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It is well established that ensembles of globally coupled stochastic oscillators may exhibit a nonequilibrium
phase transition to synchronization in the thermodynamic limit (infinite number of elements). In fact, since
the early work of Kuramoto, mean-field theory has been used to analyze this transition. In contrast, work that
directly deals with finite arrays is relatively scarce in the context of synchronization. And yet it is worth noting
that finite-number effects should be seriously taken into account since, in general, the limits N → ∞ (where
N is the number of units) and t → ∞ (where t is time) do not commute. Mean-field theory implements the
particular choice first N → ∞ and then t → ∞. Here we analyze an ensemble of three-state coupled stochastic
units, which has been widely studied in the thermodynamic limit. We formally address the finite-N problem
by deducing a Fokker-Planck equation that describes the system. We compute the steady-state solution of
this Fokker-Planck equation (that is, finite N but t → ∞). We use this steady state to analyze the synchronic
properties of the system in the framework of the different order parameters that have been proposed in the
literature to study nonequilibrium transitions.
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I. INTRODUCTION

Systems consisting of many elements, when they are kept
out of equilibrium, have the fascinating ability to exhibit
collective coordinated behavior. The macroscopic variables
that describe the system are no longer static and may display a
complex spatiotemporal structure. Restricting our discussion
to temporal structuring, since the pioneering work of Winfree
[1] and Kuramoto [2] synchronization phenomena have be-
come a paradigm of these sorts of self-organized behaviors
[3–5].

Most of the work that addresses the synchronization prob-
lem focuses mainly on two types of systems: (1) a few
identical deterministic oscillators that reach synchronization
and (2) oscillators that include some degree of stochasticity
(such as randomly distributed frequencies in the Kuramoto
model, or internal noise in the oscillatory units) and study
when synchronization is reached in the thermodynamic limit
(infinite number N of elements). The first approach is mostly
a dynamical systems problem, while the second has more
ingredients of nonequilibrium statistical physics.

Here we focus on coupled stochastic units. Each unit is a
three-state element where transitions between these states are
governed by transition probabilities. This model has been used
to study the synchronization problem in the thermodynamic
limit N → ∞ [6–11], analytically when the coupling among
units is global (all-to-all interactions) using mean-field theory
and numerically when the coupling is local (e.g., nearest-
neighbor interactions), where the system exhibits a very in-
teresting equilibrium-like critical behavior. In this paper, in

contrast, we formally address the problem of a finite number
of globally coupled identical units. We note that we use the
term “synchronization” to describe the coherent motion of
most units together from one state to the next and the next and
back to the original state. In other words, we refer to periodic
oscillations of the entire ensemble of elements.

It is worth noting that discrete state stochastic oscillator
models that undergo a phase transition to synchronization or
ordered behavior are frequently found in the literature. We
mention just a few here. Insofar as these models are studied
analytically, they all assume global coupling in the mean-field
limit. In Ref. [12], globally coupled three-state oscillators are
considered as a model of stochastic excitable systems. The
authors consider a form of coupling that leads to a stable
stationary state and another that exhibits coherent oscillations.
In Ref. [13], still focusing on three-state stochastic oscillators,
this work is extended to a broader class of non-Markovian
systems, and the resultant collective oscillations are shown
to occur in large parameter regimes. Ensembles of excitable
stochastic two-state oscillators with delayed feedback are
studied in Ref. [14] as an abstract representation of an ex-
citable system. Here again, depending on the properties of
the single oscillators and of the global coupling of an infi-
nite number of them, the system exhibits bistability in some
cases and bulk oscillations in others. Tsimring and coworkers
[15,16] have an extensive bibliography on two-state and on
three-state systems of coupled stochastic oscillators that un-
dergo a variety of interesting transitions in the mean-field limit
(too many to list here). Tsimring’s work has now moved on to
the construction of genetic regulatory circuits based on these
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ideas, see, e.g., Ref. [17]. Our own work on coupled three-
state stochastic oscillators [6–9] has been extended in inter-
esting ways by Assis et al. [10,11], including the discovery of
a symmetry-breaking transition to a steady state that has no
counterpart in equilibrium statistical mechanics. Finally, we
mention our work on two-state stochastic oscillators [18,19]
where, still in the framework of mean-field theory, we studied
the effect of a state-dependent memory on the synchronization
process.

We have recently addressed the problem of a finite num-
ber of elements in the context of Markovian two-state units
[20,21]. In this case, the fluctuations induced by the finite
number of elements have an interesting multiplicative struc-
ture that can induce new features not predictable from mean-
field theory. In other words, the limits N → ∞ (where N is
the number of elements) and t → ∞ (where t is time) do
not commute. To observe even more complex and permanent
dynamics, we here go beyond two-state Markovian models.
Three-state Markovian units constitute a good scenario to
analyze synchronous oscillations that do not occur in two-
state Markovian units.

The aim of this work is to formally treat the problem
of fluctuations induced by finite numbers of elements in the
context of synchronous oscillations based on a three-state
stochastic unit as the fundamental constituent of our ensem-
ble and thus to generalize our previous results for two-state
elements [20,21]. It is worth noting that we have found the
literature on finite arrays of phase-coupled oscillators of any
kind that undergo phase transitions in the thermodynamic
limit to be scarce. In fact, the only references we have
identified deal with continuous-phase oscillators such as the
extensively studied Kuramoto model. Even here finite arrays
are still considered to be a relatively open problem [4,22,23].

We have organized this paper as follows. In Sec. II we
present the model as well as summarize our earlier predictions
in the framework of mean-field theory. We also present the
microscopic equation that describes the dynamics of our array
of N oscillators and show some numerical simulations of
these microscopic dynamics. We discuss how the mean-field
approach describes what we observe from direct numerical
simulations. In Sec. III we present our formal theory for finite
N . We obtain a Fokker-Planck equation for the ensemble
which we can deduce in two different ways. One is to write
a mesoscopic master equation for the array, from which, via
an expansion in powers of 1/N , we obtain the Fokker-Planck
equation. The other is to directly start from the microscopic
dynamics, from which we are able to deduce a set of Langevin
equations that, in the framework of Itô calculus, lead to the
same Fokker-Planck equation. We then compute the Fokker-
Planck steady state by using a finite-element method and
use this result to analyze the finite-N system in terms of
different order parameters that have been proposed in the
literature. Finally, in Sec. IV we present our conclusions and
final remarks.

