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Measures of distinguishability between stochastic processes
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Quantifying how distinguishable two stochastic processes are is at the heart of many fields, such as machine
learning and quantitative finance. While several measures have been proposed for this task, none have universal
applicability and ease of use. In this article, we suggest a set of requirements for a well-behaved measure of
process distinguishability. Moreover, we propose a family of measures, called divergence rates, that satisfy all
of these requirements. Focusing on a particular member of this family—the coemission divergence rate—we
show that it can be computed efficiently, behaves qualitatively similar to other commonly used measures in their
regimes of applicability, and remains well behaved in scenarios where other measures break down.
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I. INTRODUCTION

How alike are the behaviors of two systems? How similar
are the trajectories of two stock prices? Much of the physical
world can be described as a collection of interacting stochastic
processes; understanding how distinguishable two processes
are allows us to answer such questions. These problems are
of universal relevance—for example, quantifying how closely
a model replicates its target has applications in fields such
as protein homology [1] and speech recognition [2,3]. Mean-
while, understanding how much external noise or perturba-
tions impact the behavior of a system is a central task in
studies of open systems [4], quantum computation [5], and
machine learning [6,7].

Many measures have been proposed for this task [8–16].
However, a number of these are founded on measures tailored
for quantifying distances between distributions. Though they
work well for quantifying distances between finite strings,
they typically do not behave well in the context of pro-
cesses where infinite strings of observational data arise as a
process continues to run. Particularly, they fail to quantify
how different processes are [8,10,12–14]. Others, such as the
Kullback-Leibler (KL) divergence [9,11], require intensive
computational resources to evaluate and can behave patho-
logically in seemingly innocuous situations such as processes
with different output alphabets. Finally, measures that possess
an intrinsic dependence on a representation of a process
rather than the process itself will often fail by misidentifying
different models of the same process with identical observable
behavior as being distinguishable [16,17].
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In this article, we suggest several requirements that a mea-
sure of process distinguishability should satisfy. We then pro-
pose a family of measures that satisfy all of these properties.
We focus on a specific member of this family and develop an
efficient method to compute the exact value of this measure.
Furthermore, we illustrate our proposal by applying it to a
set of example scenarios designed to highlight where other
measures either cannot be applied or behave pathologically.

II. STOCHASTIC PROCESSES AND DISTANCES

Consider a bi-infinite, discrete-time, discrete-alphabet
stochastic process P , which generates an output x drawn
from an alphabet A at each time step. A contiguous output
sequence xt :t+L := xt xt+1 . . . xt+L−1 occurs with probability
P(xt :t+L ), where t denotes the initial time and L is the length
of sequence. Many naturally occurring processes can be de-
scribed within this formalism, such as biological processes
[18,19] and speech recognition [20,21]. We shall here con-
sider processes that are both stationary and ergodic: A process
is stationary if the distribution of its output sequences are
invariant with respect to time, i.e., P(xt :t+L ) = P(x0:L )∀t, L ∈
Z, x0:L ∈ AL; a process is ergodic if its time-average behavior
is identical to its ensemble-average and its statistical proper-
ties can be deduced from a single sufficiently long sample of
an output sequence.

A. Criteria for a measure

With the above questions as motivation, we suggest that
a good measure of distinguishability between stochastic pro-
cesses R(P,Q) should satisfy the following criteria:

(1) Non-negativity: R(P,Q) � 0.
(2) Symmetry: R(P,Q) = R(Q,P ).
(3) Identity of indiscernibles: R(P,Q) = 0 ⇔ P = Q,

i.e., R(P,Q) = 0 if and only if (iff) the processes are iden-
tical.
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Together these three conditions define a semimetric dis-
tance. Note that as with many proposed measures of distance
between processes, we do not demand the triangle inequality
R(P,Q) � R(P,G) + R(Q,G)∀G be satisfied, and so the
measure will not necessarily be a metric.

(4) Model independence: R(P,Q) should depend only on
observable properties (i.e., the outputs) of the processes and
not any underlying models.

This condition enforces the idea that the measure should be
identical when calculated relative to any representation of the
processes, alleviating the issues discussed above for model-
dependent measures.

(5) Continuity: Suppose stochastic process Q depends
on a continuous parameter δ. Continuity mandates that
limδ→δ0 R(P,Q(δ)) = R(P,Q(δ0)).

