
PHYSICAL REVIEW E 101, 062141 (2020)

Eigenstate thermalization and ensemble equivalence in few-body fermionic systems
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We investigate eigenstate thermalization from the point of view of vanishing particle and heat currents
between a few-body fermionic Hamiltonian prepared in one of its eigenstates and an external, weakly coupled
Fermi-Dirac gas. The latter acts as a thermometric probe, with its temperature and chemical potential set so that
there is neither particle nor heat current between the two subsystems. We argue that the probe temperature can
be attributed to the few-fermion eigenstate in the sense that (i) it varies smoothly with energy from eigenstate
to eigenstate, (ii) it is equal to the temperature obtained from a thermodynamic relation in a wide energy range,
(iii) it is independent of details of the coupling between the two systems in a finite parameter range, (iv) it
satisfies the transitivity condition underlying the zeroth law of thermodynamics, and (v) it is consistent with
Carnot’s theorem. For the spinless fermion model considered here, these conditions are essentially independent
of the interaction strength. When the latter is weak, however, orbital occupancies in the few-fermion system
differ from the Fermi-Dirac distribution so that partial currents from or to the probe will eventually change
its state. We find that (vi) above a certain critical interaction strength, orbital occupancies become close to
the Fermi-Dirac distribution, leading to a true equilibrium between the few-fermion system and the probe. In
that case, the coupling between the Fermi-Dirac gas and few-fermion system does not modify the state of the
latter, which justifies our approach a posteriori. From these results, we conjecture that for few-body systems
with sufficiently strong interaction, the eigenstate thermalization hypothesis is complemented by ensemble
equivalence: individual many-body eigenstates define a microcanonical ensemble that is equivalent to a canonical
ensemble with grand canonical orbital occupancies.

DOI: 10.1103/PhysRevE.101.062141

I. INTRODUCTION

In equilibrium statistical mechanics, observable properties
of macroscopic systems are given by ensemble averages over
microscopic states. When considering the microcanonical en-
semble, the average is taken over states of similar energy. All
states in that average contribute with equal weight—this is the
postulate of equal a priori probabilities [1]. The process by
which almost all initial out-of-equilibrium conditions evolve
into equilibrium states that are well represented by the micro-
canonical ensemble, is called thermalization. Within classical
mechanics, thermalization and the emergence of equilibrium
statistical mechanics is standardly explained at a microscopic
level by dynamical complexity [2]: regardless of their origin,
almost all classical trajectories of chaotic dynamical systems
eventually look the same as they ergodically explore the
constant energy hypersurface in phase space. It is usually
accepted that the macroscopic laws of classical statistical
mechanics emerge from this ergodicity [3].

The situation is different in quantum mechanics, whose
time evolution cannot by itself lead to the uniform covering
of the constant energy manifold typical of the microcanonical
measure. Instead, it has been postulated that thermalization
occurs at the level of individual eigenstates [4,5], in such a
way that expectation values of almost all observables taken
over almost any such state in a narrow energy interval give the
same result in the thermodynamic limit, tending moreover to
the microcanonical average [4–6]. For recent reviews of and

details on this eigenstate thermalization hypothesis (ETH), see
Refs. [7,8].

A question that naturally arises is whether the ETH is
accompanied by an ensemble equivalence similar to the
one prevailing in statistical mechanics [1]. In the spirit
of the standard construction of the canonical ensemble from
the microcanonical one, it has been shown that tracing over
some of the degrees of freedom of a pure quantum state
gives, for almost all pure states in a narrow energy interval,
a reduced density matrix corresponding to the canonical en-
semble [9–11]. A similar procedure showed that typical many-
body eigenstates have consistently defined thermodynamic
entropies [12]. Taken together with the ETH, this can be
interpreted as ensemble equivalence at the level of individual
many-body eigenstates. This equivalence requires, however,
a bipartitioning of quantal eigenstates and one may wonder
if a temperature can be attributed to individual eigenstates
without partitioning. This question was asked in Ref. [13,14],
where an ad hoc microcanonical partition function was con-
structed from the energy profile of many-body eigenstates
and shown to bear similarities with the canonical partition
function. In particular, the resulting occupation number f (E )
of single-particle orbitals was found to become a smooth,
monotonously decreasing function of the energy E for suffi-
ciently strong particle-particle interactions [13–15]. The stan-
dard approach to attribute a temperature to few-body eigen-
states is to fit f (E ), or the expectation value of some other
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FIG. 1. Occupation number for the 1001st many-body
eigenstate of Hsys (3) with m = 16 orbitals and n = 8 particles,
for U/� = 0 [black histogram, with temperature and chemical
potential (T/�, μ/�) = (5.41, 0.0141)], 0.1 [red (dark gray),
(T/�, μ/�) = (5.43, 0.0139)], and 0.2 [green (light gray),
(T/�, μ/�) = (5.47, 0.0135)]. The black solid line is the Fermi
function corresponding to (T/�, μ/�) = (5.47, 0.0135). It is
slightly unsmooth because the one-body spectrum of (3) is not
equidistant.