II. MODEL AND MEAN-FIELD THEORY

In this section we present the model to be analyzed. First
we summarize the known results in the framework of mean-
field theory.

FIG. 1. Representation of the three possible states of a unit and
the allowed stochastic transitions.

A. Single unit dynamics

Our starting point is an oscillator that can be in one of
three states, say, {1, 2, 3}. For a single oscillator, transitions
between these states are stochastic and governed by the rates
gi j , that is, the probability to undergo a transition from state
i to state j at any time within the interval [t, t + dt] has the
form

P (i → j, {t, dt}) = gi jdt + O(dt2). (1)

Thus, the model is Markovian, and the stochastic dynamics
are dictated by an exponential distribution of the residence
times in each state. Furthermore, only three transitions are
allowed: 1 → 2, 2 → 3, 3 → 1, as depicted in Fig. 1.

The master equations that govern the probabilities pi(t ) to
find the unit in state i at time t are

ṗ1 = g31 − (g12 + g31) p1 − g31 p2

ṗ2 = −g23 p2 + g12 p1, (2)

where we have eliminated p3 by using the normalization of
probability p1 + p2 + p3 = 1.

B. Ensemble of coupled units

The next step is to couple an ensemble of N of these units.
Following the prescription proposed in Ref. [9], the transition
rates are defined as

gi,i+1 = gexp [a(Uni+1 + V ni−1 + W ni )], (3)

where

ni(t ) = Ni(t )/N (4)

is the density of units in state i at time t and Ni(t ) is the
number of units in this state at this time. Because of the cyclic
nature of the units, the state that follows state 3 is state 1,
so we implement the mapping 3 + 1 → 1 in the subscripts of
Eq. (2). Similarly, the state that precedes state 1 is state 3,
so we implement the mapping 1 − 1 → 3. Moreover, since
we can always scale time, we take g = 1. Hence, the en-
semble dynamics is characterized by the coupling strength
a, the weights U , V , and W , and the system size N . Due
to the normalization condition n1 + n2 + n3 = 1, we can write
the transition rates in terms of only two densities, that is,

gi,i+1 = gi,i+1(n1, n2). (5)
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FIG. 2. Two-dimensional triangular phase space (pink) in the
three-dimensional world spanned by the three points ni = 1 on which
the ensemble of coupled units each of the form of Fig. 1 resides. The
triangle in the n1-n2 plane (blue) is only there for visual assistance.

C. Mean-field theory for the coupled ensemble

Ensembles of coupled units ruled by Eq. (3) in the ther-
modynamic limit N → ∞ were first introduced to study
the nonequilibrium transition to synchronization of a locally
coupled ensemble with nearest-neighbor interactions [6,7]. In
this case a renormalization group type of analysis must be
implemented, which leads to a very interesting equilibrium-
like critical behavior. That work was followed by mean-field
results. We will briefly summarize the known mean-field
results in order to provide a context for our new results (we
omit results that are not directly related to this work, such as
the disordered ensemble reported in Refs. [8,9]).

The main idea behind the mean-field approach is that in the
thermodynamic limit one has ni(t ) → pi(t ), that is,

lim
N→∞

Ni(t )

N
= pi(t ). (6)

The set of Eq. (2) with the rates Eq. (3) become an au-
tonomous and deterministic dynamical system for these den-
sities [these equations can be written in terms of the pi(t ) or
equivalently in terms of the ni(t )]:

ṅ1 =g31(n1, n2)−[g12(n1, n2)+g31(n1, n2)]n1−g31(n1, n2)n2

ṅ2 = −g23(n1, n2)n2 + g12(n1, n2)n1. (7)

Note that we are still constrained to n1 + n2 + n3 = 1. There-
fore, the physically accessible phase space corresponds to the
triangle [cf., phase-space triangle (pink) in Fig. 2]

(n1, n2) ∈ {(n1 > 0) and (n2 > 0) and (n1 + n2 < 1)}. (8)

Moreover, due to its symmetry, the system always admits the
symmetric static solution

n∗
1 = n∗

2 = n∗
3 = 1/3, (9)
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FIG. 3. Bifurcation diagram of the deterministic system, Eq. (7),
with the rates given by Eq. (3), for a continuous transition
with (U,V,W ) = (1, 0, −1). We present the values of n1 in
the steady state as a function of the parameter a. On the left
of the figure, a single line represents the symmetric fixed point.
After the first bifurcation, the upper and lower curves respectively
represent the maximum and minimum values of n1 in the limit cycle.
Hence, all values of n1 between these lines occur in the limit cycle.
After the second bifurcation, the lines represent the fixed points of
the asymmetric state. The dashed lines represent the unstable fixed
points.

which may be stable or unstable. Instabilities of the symmetric
state spontaneously break the symmetry of the ensemble,
leading to self-organization. The emergence of self-organized
states includes synchronous oscillations, where the entire
ensemble oscillates as a single entity, and stationary ordered
phases, where one state is more populated than the others.
Note that synchronous chaos is not allowed for three-state
units; for that we need either four or more states or possibly
some type of memory in the transition rates.

1. Continuous transition to synchronization

The first reported form for the rates, Eq. (3), used the
weights (U,V,W ) = (1, 0,−1). The control parameter is the
coupling strength a. Wood et al. [6,7] noted that at a = 3/2,
the system undergoes a supercritical Hopf bifurcation that
leads to an oscillatory limit cycle. Later, Assis et al. [10]
observed that the system undergoes a second transition at a =
3.102. At this point, the period of the periodic orbit diverges,
giving rise to stationary ordered phases characterized by the
higher population of one of the states over the others. More
precisely, the system undergoes a saddle-node bifurcation:
The periodic orbit disappears and fixed points emerge [24].
There simultaneously appear six fixed points, three of them
stable and the other three hyperbolic. The hyperbolic points
are connected by heteroclinic orbits.