Smooth deformations in the parameters defining a process
will smoothly change the distinguishability between it and
other processes—this condition enforces that this is reflected
in the measure.

B. Existing measures

With these requirements at hand, we are able to assess the
behavior of existing measures that have been proposed for
quantifying how distinct two stochastic processes are. One
such widely used measure, often serving as a cost function
for many machine learning works, is the aforementioned KL
divergence,

DKL(P||Q) =
∑
xt :t+L

P(xt :t+L ) log2

[
P(xt :t+L )

Q(xt :t+L )

]
, (1)

It can be seen however, that the KL divergence does not
satisfy the continuity criterion. It becomes singular when two
stochastic processes contain different sets of possible output
sequences, no matter how small the probability is of these
unique sequences occurring. Moreover, while not a violation
of any of the above criteria, a further drawback of the KL
divergence is its high computational cost, as it requires a
calculation over all output sequences, the number of which
grows exponentially with their length L.

Other measures, such as the Jensen-Shannon divergence
[14], though free from singularities, can still fail the conti-
nuity criterion in the context of processes where the output
sequence lengths are infinite. This problem is endemic to
measures based on distances between distributions, such as
trace norms and the Bures distance [10], and highlights a
crucial key difference between distributions over finite se-
quences and processes. Specifically, these measures asymp-
totically saturate to their maximal value as the length of
the output sequences increases, because any two different
processes can be asymptotically distinguished for sufficiently
long output sequences. As a result, these measures are either
0 or maximal—identifying whether P and Q are different
processes, but not how different they are. A good measure of
process distinguishability should be equipped to handle this
distinction.

Finally, the model independence criterion rules out other
measures [16,17] that are explicitly based on the structure of a
particular model. That is, for such measures two models of the
same stochastic process may be identified as having nonzero

distance between them despite exhibiting identical observable
behavior. Furthermore, such model-dependent measures may
also be impossible to evaluate for some pairs of models with
sufficiently distinct structures.

C. Divergence rates

In light of such issues with commonly used measures, we
seek a measure that satisfies all of our criteria. We propose
a family of measures of process distinguishability, called
divergence rates, which measure how quickly the observed
behavior of two processes becomes distinguishable. That is,
they quantify how much the distance between output sequence
probability distributions grows with their length.

Consider a metric distance measure between distributions
D(P, Q) that is normalized such that 0 � D(P, Q) � 1. We
introduce the notion of similarity SD, that can be thought of
as the complement to the distance, satisfying

SD(P, Q) :=
√

1 − D(P, Q)2. (2)

We then define the D divergence rate as

RD(P,Q) := − lim
L→∞

1

L
log2[SD(P, Q; L)], (3)

where SD(P, Q; L) and similarly D(P, Q; L) are used to denote
these quantities evaluated for distributions formed from se-
quences of length L output by the processes. The D divergence
rate can be seen to parameterize the rate at which the similarity
(according to the distance D) of the two processes decays
once many symbols have been observed. The limit of L → ∞
accounts for strings with infinite length and suppresses the
distance induced by different initial states. This parallels the
notion of entropy rates [22], which similarly capture long-
term behavior by averaging over long sequences.

Theorem 1. Suppose a continuous, normalized metric dis-
tance D(P, Q; L) that scales with L as D(P, Q; L) ∼ 1 −
α exp(−ηL) for non-negative α � 1 and non-negative real η

with continuous dependence on the stochastic processes. The
RD(P,Q) induced by the distance D(P, Q; L) fulfils all above
requirements for a measure of process distinguishability. For
such a distance, we have that RD(P,Q) = η/2.

Proof 1. Conditions 1, 2, and 4 immediately follow from
the definition of RD(P,Q) and the properties of D(P, Q) as
a metric. By directly inserting the scaling D(P, Q; L) = 1 −
α exp(−ηL) into Eq. (3), it can be seen that RD(P,Q) = η/2.
As D(P, Q) is a metric it follows that if two processes are
identical we must have η = 0, and conversely η = 0 indicates
that two processes have identical long-term behavior—and
hence condition 3 is satisfied. Note that α is irrelevant and
depends only on transient behavior resulting from the initial
configuration of the two processes. Finally, condition 5 fol-
lows from the equality RD = η/2 and the continuity of the
decay rate η.