observable, to a theoretical, temperature-dependent function,
treating the temperature as a fitting parameter.

One of our motivations in this paper is to go beyond the
just-described operational temperature definition. Inspired by
the experimental technique of scanning thermal microscopy
[16], we show in this manuscript that a temperature that is
consistent with a number of standard thermodynamic criteria
can indeed be attributed to individual many-body eigenstates
|A〉 of few-fermion systems, by coupling them weakly to
an external Fermi-Dirac gas. The coupling allows for par-
ticle exchange between the two systems, and the external
Fermi-Dirac gas acts as a probe [17–22]: its temperature TA

and chemical potential μA are set so that particle and heat
currents between the few-fermion system, prepared in its
eigenstate |A〉, and the probe vanish. We find that TA varies
smoothly with energy from eigenstate to eigenstate, regardless
of the strength of the particle-particle interaction, despite the
fact that the latter strongly influences the structure of the
many-body eigenstates (see Fig. 1). In a large energy range,
the obtained temperature is furthermore well approximated by
the thermodynamic relation [1]

T = (∂S/∂E )−1
X , (1)

with the subscript X indicating the set of thermodynamic
variables kept constant, and the entropy S determined by
the density of states ρ(E ) through a quantum version of
Boltzmann’s formula,

S(E ) = kB ln[ρ(E )δ], (2)

where δ is a typical energy scale in the system, for instance, a
single-particle level spacing.

It is tempting to attribute the probe temperature TA to
the many-body eigenstate of the few-fermion system to
which the probe is connected. Below, we argue that this

thermometric definition of eigenstate temperature is indeed
consistent with standard thermodynamic definitions in the
sense that (i) it varies smoothly from eigenstate to eigenstate
and is monotonously increasing with energy, (ii) it is equal to a
temperature independently obtained from the thermodynamic
relation of Eqs. (1) and (2) in a large energy range, (iii) it
is independent of details of the system-probe coupling in a
finite parameter range, (iv) it satisfies the transitivity condition
underlying the zeroth law of thermodynamics, and (v) it is
consistent with Carnot’s theorem. Quite interestingly, these
consistency conditions are valid regardless of the particle-
particle interaction in the few-fermion system. We argue
that ensemble equivalence is, however, achieved only once
a further condition is imposed, that (vi) all partial currents
between single-particle orbitals in the few-fermion system and
the Fermi-Dirac gas vanish. This latter condition ensures that
the few-fermion state does not eventually change over time,
and guarantees that a true equilibrium exists between the two
subsystems. In particular, it is only under that latter condition
that our approach is fully justified because then the structure
of the few-fermion eigenstates is not altered by its coupling
with the external Fermi-Dirac gas. We find that condition (vi)
is achieved for sufficiently strong particle-particle interaction,
U � Uc ∼ n−3, with the number n of fermions, in systems
with fixed particle density.

Our numerical results are based on exact diagonalization of
few-particle systems, and are therefore limited to systems with
up to n = 8 fermions. They suggest that the threshold interac-
tion strength Uc above which (vi) is valid is parametrically
similar to the many-body quantum chaos threshold derived in
Refs. [23,24], giving a parametric critical interaction strength
going down algebraically with the system size and the number
of fermions. Taken together, the conditions (i)–(vi) suggest
that small fermionic systems with sufficient but not too strong
interaction have many-body eigenstates that not only satisfy
the ETH—this was already known—but that each of them de-
fines both a microcanonical and a canonical ensemble which
are equivalent to each other, and correspond to a temperature
in standard thermodynamic senses.