This set of possible dynamical behaviors is summarized
by the cascade of bifurcations that the system undergoes as
the coupling strength increases, see Fig. 3. On the left side
of the figure, there is a single symmetric fixed point with
n1(= n2 = n3) = 1/3. As the coupling strength a grows, the
first bifurcation occurs and a periodic orbit appears. As a
continues to grow, the limit cycle grows and also becomes
slower as it approaches the second bifurcation. Eventually,
a reaches the second bifurcation point, the periodic orbits
disappear, and six fixed points appear (there is a pair of fixed
points very close to n1 = 0 that can not be discerned on the
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TABLE I. Continuous transitions (U,V,W ) = (1, 0, −1).

Control parameter Attractors and bifurcations

a < 3/2 Symmetric static state
a = 3/2 Supercritical Hopf bifurcation
3/2 < a < 3.102 Limit cycle
a = 3.102 Saddle-node bifurcation of fixed points

on a periodic orbit
a > 3.102 Three asymmetric static states

scale of the figure). Alternatively, the bifurcation scenario can
be presented in the form of Table I.

2. Discontinuous transition to synchronization

Wood et al. [9] fully analyzed another set of weights. For
(U,V,W ) = (1,−4, 0), for small a the symmetric fixed point
is the only asymptotic solution, see Fig. 4. At a = 2.84, a
saddle-node bifurcation gives rise to a bistability region, for
which the symmetric fixed point and a limit cycle are both
stable, with an unstable limit cycle in between. This bistable
region is clearly displayed in Fig. 4, where for a in the interval
[2.84, 3] the limit cycle and fixed point coexist. As a increases
further, the unstable limit cycle shrinks and the stable one
grows. A subcritical Hopf bifurcation occurs at a = 3, when
the unstable limit cycle collides with the symmetric fixed
point, which becomes unstable. As will become clear later,
this bistable region is the more intriguing feature for finite-N
systems. Here again, the bifurcation scenario is summarized
in Table II.

III. FINITE-N THEORY

A. General framework to treat globally coupled three-state units

We begin this section with a caveat to avoid any misun-
derstandings. In the introductory material we talked about a
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FIG. 4. Bifurcation diagram of the deterministic system, Eq. (7),
with the rates given by Eq. (3), for a discontinuous transition with
(U,V,W ) = (1,−4, 0). We present the values of n1 in the steady
state as a function of the parameter a. In the limit-cycle existence
region, the upper and lower curves stand for the maximum and
minimum of n1 for the stable limit cycle, respectively, while the
dashed middle curves represent their counterpart for the unstable
limit cycle. The horizontal line represents the symmetric fixed point,
which is first stable and then at the bifurcation becomes unstable.

TABLE II. Discontinuous transitions (U,V,W ) = (1,−4, 0).

Control parameter Attractors and bifurcations

a < 2.84 Symmetric static state
a = 2.84 Saddle-node bifurcation to a limit cycle
2.84 < a < 3 Bistability between a limit cycle

and the symmetric static state
a = 3 Subcritical Hopf bifurcation
a > 3 Limit cycle

single unit that could be in state 1 or 2 or 3, as indicated by
the three states in Fig. 1. Now we introduce globally coupled
arrays of these units. In these arrays we now talk about the
densities of units in these states, n1, n2, and n3. That is, we
label the states of the array as 1 and 2 and 3, not to be confused
with the states 1, 2, 3 of a single unit. Henceforth we will
primarily discuss the density dynamics and phase spaces.

We start by analyzing the probability P(n1, n2, t ) to have
the density ni of units in state i at time t . The master equation
that governs this probability can be written as (recall that n3 =
1 − n1 − n2)

∂t P(n1, n2, t ) = − N1g12(n1, n2)P(n1, n2, t ) − N2g23(n1, n2)

× P(n1, n2, t ) − N3g31(n1, n2)P(n1, n2, t )

+ (N1 + 1)g12

(
n1 + 1

N
, n2 − 1

N

)

× P

(
n1 + 1

N
, n2 − 1

N
, t

)

+ N2g23

(
n1, n2 + 1

N

)
P

(
n1, n2 + 1

N
, t

)

+ N3g31

(
n1 − 1

N
, n2

)
P

(
n1 − 1

N
, n2, t

)
.

(10)

The first three terms on the right-hand side of this equation
(negative terms) correspond to changes in the densities due
to the transitions 1 → 2, 2 → 3, and 3 → 1, respectively.
The positive contributions can be understood by noting that
changes in the densities can only occur in steps of 1/N in
a system with N units This is the basis of the so-called van
Kampen 1/N expansion [25,26]. Therefore, the transition
from 1 to 2 decreases n1 and increases n2 both by 1/N . Hence,
in order for such a transition to decrease the probability den-
sity of n1 and increase the probability density of n2, the system
must have densities n1 + 1/N and n2 − 1/N . Similarly, for the
transition from 2 to 3, n1 does not change, the density of state
2 must be n2 + 1/N , and that of n3 must be n3 − 1/N . For
the transition from 3 to 1 it is n2 that does not change, the
density of state 3 must be n3 + 1/N , and that of state 1 must
be n1 − 1/N . This master equation can be recast as

∂t P = N
3∑

i=1

(a+
i a−

i+1 − 1)Ti,i+1P, (11)
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where, again, we set 3 + 1 → 1 and Ti, j = nigi j . The symbols
a±

i correspond to ladder operators,

a±
i f (. . . ni . . . ) = f

(
. . . ni ± 1

N
. . .