The above theorem holds only for specific metric distances,
which depend continuously on the stochastic processes and
scale as desired. Furthermore, whenever D(P, Q) exhibits
the required scaling, we see that RD(P,Q) is infinite iff
D(P, Q; L) becomes exactly 1 within finite L, rather than
just asymptotically approaching it. Qualitatively, this can be
understood as the measure being infinite iff the two processes
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can be discriminated with certainty by observing a sufficiently
long yet finite sequence of outputs.

D. Coemission divergence rate

We now consider the case where the distance used is the L2

norm, given by

DL2 (P, Q) := 1√
2
‖P̂ − Q̂‖2, (4)

where P̂ = P/‖P‖2 and Q̂ = Q/‖Q‖2. Noting that ‖P̂ −
Q̂‖2

2 = 2 − 2〈P̂, Q̂〉, where 〈·, ·〉 is the inner product, this dis-
tance can be expressed in terms of so-called coemission prob-
abilities [13] C(P, Q; L) = ∑

x0:L
P(x0:L )Q(x0:L ). Using this,

we obtain

RC (P,Q) = − lim
L→∞

1

2L
log

[
C(P, Q; L)√

C(P, P; L)C(Q, Q; L)

]
, (5)

which we call the coemission divergence rate (CDR).
Theorem 2. The CDR satisfies all of the requirements

specified for a good measure of process distinguishability.
As DL2 is a continuous metric distance, we need only to

show that the measure obeys the specified scaling.
Lemma 1. DL2 (P, Q; L) scales as 1 − α exp(−ηL) with η

depending continuously on the processes.
The proof of this employs a recently developed correspon-

dence between tensor networks and stochastic processes [23],
and is given in detail in Appendix B.

Any bi-infinite, stationary stochastic process can be repre-
sented in terms of a hidden Markov model (HMM) [24]. Such
models consist of a set of hidden internal states si. At each
time step, based on the current state si the model generates
output x and transitions to state s j with probability P(s j, x|si ).
In proving Lemma 1, we obtain an efficient way to compute
the CDR between any two processes for which is known a
HMM representation.

Corollary 1. Given a HMM representation of process P
with transition probabilities P(s j, x|si ) and of process Q with
Q(s̃n, x|s̃m), the CDR between them is given by

RC (P,Q) = −1

2
log2

[
μPQ√

μP
√

μQ

]
, (6)

where μP, μQ, and μPQ are the leading eigenvalues of the
transfer matrices EPP, EQQ, and EPQ, defined as

(EPQ)im, jn :=
∑

x

P(s j, x|si )Q(s̃n, x|s̃m). (7)

The computational complexity of calculating these eigen-
values (and hence the CDR) depends only on the number of
hidden states |S| in our HMM representations of P and Q,
scaling polynomially with both. We need only calculate the
leading eigenvalue of a |SP ||SQ| × |SP ||SQ| matrix for μPQ,
and similarly for μP and μQ. Moreover, as we only need
the leading eigenvalues, we can use tools such as the power
method [25] rather than full spectral decomposition. Crucially,
there is no scaling of complexity with the length of sequences

FIG. 1. The example process we consider can be represented by
a three-state HMM with two variables p and δ. The edge label P|x
between states si and s j signifies that if the model is in state si it will
transition to s j while emitting symbol x with probability P.

considered (the L → ∞ limit is implicitly accounted for).
And unlike Monte Carlo methods used to estimate, e.g., KL
divergences, the result is exact.

Corollary 1 can be applied to any stationary, ergodic
stochastic processes, since any such process can be repre-
sented as by a HMM [24]. Although for some processes the
number of hidden states in the HMM must be infinite for an
exact representation, the CDR can be approximated by using
approximate finite-sized HMMs.

III. EXAMPLES

In Appendix C, we work through a pedagogical example
that demonstrates how our efficient method for calculating the
CDR as described in Corollary 1 may be used. Here in the
main text we present an illustrative example using a highly
tunable process that highlights several scenarios in which our
measure can be employed, where other previously proposed
measures of process distinguishability break down. The most
general form of this example process can be represented by
a HMM with three hidden states, as illustrated in Fig. 1. The
model has two variable parameters p and δ; we use G(p, δ) to
represent the process generated by the model for a particular
set of parameters

First, we show that the CDR exhibits qualitatively similar
behavior to the (symmetric) KL divergence (per symbol) in
a scenario where the latter can be applied. Note that we
must utilize Monte Carlo methods [26] to estimate the KL
divergence, due to its computationally intensive nature. Let
process P = G(p, 0) for p ∈ [0.1, 0.9], and similarly process
Q = G(q, 0) for q ∈ [0.1, 0.9]. We calculate the CDR using
the method described in Corollary 1, while the symmetric KL
divergence per symbol is estimated using the Monte Carlo
method for sequences of length L = 1000 and a sampling set
size M = 50.