II. THE MODEL

We consider systems of n interacting, spinless fermions
with the Hamiltonian given by the two-body random
ensemble [25],

Hsys =
∑

εαc†
αcα +

∑
U γ ,δ

α,β c†
αc†

βcγ cδ. (3)

Here, c†
α and cα are creation and annihilation opera-

tors obeying fermionic anticommutation relations and εα ∈
[−m�/2, m�/2] are m single-particle orbital energies with
average spacing �. We take εα as eigenvalues of a m × m
random matrix of the Gaussian orthogonal ensemble [25].
Fermions occupying these single-particle energies interact
via a two-body interaction with matrix elements randomly
distributed as U γ ,δ

α,β ∈ [−U,U ]. The total number of many-
body eigenstates of Hsys is N = m!/n!(m − n)! and the cor-
responding eigenvalues are distributed over a bandwidth B �
n(m − n)�. In this manuscript, we focus on systems at half
filling with n = m/2 fermions. Many-body eigenstates of Hsys
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are linear combinations of totally antisymmetric n-body wave
functions over m orbitals. Each such many-body eigenstate
|A〉 has single-orbital occupancies fA(εα ) ∈ [0, 1]. Occupan-
cies for many-body states corresponding to three different
interaction strengths are shown in Fig. 1.

We weakly couple that system to an external noninteracting
fermionic gas with Hamiltonian

HFD =
∑

Eid
†
i di. (4)

In this gedanken experiment, we assume that n consecu-
tive energy eigenvalues Ei, i = i0, i0 + 1, . . . , i0 + n − 1, are
equal to the n single-particle energies εα , α = 1, 2, . . . , n.
Furthermore, that external fermionic gas is thermalized in the
standard textbook way, being, e.g., connected to an infinite
external reservoir at a tunable temperature T . Consequently,
we assume that it is in a mixed state where its single-particle
occupancies obey a Fermi-Dirac distribution,

fFD(Ei, μ, T ) = 1

1 + exp[(Ei − μ)/kBT ]
, (5)

with chemical potential μ. This Fermi-Dirac gas (FDG) is the
probe which will attribute a temperature to each many-body
eigenstates of the few interacting fermion system of Eq. (3).

We assume that the tunneling amplitude t between the FDG
probe and the few interacting fermion system is small, con-
stant, and strictly energy conserving. We write the tunneling
Hamiltonian as

HT = t
∑
α,i

(c†
αdi + d†

i cα ) δ(εα − Ei ). (6)

The few-fermion system is prepared in one of its many-body
eigenstates |A〉. Under our assumptions, the probe-system
coupling induces particle (IA) and heat (JA) currents between
the two subsystems. We approximate them as sums over
energy-conserving partial currents,

IA = 2πt2

�

∑
α

[ fA(εα ) − fFD(Ei = εα, μ, T )], (7a)

JA = 2πt2

�

∑
α

(εα − μ)[ fA(εα ) − fFD(Ei = εα, μ, T )]. (7b)

For each many-body eigenstate |A〉, IA and JA are func-
tions of T and μ. We then tune the temperature T → TA

and chemical potential μ → μA of the FDG to ensure that
IA(μA, TA) = JA(μA, TA) ≡ 0. If a temperature can at all be
attributed to |A〉, then this temperature is TA [1]. It is important
to understand that with this Hamiltonian, the coupled few-
fermion eigenstate will in general be modified over time.
Even with very weak coupling t , the external Fermi-Dirac
gas will not act as a true probe—while measuring the few-
fermion system, it will, in general, alter it. We will find below,
however, that the few-fermion eigenstates are not modified by
the coupling, and that the Fermi-Dirac gas acts as a true probe
when the eigenstates are truly thermalized so that neither
global nor partial currents flow between the two systems.
This occurs when the few-fermion systems have sufficiently
strong interactions. In that case, we conclude that ensemble
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FIG. 2. Chemical potential (left) and temperature (right) vs
many-body eigenstate number A ∈ [1, N/2] for a single realization of
the two-body randomly interacting fermion model (3) with m = 16
orbitals and n = 8 fermions and, thus, N = 12 870 many-body states.
Black dots are for U/� = 0 and red (gray) dots are for U/� = 0.2.

equivalence accompanies eigenstate thermalization. Only in
that case is our approach retroactively justified.