)
, (12)

for any function f . Note that the operations a+
i a−

i+1 ensure
the conservation of the number of elements of the ensemble.
Furthermore, we work with the boundary conditions

a−
i f (. . . ni = 0 . . . ) = a+

i f (. . . ni = 1 . . . ) = 0, (13)

which ensures that the density lies in the interval [0,1].
By expanding the master equation (11) in powers of 1/N ,

and neglecting terms O(1/N2), we deduce that the probability
P(n1, n2, t ) obeys a Fokker-Planck equation that has the form

∂t P = �∇ · ��, (14)

where the �∇ operator and the probability flux �� are given by

�∇ =
(

∂n1

∂n2

)
, �� =

(
�1

�2

)
. (15)

After a straightforward calculation, the explicit from of ��
is obtained. It has the form

�i = −AiP + 1

2N

2∑
j=1

∂n j

(
Bi jP

)
, (16)

where the drift vector is given by

A =
[

g31(1 − n1 − n2) − g12n1

g12n1 − g23n2

]
(17)

and the diffusion tensor by

B =
[

g12n1 + g31(1 − n1 − n2) −g12n1

−g12n1 g12n1 + g23n2

]
. (18)

Alternatively, one may start from the microscopic dy-
namics. A simple counting protocol leads to the following
equations of motion which describe the microscopic dynamics
of N coupled units:

N1(t + dt ) = N1(t ) −
N1∑

k=1

θ [g12(n1, n2)dt − ζk]

+
N∑

k=N1+N2+1

θ [g31(n1, n2)dt − ζk],

N2(t + dt ) = N2(t ) −
N1+N2∑

k=N1+1

θ [g23(n1, n2)dt − ζk]

+
N1∑

k=1

θ [g12(n1, n2)dt − ζk]. (19)

Here θ (x) is the Heaviside θ function. The set {ζk}N
k=1 is a

set of independent random variables uniformly distributed in
the interval [0, 1]. Thus, if unit k is in state 1 at time t , then
if g12(n1, n2)dt > ζk , unit k flips from state 1 to state 2. As
a consequence N1 decreases by 1 (first sum in N1) and N2

increases by 1 (second sum in N2). If g12(n1, n2)dt < ζk , then
unit k remains in state 1. If unit k is in state 2 at time t , then

if g23(n1, n2)dt > ζk , unit k flips from state 2 to state 3 and
as a consequence N2 decreases by 1 (first sum in N2), and N3

increases by 1, but it is not necessary to show the equation for
N3 because of the conservation condition. If g23(n1, n2)dt <

ζk , then unit k remains in state 2. If unit k is in state 3 at time t ,
then it moves to state 1 if g31(n1, n2)dt > ζk , thus increasing
N1 by 1 (second sum in N1); if g31(n1, n2)dt < ζk , then the
unit remains in state 3. Note that at any given time t , the
dynamics of all units in the array are determined by the same
rates gi j (n1(t ), n2(t )).

Generalizing the steps presented in detail in Ref. [20] for an
ensemble of two-state units to our present case of three-state
units, we arrive at the Langevin equations

ṅ1 = g31(1 − n1 − n2) − g12n1

+
√

g31(1 − n1 − n2)
ξ1(t )√

N
− √

g12n1
ξ2(t )√

N
,

ṅ2 = g12n1 − g23n2 + √
g12n1

ξ2(t )√
N

− √
g23n2

ξ3(t )√
N

, (20)

where the ξi(t ) denote Gaussian distributed independent white
noises, with

〈ξi(t )〉 = 0

〈ξi(t )ξ j (t
′)〉 = δi jδ(t − t ′). (21)

These Langevin equations, when interpreted using Itô calcu-
lus, lead to the Fokker-Planck equation (14), with the drift
vector (17) and the diffusion tensor (18). It is important to
note that in the thermodynamic limit N → ∞, the Langevin
equations lead to Eq. (7) of the mean-field theory. Moreover,
fluctuations decay as 1/

√
N , following the standard thermo-

dynamic behavior.

B. Analysis and results

In order to study the stationary probability density
P0(n1, n2) one may either perform the direct simulation of
the microscopic equations of motion, Eq. (19), or calculate
P0(n1, n2) from the Fokker-Planck equation (14) or, equiv-
alently, from the simulation of the Langevin equations. We
have ascertained that both paths lead to essentially equiva-
lent results. We shall mostly present only the results from
the Fokker-Planck equation, and will point out and explain
the slight differences between the stationary solution of the
Fokker-Planck equation and the numerical simulations results.

Before discussing our results, we note a clarification about
nomenclature. When N is finite there are, strictly speaking, no
longer fixed points or limit cycles. There are now fluctuations
and so these are no longer strictly defined. However, as
N increases, we will show that there are residues of these
results but with fluctuations around them that grow smaller
in amplitude with increasing N and that disappear entirely
when N → ∞. However, we will continue to use these terms
for convenience. The “almost” fixed points and limit cycles
are now associated with minima (stable) and maxima in the
probability distributions, but using the latter terminology is
cumbersome, so we revert to the fixed point and limit-cycle
loose terminology.
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From Eq. (14), the stationary probability P0(n1, n2) must
satisfy

�∇ · ��(P0, �∇P0) = 0. (22)

To solve this equation, we applied a finite-element method
(FEM) with zero flux boundary conditions at the perimeter
of the triangle defined by Eq. (8). More precisely, we used
the FreeFem++ partial differential equation solver [27]. In
the following sections we discuss our results for finite N
separately for the continuous and discontinuous transitions to
synchronization. These results are presented in Fig. 5–Fig. 10.
Next to each panel there is a bar indicating the color code
for the probability density. The top of each bar indicates the
high probability color and the bottom of the bar indicates the
color used for P0(n1, n2) = 0. In between, the colors represent
a linear variation of the probability density from zero to the
maximum value for each panel.

1. Continuous transition to synchronization

In the mean-field approximation (N → ∞), as the con-
trol parameter a is increased the choice of the parameters
(U,V,W ) = (1, 0,−1) leads to a continuous transition from
the symmetric fixed point n∗

1 = n∗
2 = n∗

3 = 1/3 to a limit
cycle, followed by a second transition to a state with three
asymmetric fixed points (cf. Fig. 3). There are of course
no finite-number fluctuations in this limit. Figure 5 shows
the probability density P0(n1, n2) near the transition from
the symmetric fixed point to the limit cycle for different
values of N . As expected, smaller systems present larger
fluctuations. However, the qualitative behavior is independent
of the number of units and approaches the mean-field result
as N increases. Similarly, in the synchronized state, a limit
cycle is more evident for larger systems (see Fig. 6). In both
cases, the results from direct simulations (not shown) and the
Fokker-Planck equation are equivalent.

