(p) rather than by direct simulation
of Pr . Note that here p is equivalent to pc2 used in Fig. 3.
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− 2 − 1 0 1 2 3 4
0.0

0.5

1.0

1.5

(p − pc) L
1
ν

L(
2

β−
1)

/ν
2
P ∞
P ∞
'

FIG. 5. Scaling plot of L(2β−1)/ν2P∞(p)P′
∞(p) vs (p − pc )L1/ν

for L = 128, 256, and 512 (bottom to top). The curves collapse
well to a universal curve, except for the tail for large (p − pc )L1/ν ,
which represents the nonscaling part of this quantity. This plot is
comparable with Fig. 3(b), here evaluated through P∞ rather than the
direct measurement of Pr . Here p is equivalent to pc2 in Fig. 3.

2, 3, and 4, based upon measurements P∞(p), for a system of
L = 512. As can be seen, the distributions are broad, meaning
that the thresholds we find pck have large fluctuations from
system to system and persist as L → ∞.

In Fig. 7 we plot estimates for pc1 found from direct simu-
lations with the point in the center of an (L + 1) × (L + 1)
system, for L = 64, 128, . . . , 4096, and secondly using the
formulas of Eqs. (3) and (4) for k = 1 based upon P∞(p). The
data are plotted based on the predicted scaling L−41/48 from

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
0

10

20

30

40

50

p

FIG. 6. A plot of (d/d p)[P∞(p)]k vs p for k = 1 (red, highest
peak), k = 2 (orange, second-highest peak), k = 3 (green, second-
lowest peak), and k = 4 (blue, lowest peak) for a system with
L = 512, calculated from the results of the numerical simulations
of P∞(p), including using Eq. (14) to find P′

∞(p). The estimates
of pck are the means of these distributions according to Eq. (2),
and it can be seen that the distribution spreads to the right as k
increases, yielding larger values of pck . To find the accurate values
of pck , one has to consider systems of different L and take the limit
that L → ∞, although the change is small for systems larger than
L = 512. Note that the distribution is broad and the large fluctuations
in the individual values of pck persist as L → ∞.

0.00 0.01 0.02 0.03 0.04 0.05

L-41/48

0.47

0.48

0.49

0.50

0.51

0.52

p c
1(
L)

FIG. 7. Values of pc1(L) found from simulations of connections
of a point at the center to the boundary of an (L + 1) × (L + 1)
square system (triangles), by integrating P∞(p) on L × L periodic
systems using Eq. (3) for k = 1 (squares), and by integrating P∞(p)
using Eq. (4) (circles). The estimates are all plotted vs L−41/48

according to the prediction of Eq. (8). The equations of the linear
fits through the points are pc1 = a + bL−41/48 with a = 0.555 20,
b = −0.338 05 (squares), a = 0.555 32, b = −0.279 62 (triangles),
a = 0.555 30, b = −0.063 23 (circles).

Eq. (8). We do not expect that the values of pc1(L) would be
the same for finite L from the two methods (direct simulation
and via P∞); however, we expect that the extrapolation as L →
∞ should be the same, because in that limit the probability
the point connects to the boundary should exactly be the
probability the point belongs to the largest cluster, namely,
P∞. Furthermore, we expect the two estimates of pc1 should
scale with L with the same exponent 1/ν1 = 41/48, and
indeed that plot confirms that expectation. The two different
approaches suggest a threshold of pc1 = 0.517 49(5).

It can clearly be seen that the estimate based upon (4),
which assumes P∞(p, L) = 0 for p < pc, converges much
more quickly than the estimate based upon (3). On a more
expanded scale, the convergence to this estimate is also shown
to obey the L−41/48 scaling but is not shown here. The results
for k = 2, 3, and 4 are shown in Figs. 8, 9, and 10. Our values
of pck are given in Table I.

V. CORRELATIONS

We also considered a related question for two- and three-
point correlations. Studying this problem sheds light on the

TABLE I. Our best estimates for the extrapolated values of
the average percolation thresholds pck from direct measurements
(second column) and from P∞ via Eqs. (3) and (4) for different
values of k. The averages of these values are quoted in the abstract.

k pck Measured Eq. (3) Eq. (4)

1 0.51749(5) 0.51761(3) 0.51755(3)
2 0.53212(5) 0.53220(3) 0.53226(3)
3 0.54450(5) 0.54458(3) 0.54461(3)
4 0.55520(5) 0.55530(3) 0.55531(3)
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0.00 0.01 0.02 0.03 0.04

L
-46/48

0.515

0.520

0.525

0.530

0.535

p c2
(L

)

FIG. 8. Values of pc2(L) found from direct simulations on an
L × L periodic system with the two points at (0,0) and (0,L/2)
(triangles), and the predictions from Eqs. (3) (squares) and (4)
(circles) based upon measurements of P∞(p) on an L × L periodic
system, all plotted as a function of L−46/48 = L−23/24, as predicted by
Eq. (8). Here L = 32, 64, 128, 256, and 512 for the upper two sets of
data, and also L = 1024 for the lower set.

correlations that occur in the system in the critical vs postcrit-
ical regime, where the connectivity between the anchor points
mainly occurs.

In [20,21] the following ratio was considered:

R(p) = P(r1, r2, r3)√
P(r1, r2)P(r1, r3)P(r2, r3)

, (16)

where r1, r2, and r3 are three points in the system, P(ri, r j ) is
the probability that points ri and r j connect, and P(r1, r2, r3)
is the probability that all three points connect.