III. PROBE TEMPERATURE AND CHEMICAL
POTENTIAL

Our numerical procedure is the following. We diagonalize
exactly the Hamiltonian (3) and calculate its full set of many-
body eigenvectors and the corresponding eigenvalues. We
calculate the single-particle occupancies of each eigenstate
and use a Newton-Raphson algorithm to obtain the values TA

and μA defined by IA = JA = 0.
Figure 2 shows results for a single realization of (3) with

n = 8 fermions on m = 16 orbitals, for U/� = 0 and U/� =
0.2. We see that, first, both temperature and chemical potential
vary smoothly from eigenstate to eigenstate in both cases.
Second, turning on the interaction has only a small effect on
both temperature and chemical potential, despite the fact that
it changes the structure of individual many-body eigenstates
very significantly, as illustrated in Fig. 1.

We next investigate to what extent the obtained probe
temperature corresponds to the thermodynamic relation for
the few-fermion system given in Eq. (1). For weak inter-
action, U � �, the density of states is Gaussian, ρ(E ) =
ρ0 exp[−E2/2σ 2], with a variance σ 2 ∝ n(m − n) for dilute
systems n � m [25]. With Eqs. (1) and (2), this density
of states gives a theoretical system temperature (see, also,
Ref. [15]),

Tth(E ) = −σ 2/kBE . (8)

This temperature diverges in the middle of the spectrum and
becomes negative at higher temperature, as standardly hap-
pens in systems with nonmonotonous density of states [26].
We focus on the lower half of the spectrum, corresponding to
positive temperatures.

Figure 3(a) confirms that the density of states is Gaussian
and that it does not change much as a moderate particle-
particle interaction is introduced. Figures 3(b) and 3(c) further
show that in the noninteracting case, the probe temperature is
very close to Tth of Eq. (8), except in the tail of the many-
body density of states. This is due to well-known deviations
from Gaussianity there [25]. For the case m = 16 and n = 8
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FIG. 3. (a) Many-body density of states. (b) Numerically obtained eigenstate temperature T vs theoretical temperature Tth of Eq. (8)
for 0 < Tth/� � 50. The interval contains about 90% of the positive temperature eigenstates. (c) Same as in (b) for a restricted range 0 <

Tth/� � 10, showing deviations at low energy due to non-Gaussian tails in the density of states [25]. All panels correspond to a single
realization of the two-body randomly interacting fermion model (3) with m = 16 orbitals, n = 8 fermions, and N = 12 870 many-body states.
Black dots are for U = 0 and red (gray) dots are for U = 0.2�.

shown in Fig. 3, the probe temperature differs from Tth by
less than 10% for Tth/� � 5.5 for U/� = 0, correspond-
ing to about 90% of the many-body eigenstates. A moder-
ate interaction has very little impact, except in the middle
of the spectrum, where large energy eigenvalue fluctuations
increase the discrepancy between the probe temperature and
Tth. We found that for U/� = 0.2, the difference between the
two remains below 10% for 50 � Tth/� � 5.5, corresponding
to about 80% of the spectrum. These results do not signifi-
cantly change upon further increase of the interaction strength
as long as U/� � 1.

IV. FROM PROBE TO EIGENSTATE TEMPERATURE

The results presented so far seem to indicate that the probe
temperature gives more than just an operational temperature
definition for individual many-body eigenstates. We now ar-
gue that this definition satisfies further properties expected
of an absolute temperature [1]. First, it is clear from the
currents definition, given by Eqs. (7), that the temperature
definition does not depend on the magnitude of the probe-
system coupling amplitude t . This is so only as long as t
is small enough, so that Eqs. (7) are valid, but still leaves a
sizable range of parameter t .

Second, the probe temperature is defined by the vanishing
of the particle and heat currents between the probe and the sys-
tem, IA(μA, TA) = JA(μA, TA) ≡ 0. Let us introduce a second
many-body state |B〉 and couple it to the probe while keeping
the latter’s temperature and chemical potential the same. Let
us further suppose then that there is no current between |B〉
and the probe, IB(μA, TA) = JB(μA, TA) ≡ 0. From Eqs. (7),
one straightforwardly concludes that there would also be no
current between |A〉 and |B〉, IAB = t2 ∑

α[ fA(εα ) − fB(εα )] =
0, JAB = t2 ∑

α (εα − μ)[ fA(εα ) − fB(εα ))] = 0. The transi-
tivity condition of the zeroth law of thermodynamics is thus
satisfied by the probe definition of the temperature.