In the frozen state, however, the results from a single
long simulation and the Fokker-Planck equation differ. While
the stationary solution of the Fokker-Planck equation shows
the three symmetric fixed points, the time evolution of the
microscopic equations of motion leads the system to one
of the fixed points, where it stays for the remainder of the
simulation. Obviously, the choice among the three fixed points
(starting from the symmetric state) is equally probable. To
recover the results of the Fokker-Planck equation, one would
need to run several simulations and average the probability
distributions because there is an ergodicity breaking in each
single simulation. We abstain from showing the density plots
because they show just a small red blur near the fixed points
over a uniform background.

In summary, for the continuous transition case, the fluctu-
ations due to the finite number of units bring almost no new
feature to the dynamical evolution of the system. Probably,
the single qualitative difference between the mean-field ap-
proximation (N → ∞) and the finite-N case appears in the
frozen state. While in the mean-field approximation the initial
condition completely determines to which of the fixed points
the system goes, in the finite-N case fluctuations play a role

FIG. 5. Density plots for the stationary solution of the Fokker-
Planck equation (14) for (U,V,W ) = (1, 0, −1) and a = 1.4 (below
the bifurcation value a = 1.5 to the limit cycle in the mean-field
approximation). From top to bottom, (a) N = 100, (b) 500, and (c)
5000. When N = 5000 the symmetric fixed point is most clearly
evident. See text for description of color bar to the right of each panel
in this and subsequent figures.
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FIG. 6. Density plots for the stationary solution of the Fokker-
Planck equation (14) for (U,V,W ) = (1, 0, −1) and a = 1.6 (above
the bifurcation point). From top to bottom, (a) N = 100, (b) 500, and
(c) 5000. When N = 5000 the limit cycle is most clearly evident.

and the same initial conditions may lead to different outcomes
(particularly for smaller systems).

FIG. 7. Density plots for the stationary solution of the Fokker-
Planck equation (14), for (U,V,W ) = (1,−4, 0). Here a = 2.8 and
the number of units is N = 100 (a) and N = 500 (b). For reference,
the bifurcation point for infinite systems occurs at a = 2.84.

2. Discontinuous transition to synchronization

A coexistence region in the mean-field bifurcation dia-
gram, such as occurs with the choice (U,V,W ) = (1,−4, 0),
cf. Fig. 4, makes the finite-N behavior more intriguing. While
deep in the fixed-point-only stability region or in the limit-
cycle-only stability region, one or the other regime is clear
even for small systems. As we approach the bifurcation, hints
of the coexistence already appear for small values of N away
from the critical mean-field value of the control parameter.
For instance, in Figs. 7 and 8 we show the density plots
of the probability distribution for two values of the control
parameter a below the critical value—one far below the bifur-
cation point a = 2.84 (a = 2.8, Fig. 7) and the other nearer
to it (a = 2.835, Fig. 8)—and two system sizes: N = 100
(top panels) and N = 500 (bottom panels). Clearly, for the
larger systems (bottom panels) the symmetric fixed point is
the preferred state, with fluctuations being seen around it.
For the smaller systems, the symmetric fixed point is the
preferred state away from the bifurcation point (top panel

062140-7
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FIG. 8. Density plots for the stationary solution of the Fokker-
Planck equation (14) for (U,V,W ) = (1,−4, 0). Here a = 2.835
and the number of units is N = 100 (a) and N = 500 (b). For
reference, the bifurcation point for infinite systems occurs at a =
2.84.

in Fig. 7). However, close to the bifurcation point, for the
smaller system one may argue that there is a coexistence, and
the limit cycle may even be the dominant state (top panel in
Fig. 8).

To illustrate the behavior of the system in the coexistence
region in more detail, we show Figs. 9 and 10. For small
systems one can see the coexistence of the fixed point and
the limit cycle (see Figs. 9 and 10, top panels). As the system
size increases, the coexistence fades and either the fixed point
(Fig. 9) or the limit cycle (Fig. 10) dominates. In all cases, the
results of the numerical simulations (results not shown) and
the steady state of the Fokker-Planck equation are indistin-
guishable. Furthermore, for the a = 2.87 case, we calculate
the steady state for an even larger population (N = 20 000),
as shown in the bottom panel of Fig. 10. We can clearly see a
reinforcement of the breakdown of the bistability.

FIG. 9. Density plots for the stationary solution of the Fokker-
Planck equation (14) for (U,V,W ) = (1,−4, 0) and a = 2.85. The
critical value for infinite systems is a = 2.84. From top to bottom,
(a) N = 100, (b) 500, and (c) 5000.

062140-8



SYNCHRONIZATION AND FLUCTUATIONS: COUPLING A … PHYSICAL REVIEW E 101, 062140 (2020)

FIG. 10. Density plots for the stationary solution of the Fokker-
Planck equation (14) for (U,V,W ) = (1, −4, 0) and a = 2.87. The
critical value for infinite systems is a = 2.84. From top to bottom,
(a) N = 100, (b) 500, (c) 5000, and (d) 20 000.
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FIG. 11. Time evolution of the density n1(t ) for (U,V,W ) =
(1, −4, 0), a = 2.85, and N = 100. The critical value for infinite
systems is a = 2.84. The data were obtained via the direct simulation
of Eq. (19).