This ratio has previously been studied, to our knowledge,
only at p = pc, where the value of R(pc) approaches the value
C1 = 1.0220 when the three points are far separated and the
system size is infinite. This value of C1 was first observed nu-
merically in [20] and then derived analytically from conformal
field theory in [21]. The fact that this ratio is unequal to 1

0.00 0.01 0.02 0.03

L
-51/48

0.536

0.538

0.540

0.542

0.544

p c3
(L

)

FIG. 9. Values of pc3(L) found from direct simulations on an
L × L periodic system with the three points at (0,0), (0, L/2), and
(L/2, 0) (triangles), and the predictions from Eqs. (3) (squares)
and (4) (circles) based upon measurements of P∞(p) on an L × L
periodic system, all plotted as a function of L−51/48 = L−17/16 as
predicted by Eq. (8).
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L
-56/48

0.549
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0.551

0.552

0.553

0.554

0.555
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)

FIG. 10. Values of pc4(L) found from direct simulations on an
L × L periodic system with the four points at the corners of a
square of length L/2 (triangles), and the predictions based upon
P∞(p) using Eq. (3) (squares) and Eq. (4) (circles), both based upon
measurements of P∞(p) on an L × L periodic system. All data are
plotted as a function of L−56/48 = L−7/6 as predicted by Eq. (8). Lines
show linear fits through the data. It can be seen that estimates based
upon Eq. (4) exhibit the fastest convergence with system size.

implies a correlation between the three points in the system.
For, if we make the assumption that P(ri, r j ) = P∞(p)2 and
P(r1, r2, r3) = P∞(p)3, which we expect to be the case for
p > pc, then we would have R = 1. At pc, where the infinite
cluster does not span throughout the system, one would not
expect this to be valid and indeed, R(p) �= 1, although it turns
out to be quite close to 1.

Here we consider the three points in a right triangle,
(0,0), (0, L/n), and (L/n, 0), in an L × L periodic system for
n = 2, 4, and 8. As n increases for large L (that is, as the
separation of the three points is small compared to the size
of the system), R(pc) approaches the value C1. Using the NZ
method, we were able to calculate R(p) as a function of p after
executing a microcanonical simulation where we found the
P(ri, r j ) and P(r1, r2, r3) as a function of the number of bonds
added. We then carried out the convolution to the canonical
(p-dependent) functions for all P’s separately, and calculated
R(p) according to Eq. (16). The results are shown in Fig. 11.

As can be seen, at p = pc, R(pc) approaches C1 as n
increases (in which case the points get closer together com-
pared to the size of the system). In the limit that L → ∞,
R(p) evidently becomes a discontinuous function of p, with
R(pc) = C1 for p = pc, and R(p) = 1 for p > pc. The behav-
ior for p < pc is not clear. Notice in Fig. 11 that there is a
maximum for R(p) in finite systems at z = (p − pc)L1/ν ≈
−0.5, meaning for some values of p < pc, R(p) is greater than
the value at pc. However, it is not clear what the behavior is as
n → ∞ (for large L); it is possible that the peak for negative
z disappears and the peak occurs only at z = 0 or p = pc. The
behavior for p < pc needs further investigation.

At the point pc3 ≈ 0.5445, where three points first connect,
it can be seen that R(p) approaches 1, since that would
correspond to (p − pc)L1/ν going to infinity as L goes to
infinity. This result reiterates that at the places where multiple
points connect, there are no correlations among connections
between different pairs of widely separated points.
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FIG. 11. Scaling plot of R(p) vs (p − pc )L1/ν , where R(p) is
given in Eq. (16), for three points at positions (0,0), (0, L/n), and
(L/n, 0), for n = 2 (red, the curve with the highest peak), n = 4,
(green, the curve with the second-highest peak), n = 8 (blue, the
curve with the third-highest peak), and n = 16 (black, the curve that
does not reach a peak in this interval) for L = 64, 128, 256, and 512,
respectively. Other runs show that there is a small L dependence on
the results, but the main variation is due to n. At p = pc = 1/2, the
value of R(pc ) approaches the theoretical value C1 = 1.022 [20,21]
as n gets large, in which case the three points are close together
compared to the size of the system. The meaning of the crossing
point for (p − pc )L1/ν ≈ −0.2 is unclear and may not be observed
for larger systems.

VI. DISCUSSION

We have shown that exploring the average value of the
probability p of bond occupation at which a certain number
of separated points first connect leads to a new set of average
thresholds. The distribution of the values of p is broad, so that

this threshold is not sharp as in the usual case of thresholds
in percolation. For example, the median rather than the mean
of the distribution would give a different value. We have
shown that the values can be related to P∞(p) and confirm
this relation by simulation. From this theory it is apparent
that while the percolation thresholds pck indeed depend on the
number of points k, their values are robust with respect to the
actual spatial distribution of the k points. For example, the k
points may either be symmetrically placed on the lattice or
they can be randomly distributed (for L → ∞).

This work suggests further research in a variety of areas.
It might be interesting to study these thresholds in higher
dimensions, where the relations to P∞(p) in Eqs. (3) and (4),
and the scaling in (8) (but with ν and β being the three-
dimensional result) should still hold, for connections to points
as we considered here. Furthermore, connections between
higher-dimensional objects (lines, surfaces,...) can also be
considered. One question to consider is whether the thresholds
continue to have broad distributions as found here and how
those thresholds scale with L.

With respect to the correlations R(p), one can consider
a point in the center of a surface of a cylinder (that is,
the center of a square with periodic boundary conditions
in one direction) and find the probability of connecting the
center to one boundary or to both boundaries of the cylin-
der. At pc, the corresponding R(p) should go to the value
C0 = 27/23−3/4π5/2�(1/3)−9/2 = 1.029 926 8 . . . [20], while
the behavior away from pc has not been studied before.
Likewise, similar correlations in higher dimensions have not
been studied. Many aspects of correlations in percolation are
yet to be explored.
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