Third, in the regime of validity of Eqs. (7), the system may
temporarily work as a heat engine when the probe is biased
away from the equilibrium condition, i.e., TA → TA + δT and
μA → μA + δμ. Assume that all fermions carry an electric
charge q. With this bias, both a heat and an electric current
flow, with the latter being accompanied by electrical work.

The efficiency of the resulting heat engine is given by η =
−IAδμ/JA [27] with, from Eqs. (7),

IA(δμ, δT ) = −2πt2

�

∑
α

[∂μ fFDδμ + ∂T fFDδT ], (9a)

JA(δμ, δT ) =−2πt2

�

∑
α

(εα−μ)[∂μ fFDδμ+∂T fFDδT ], (9b)

where, in both expressions, fFD = fFD(Ei = εα, μ, T ) and
both δT and δμ are assumed very small to justify the lin-
earization of the Fermi-Dirac distributions. A straightforward
calculation gives that the maximal efficiency of the engine is
given by

ηmax =
(√

1 + ZT − 1√
1 + ZT + 1

)
|δT |
TA

. (10)

The dimensionless figure of merit is given by ZT −1 =
L(0)L(2)/(L(1) )2 − 1, with L(0) = ∑

α ∂μ fFD, L(1) =∑
α ∂T fFD TA, and L(2) = ∑

α (εα − μA)∂T fFD TA. Equation
(10) defines a relative temperature scale in that ηmax is a
function of the temperature difference δT between system
and probe, in agreement with Carnot’s theorem.

V. MANY-BODY EIGENSTATE TEMPERATURE

There seem to be good reasons to take the probe tempera-
ture as a definition of the many-body eigenstate temperature.
Nevertheless, a further condition needs to be satisfied before
this is done. In general, IB(μA, TA) = JB(muA, TA) ≡ 0 still
allows for partial currents [ fA(εα ) − fFD(Ei = εα, μ, T )] �= 0
and (εα − μ)[ fA(εα ) − fFD(Ei = εα, μ, T )] �= 0 in Eqs. (7).
Therefore, the state of the few-fermion system will eventu-
ally change, even with a weak, finite system-probe coupling,
unless detailed balance conditions are satisfied,

[ fA(εα ) − fFD(Ei = εα, μ, T )] = 0 , ∀α. (11)

This, of course, means that particle occupancies in few-
fermion states are given by the Fermi-Dirac distribution.
Looking at Fig. 1, we see that this may occur for sufficiently
interacting few-fermion systems. To quantify the rate at
which Fermi-Dirac-like occupancies emerge as the interaction

062141-4



EIGENSTATE THERMALIZATION AND ENSEMBLE … PHYSICAL REVIEW E 101, 062141 (2020)

10
-3

10
-2

10
-1

δI
2 A

 / 
t4

0.01 0.1 1
U/Δ

10
-2

10
-1

10
0

δJ
2 A

 / 
t4

FIG. 4. Deviation from detailed balance for the particle current
(top panel) and the heat current (bottom panel) as a function of
the interaction strength U/� for 1000 realizations of the two-
body randomly interacting fermion model (3) with m = 12 orbitals
and n = 6 fermions and thus N = 924 many-body states. Different
curves correspond to different excitations energies above the ground
state, starting at ε = 2� and increasing in steps of δε = 2� from
black to red, green, blue, violet, magenta, and orange (from bottom to
top, at U/� = 0.01). The dotted line indicates the arbitrarily chosen
threshold δI2

A/t4 = 8 × 10−3 and δJ2
A/t4 = 8 × 10−2 used to define

critical interaction strengths Uc1 and Uc2.

strength increases, we investigate the variance of the partial
currents making up the particle and heat currents of Eq. (7),

δI2
A = 4π2t4

�2

∑
α

[ fA(εα ) − fFD(Ei = εα, μA, TA)]2,

δJ2
A = 4π2t4

�2

∑
α

(εα − μA)2[ fA(εα )

− fFD(Ei = εα, μA, TA)]2. (12)

These current variances vanish only when the detailed balance
conditions of Eq. (11) are satisfied. When this is the case,
orbital occupancies in the few-fermion system are given by the
Fermi-Dirac distribution, partial currents accordingly vanish
and the many-body eigenstate |A〉 is at equilibrium with the
thermometric Fermi-Dirac gas in the usual sense. In particular,
the weak coupling between the two subsystems does not
change the state of the few-fermion system.