It is worth noting that despite the relation between the
maxima of the stationary state probability distribution for
finite-N systems and the stable solutions in infinite systems,
there is a fundamental distinction that must be recalled
again and again. As noted earlier, while for infinite systems
the dynamics is deterministic, for finite N the dynamics is
stochastic. Therefore, for infinite systems the initial condition
completely determines the fate of the evolution of the system.
In particular, in the coexistence region the system will end
up in a stable limit cycle if the initial condition lies outside
of the unstable limit cycle, whereas it goes to the fixed point
otherwise. For finite-N systems, especially for small systems,
the initial conditions are almost irrelevant. For instance, in
Fig. 11 we show the time evolution of the density n1(t ) for a
small system (N = 100) in the coexistence region. The initial
condition was near the symmetric state (n1 = n2 = 1/3), but
the evolution of the system rapidly goes into a stationary
state where the periodic orbit (regions of large variations in
the values of n1) coexist with the symmetric state. For large
systems the initial conditions are also negligible. That is, after
a transient, the system goes to one or the other stable state
(in the language of the deterministic system) and stays there
a longer and longer time as N increases. Which one of the
stable states the system evolves to, contrary to the infinite
system case, is not determined by the initial condition but by
the control parameter alone. Between the small and large N
scenarios, one of the maxima of the probability distribution
(corresponding to the fixed point or the limit cycle) grows
and the other diminishes as N increases. This behavior is
reminiscent of the one we observed previously in two-state
systems [20,21] showing the difference of which limit is
taken first, t → ∞ (finite-N approach) or N → ∞ (mean-
field approach). In the two-state case, we were able to write
a formal solution to the Fokker-Planck equation in terms of
an effective potential. It turns out that as N increases the
depth of one minimum of the effective potential becomes
increasingly deeper than the other, that is, one of the fixed
points becomes much more probable than the other. It is
worth mentioning that, particularly in the three-state case, the
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duration of the transient increases with N . Therefore, short
simulations of the master equation or the Langevin equation
may seem to indicate the persistence of the bistability (we
discuss this question in more detail in Appendix B). This
transient behavior is avoided by calculating the steady state
of the Fokker-Planck equation. It is worth mentioning that
even this method has its caveats. For very large systems the
probability distribution becomes extremely sharp and a finer
mesh is necessary, which increases the computer time. We
tested systems with up to N = 50 000 units and confirmed that
the trends discussed above persist.

3. Order parameter

In the previous sections we extensively discussed the qual-
itative dependence of the steady state on the system size.
Next we turn to quantitative measures in a more systematic
characterization of the steady-state distribution. We start by
analyzing the order parameter of the system. In fact, two
order parameters have been used in the literature to study this
model in the mean-field limit. First, there is a version of the
Kuramoto order parameter r adapted to this system, for which
one may interpret the three discrete states as coarse-grained
phases of an oscillator, that is,

{1, 2, 3} → {0, 2π/3, 4π/3}. (23)

Then, denoting the phase of the kth unit in the ensemble by
φk , the Kuramoto order parameter becomes

r =
∣∣∣∣∣

1

N

N∑
k=1

exp(iφk )

∣∣∣∣∣
= |n1 + n2 exp(i2π/3) + (1 − n1 − n2) exp(i4π/3)|.

(24)

This order parameter has been used since the early studies of
this model [6,7]. It successfully detects the transition from the
symmetric fixed point to the limit cycle, but it is meaningless
in the transition from the limit cycle to the three asymmetric
fixed points.

The second order parameter was proposed by Assis
et al. [10] in order to characterize the second transition for
(U,V,W ) = (1, 0,−1). It is defined as


 =
∣∣∣∣∣

1

N

N∑
k=1

exp(iφk )gk,k+1

∣∣∣∣∣
= |n1g12 + n2 exp(i2π/3)g23

+ (1 − n1 − n2) exp(i4π/3)g31|. (25)

with gi j as defined in Eq. (3). This order parameter vanishes
as we approach not only the symmetric fixed point, as does
Kuramoto’s order parameter Eq. (24), but also the three asym-
metric ones.

We have studied both order parameters, (24) and (25).
More precisely, their expected values at the nonequilibrium
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FIG. 12. Steady-state averages of the order parameters for the
continuous transition case (U,V,W ) = (1, 0, −1) for various values
of N (250, 500, 1000, and 5000) and for the mean-field case (N →
∞).

stationary state are

〈r〉 =
∫

�

r P0(n1, n2) dn1dn2, (26)

〈
〉 =
∫

�


 P0(n1, n2) dn1dn2, (27)

where � denotes the triangle defined by Eq. (8) and 〈〉 denotes
a steady-state average. However, since 〈
〉 captures all the
information that Kuramoto’s order parameter does, we discuss
only the results for 〈
〉.

Figure 12 displays our computations for the steady-
state averages of the order parameter 〈
〉, for (U,V,W ) =
(1, 0,−1). As N increases, the order parameter for finite sys-
tems approaches the mean-field result, as expected. Moreover,
the finite-size systems show ordering before the transition
point predicted by the mean-field theory. That is, the fluctu-
ations activate a precursor of the synchronous phase (that can
also be seen in the density plots). Similar phenomena have
been reported in the context of pattern formation systems,
where fluctuations give rise to a preferential wavelength even
below the Turing instability critical point. This idea can also
be applied for a frequency instead of a wavelength (time
instead of space) [28–32].

Figure 13 displays the same steady-state averages of the
order parameter 〈
〉 for the choice (U,V,W ) = (1,−4, 0).
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FIG. 13. Steady-state averages of the order parameters for the
discontinuous transition case (U,V,W ) = (1, −4, 0) for various val-
ues of N (250, 500, 1000, 5000, and 20 000) and for the mean-field
case (N → ∞).
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Here, in addition to the precursor, we notice that the order
parameter for finite systems does not approach the mean-field
result as N grows—note that in the mean-field limit the order
parameter is not uniquely defined in the coexistence region
(it has one value for each steady-state solution, namely, the
stable limit cycle, the unstable limit cycle and the fixed point,
for which it is zero). That is, the bistable behavior predicted
by the mean-field approach is absent for finite-N . When the
limit N → ∞ is taken before the limit t → ∞, ergodicity
is lost. In other words, the steady state predicted by Eq. (7)
depends on the initial condition because the system does not
explore the entire accessible phase space [i.e., the triangle
defined by Eq. (8)]. In contrast, the Fokker-Planck steady
state only takes account of the limit t → ∞, becoming initial
condition independent. Moreover, further increasing the value
of N , the transition to synchrony becomes first order (see the
Appendix A). In fact, as we increase N the order parameter
curve becomes steeper, indicating that a jump (discontinuity)
occurs for N → ∞. Actually, this is consistent with the qual-
itative behavior observed in the density plots of Figs. 9 and
10, for which, inside the coexistence region, for large systems
either the symmetric fixed point or the limit cycle prevails.

4. Angular velocity in the steady state

In order to further characterize the dynamics of the steady
state, we study the angular velocity. To define it, let us go back
to the original three dimensional phase space (n1, n2, n3), with
the constraint n1 + n2 + n3 = 1. Then the accessible phase
space corresponds to the equilateral triangle with vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1). The barycenter of the triangle
corresponds to the symmetric solution n1 = n2 = n3 = 1/3.
Consequently, the angular velocity of a point (n1, n2, n3) can
be defined as

ω(n1, n2, n3) =
∣∣∣∣ �r × �v

r2

∣∣∣∣, (28)

where �r is the position of the point in the reference frame of
the barycenter of the triangle, and �v is the velocity of the point.
To estimate the velocity, we have used its mean-field value

�v =
⎛
⎝ ṅ1

ṅ2

ṅ3

⎞
⎠ =

⎛
⎝ g31n3 − g12n1

g12n1 − g23n2

g23n2 − g31n3

⎞
⎠,

and computed the steady-state mean value of the angular
velocity

〈ω〉 =
∫

�

ω(n1, n2, 1 − n1 − n2) P0(n1, n2) dn1dn2.

Figure 14 displays our results for the mean angular velocity
in the steady state for (U,V,W ) = (1, 0,−1). As we see,
below the critical point (a = 1.5) the angular velocity tends to
a constant value 〈ω〉 ∼= 0.87. It is, again, a consequence of the
precursor of the synchronous state. In fact, linearizing Eq. (7)
around the symmetric fixed point n1 = n2 = 1/3, one obtains

δ �̇n = Dδ�n,

where δ�n = (n1 − 1/3, n2 − 1/3) and D is the Jacobian ma-
trix of the nonlinear forces that appears in Eq. (7), evaluated
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FIG. 14. Mean angular velocity in the steady state, as a function
of the coupling strength a, for (U,V,W ) = (1, 0, −1) and various
values of N (250, 500, 1000, and 5000). The dashed line is the
theoretical prediction ωL = √

3/2 for N → ∞. The solid black line
is the mean-field deterministic result.

at the fixed point n1 = n2 = 1/3. The eigenvalues of D are

D± = (a − 3/2) ± i

√
3

2
.

Therefore, below criticality (a < 1.5), small perturbations to
the angular velocity of a symmetric fixed point behaves as an
underdamped oscillator. The frequency of oscillations, which
is predicted by this linear analysis, is ωL = √

3/2 ∼= 0.866
(represented by the dashed line in Fig. 14), which coincides
with the mean value angular velocity that is estimated from
the numerical computation of the Fokker-Planck equation
steady state. Hence, for the finite-size systems the fluctuations
respect the natural tendency of the units to oscillate in unison,
as a precursor of synchrony. Above criticality (a > 1.5), the
oscillation frequency predicted by this linear analysis only
works very near to the critical point. Then, the frequency
starts to decrease (almost linearly with the control parameter),
vanishing as the infinite-period bifurcation, predicted by the
mean-field theory (with the secondary critical point taking
place at a = 3.102), which leads to the formation of the three
asymmetric fixed points.

Figure 15 displays our computations of the mean value
angular velocity for (U,V,W ) = (1,−4, 0). Here we have a
similar scenario, that is, small perturbations to the nonsyn-
chronous state behaves as an underdamped oscillator before
the transition from the fixed point to the limit cycle. In this
case, however, the frequency of oscillation that is predicted
by the linear analysis depends on the control parameter,

ωL(a) =
√

3

2
e−a(1 + 3a).

From the starting point of Fig. 15 to the transition to the pe-
riodic behavior, the angular velocity decreases monotonically,
approaching the predicted value given by Eq. (28), dashed line
in the figure, as N increases. The tendency of the angular ve-
locities computed from the steady state of the Fokker-Planck
equation steady state to be larger for smaller values of N can
be attributed to the presence of other oscillation frequencies,
which is related to the angular velocity of the limit cycles that
appear by saddle-node bifurcation at a = 2.8. Even for a <

2.8, the ghost of these limit cycles may influence the average
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FIG. 15. Mean angular velocity in the steady state as a function
of the coupling strength a, for (U,V,W ) = (1,−4, 0) and various
values of N (250, 500, 1000, and 5000). The dashed line is the
theoretical prediction ωL = (

√
3/2)e−a(1 + 3a) for N → ∞. The

solid black line is the mean-field deterministic result. We can see a
coexistence of a stable and an unstable limit cycle for 2.84 < a < 3
that is consistent with the subcritical Hopf bifurcation described
earlier.

angular velocity of the fluctuating system. This is, of course,
a nonlinear effect that requires larger fluctuations (i.e., small
N) to manifest. In fact, as N increases, the average angular
velocity get closer and closer to the values of ωL(a), up to
the jump to higher values that are dictated by the stable limit
cycle. This can be seen neatly in the curve that corresponds to
N = 5000 in Fig. 15, showing again a signature of a first-order
(discontinuous) transition to synchrony when the limit t → ∞
is taken before N → ∞.

IV. SUMMARY AND CONCLUDING REMARKS

In this report we have analyzed arrays of a finite number N
of interacting three-state units to explore the synchronization
properties of the array. There are two sources of randomness
in our model: One is the fact that the transitions of each unit
from one state to another are described by a rate, and the
other is due to the finite number of units. It is the latter that
we have examined in this work. The three-state units interact
due to a prescription [see Eq. (3)] already reported in the
literature [6–10]. We described the system using a Fokker-
Planck equation and numerically computed (using finite-
element methods) the steady state of the array. Therefore, in
contrast with mean-field theory that first implements the limit
N → ∞ and then t → ∞, the steady-state distribution that is
obtained from the Fokker-Planck equation only takes the limit
t → ∞, keeping N finite.