Figure 4 shows the particle and heat current variances
as a function of the normalized interaction strength U/�.
It is seen that as U/� increases, both variances decrease
with rates that depend on the excitation energy ε above the

FIG. 5. Critical interaction strength Uc vs normalized excitation
energy ε/B with the many-body bandwidth B � n(m − n)�, for m =
8, n = 4 (black circles), m = 10, n = 5 (red squares), m = 12, n = 6
(green diamonds), m = 14, n = 7 (blue triangles, pointing up), and
m = 16, n = 8 (violet triangles, pointing down). Solid circles give
Uc1 and empty circles give Uc2 (see text).

few-fermion ground state. At high enough excitation energy—
corresponding to few level spacing � above the ground
state—we find that they behave as δI2

A, δJ2
A ∝ (U/�)−2 (in-

dicated by dashed lines in Fig. 4) until they saturate at a value
depending on both m and n. We have seen this behavior for
other values of m and n, not shown in Fig. 4.

We want to extract the parametric rate at which the current
variances vanish. To that end, we define critical interac-
tion strengths Uc1 and Uc2 with δI2

A (Uc1) = 8 × 10−3 t4 and
δJ2

A (Uc2) = 8 × 10−2 t4. We chose these values, somehow
arbitrary, because they correspond to interaction strengths
with significantly reduced current variances, but well before
their large-U , finite-size saturation for all cases considered,
m/n = 2 and n = 4, 5, . . . , 8. Figure 5 shows the obtained
values of Uc1 (solid circles) and Uc2 (empty circles) as a
function of the excitation energy ε/B normalized by the many-
body bandwidth B. At small excitation energy close to the
ground-state energy, both Uc1 and Uc2 increase with ε/B.
This reflects the fact that at low excitation energies, close
to the ground state, the number of available single-particle
orbitals is restricted, which induces a faster transition to a
steplike Fermi-Dirac distribution. Furthermore, quasiparticles
with small excitation energies carry very little heat current,
and hence δJA is always small because JA is. This explains
why Uc2 is always very small at small excitation energies. For
higher excitation energy, but already above ε/� � 2−3, both
Uc1 and Uc2 are monotonously decreasing functions of the
number of particles and orbitals. We find that the transition
from Uc increasing to decreasing with respect to ε occurs at
an excitation energy ε/� that also decreases with the number
of particles.

Because of the restricted range of variation of n reachable
by exact diagonalization, it is hard to extract a parametric
dependence of Uc. Nevertheless, the data shown in Fig. 5
at half filling, n = m/2, seem to indicate a behavior Uc1 ∝
n−3, consistent with the emergence of quantum chaos re-
ported in Ref. [24]. They also suggest that for sufficiently
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large systems, both particle and heat current based critical
interactions become the same. With these data, we conjecture
that eigenstate thermalization is accompanied by ensemble
equivalence, where each individual few-fermion eigenstate
exhibits a Fermi-Dirac occupancy distribution, and accord-
ingly defines a canonical ensemble with grand canonical
occupancies, above a critical interaction strength Uc/� ∝ n−3

for systems at half filling.

VI. CONCLUSION

Few-fermion systems have eigenstates with a Fermi-Dirac
occupancy of single-particle orbitals, provided they have a
sufficiently strong interaction. Our results indicate that above
an excitation energy ε � 2−3� above the ground state, the
critical interaction strength scales parametrically as Uc ∝ n−3

in systems with constant filling factor. In particular, Uc �
0.1� with the single-particle orbital spacing �, for n = 8

fermions on m = 16 orbitals and excitation energies ε �
5−6�. This indicates that for still small systems with, say,
n = 20, the critical interaction strength is only a fraction
of this single-particle orbital spacing. Ensemble equivalence
at the level of individual few-body eigenstates is therefore
achieved very fast in the number n of fermions, and requires
only a weak interaction.

Perhaps the main result reported in this paper is that
eigenstate thermometry allows one to define a temperature
for individual eigenstates in few-body fermionic systems in
a way that is consistent with standard approaches of thermo-
dynamics and, in particular, with the zeroth law and Carnot’s
theorem.
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