In particular, we focused on two cases that, at the level
of the mean-field description, offer very rich dynamics as a
function of the control parameter a. In the first case, the mean-
field description presents a supercritical Hopf bifurcation for
a = 3/2 that gives rise to a limit cycle and a saddle-node
bifurcation for which the limit cycle disappears. In this case,
the consequences of having a finite number of units are
limited. Basically, the finite number introduces fluctuations
that can be seen around the stable solutions of the mean-field
description. As N increases, these fluctuations fade away and

the system approaches the mean-field solutions, regardless of
the value of the control parameter.

In the second case, for which the mean-field description
predicts a coexistence region between the symmetric fixed
points and a limit cycle, the effect of the finite number of units
is much more prominent. While for small N the fluctuations
are so large that coexistence seems to be present, when the
number of units increases, instead of the reinforcement of the
coexistence, the system chooses one or the other mean-field
stable solution depending only on the value of the control
parameter. We carefully analyzed this transition with the help
of the order parameter 
 and the angular velocity ω, showing
that a first-order transition takes place in the finite-N case.
Therefore, the order in which we take the limits of time t and
number of units N to go to infinity can strongly impact the
behavior of the steady-state solutions all over the bistability
region.

In our earlier work [20,21], we considered many of these
questions for arrays of two-state units rather than three-state
ones. This means that our earlier work takes place in one
dimension while the current work considers two dimensions.
In the three-state case when there is a second-order transition
there is no coexistence and so there is only one attractor. In
the two-state case there is coexistence of two stable fixed
points but there are no limit cycles. In both of these situations
the order of the limits N → ∞ and t → ∞ does not matter.
However, in the case of the first-order transition of the three-
state arrays, there is coexistence of two attractors, a stable
fixed point and a limit cycle when N → ∞. When N is finite,
however, the fluctuations destroy the coexistence and one of
the two states is chosen. Here the order of the limits does
matter. Here our main focus has been the two-dimensional
situation where limit cycles become possible.
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APPENDIX A: BINDER CUMULANT

To determine the order of the transitions as N increases, we
turn to the Binder cumulant or fourth-order cumulant,

UL = 1 − 〈r4〉/3〈r2〉2, (A1)

where r is the order parameter defined in Eq. (24). For
second-order transitions, the Binder cumulant for systems of
different sizes all cross at a single point that is the critical
temperature (here the critical value of the parameter a) for an
infinite system. For first-order transitions, Binder et al. [33,34]
noticed that such cumulant still crosses near the critical value,
but the more important feature is that now it presents a
minimum (the larger the system the deeper is the minimum).
For the continuous transition (U = 1, V = 0, W = −1), we
have that curves for different system sizes cross near ac = 1.5
(see Fig. 16, upper panel) and we do not see any minimum,
confirming a continuous phase transition. For the discontin-
uous case (U = 1, V = −4, W = 0) the Binder cumulant

062140-12



SYNCHRONIZATION AND FLUCTUATIONS: COUPLING A … PHYSICAL REVIEW E 101, 062140 (2020)

0.3

0.4

0.5

0.6

0.7

1.1 1.3 1.5 1.7 1.9 2.1

U
L

a

0

0.2

0.4

0.6

0.8

2.4 2.6 2.8 3 3.2 3.4

U
L

a

(a)

(b)

FIG. 16. Binder cumulant as a function of the coupling strength
a for various values of N (250, 500, 1000, and 5000). In (a)
(continuous transition) we have (U,V,W ) = (1, 0, −1), while in (b)
(discontinuous transition) (U,V,W ) = (1, −4, 0).

curves (see Fig. 16, bottom panel) cross near ac = 2.84 and do
present a minimum, confirming that we do have a first-order
transition.

APPENDIX B: NUMERICAL SIMULATIONS

In addition to the numerical solution of the Fokker-
Planck equation discussed above, we also performed the
direct simulation of the Langevin equation Eq. (20). Start-
ing the simulation with all states with the same density
(n1 = n2 = n3 = 1/3) we let the system evolve for a long
time up to t = 6 × 107. Then we calculated a time average
of the probability distribution P(n1, n2) during a time in-
terval of 104 units of time. The results of the simulations
were mostly indistinguishable from the results of the solu-
tion of the Fokker-Planck equation. In Fig. 17, we show
the results of the numerical simulations for a = 2.87 and
N = 20 000. The comparison of this figure with the bot-
tom panel of Fig. 10 illustrates the equivalence of the two
methods.

It should be noted that for large N the relaxation time of
the system increases and the results can be misleading. For
instance, for N = 20 000, if we use the same initial conditions
as before (n1 = n2 = n3 = 1/3) and wait, for instance, for 106

units of time before making the measurements, the density
plot will be characterized by a single bright spot around the
fixed point. On the other hand, using an initial condition
outside of the limit cycle we get the limit cycle. Therefore,
one may think that the bistability is still present. However, this
result occur because the transient was not reached before the
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FIG. 17. Density plot for the probability density P(n1, n2) ob-
tained from the direct simulation of the Langevin equation Eq. (20),
for (U,V,W ) = (1,−4, 0), a = 2.87, and N = 20 000.
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FIG. 18. Orbits of the simulation of the Langevin equation (20)
for (U,V,W ) = (1,−4, 0), a = 2.87, and N = 20 000. In (a) the
initial condition was near the symmetric state n1 = n2 = n3 = 1/3,
while in (b) we started with n1 = 0.9, n2 = 0.05, and n3 = 0.05.
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measurements. As shown in Fig. 17, after the long transient
we end up in the limit cycle even if we start at the fixed point.
Actually, to be sure that the reverse jump (from the limit cycle
to the fixed point) does not occur, we ran the simulation up to
109 units of time and the system never left the surroundings
of the limit cycle.

We end this Appendix presenting the orbits of the sim-
ulations of the Langevin equations for two different initial

conditions. In the top panel of Fig. 18, the initial conditions
were chosen close to the fixed point and we can see the orbit
describing an outward spiral in the direction of the limit cycle.
The long transient is illustrated by the number of turns that the
orbit describes before reaching the neighborhood of the limit
cycle. In the bottom panel, the initial conditions were chosen
outside the limit cycle and we can see a fast spiral toward the
limit cycle.
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