From Fig. 2, we see that the CDR and KL divergence
exhibit similar behavior. We emphasize that we are able to
efficiently compute the exact CDR, while we are only able
to estimate the KL divergence as it requires exponentially
growing resources with sequence length. Moreover, as the
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FIG. 2. Comparison of CDR and KL divergence per symbol for
distinguishing between different parameter values of the process at
δ = 0. We see that the qualitative behavior of the two is very similar.
As would be expected, both are zero along the line p = q where the
processes are equal, and grow as the difference |p − q| increases.

processes considered have infinite Markov order (i.e., their
behavior is conditioned on outputs from infinitely far back
into the past), no measure based on sequences with finite L
can capture the full behavior of the processes exactly.

Second, we consider a scenario where the KL divergence
cannot be suitably used. Consider the case where again pro-
cess P = G(p, 0) for p ∈ [0.1, 0.9], but now Q = G(q1, q2)
for q1 ∈ [0.1, 0.9] and q2 ∈ [0, 1 − q1]. When δ = 0 the hid-
den state s2 cannot be reached, and so the symbol 2 is never
emitted—thus for any q2 �= 0, P and Q have different output
alphabets and so exhibit infinite KL divergence (per symbol).
Nevertheless, the CDR varies smoothly with the parameters,
and we are still able to efficiently calculate it, as shown in
Fig. 3 for the plane defined by p = q1. Furthermore, since the
HMM representations of the processes have different numbers
of accessible states for q2 �= 0, a number of other measures

FIG. 3. The CDR is able to be calculated to ascertain the dis-
tinguishability between processes with different output alphabets
and representations with different numbers of states, unlike other
measures such as the KL divergence. As expected, we see that the
CDR increases as one process becomes increasingly likely to emit a
symbol the other cannot. The upper right white region represents an
unphysical parameter regime.

based on the model topology cannot be properly applied
[17].

We also show how CDR can be applied to quantify the dis-
tance between continuous-time processes that generate con-
tinuous outputs through discretization. We consider Markov
processes with transition probabilities P(x, t |x′, t ′), describing
the probability of finding process in state x at time t given a
previous state x′ at t ′. For instance, the Ornstein-Uhlenbeck
(OU) process [27], a model of Brownian motion, can be
described by the Fokker-Planck equation

∂P

∂t
= θ

∂

∂x
(xP) + D

∂2P

∂x2
. (8)

After discretizing, the transition probabilities are

P(x,�t |x0, 0) = N
(

x0e−θ�t ,

√
D

θ

(
1 − e−2θ�t

))
, (9)

where N (μ, σ ) represents a Gaussian distribution
with mean μ = x0e−θ�t and standard deviation σ =√

D/θ [1 − exp(−2θ�t )]. We use the CDR to compare
an OU process to a totally random Gaussian process with null
correlation and transition probabilities

P(x,�t |x0, 0) = N (0, σ ). (10)

To show the convergence of the CDR for strings of in-
creasing length, we introduce the approximation RC (P,Q) ≈
g(L + 1) − g(L), where

g(L) := 1

2
log

[
C(P, Q; L)√

C(P, P; L)C(Q, Q; L)

]
, (11)

noting that this approximation becomes exact as L → ∞. In
Fig. 4(a), we show how this approximation converges to the
exact CDR as calculated from Corollary 1, for two different
initial seed states of the OU process. In Fig. 4(b), we display
how the exact CDR varies with the size of the time step used
in the discretization. We see that for large �t the distance
vanishes (as the large time step wipes out the dependence
on the current position) and appears to converge toward a
particular value as we tend toward the continuous limit.

IV. DISCUSSION

Though our efficient method for computing the CDR relies
on having HMM representations of the processes considered,
the measure itself does not rely on this. In lieu of HMM
representations, Monte Carlo methods can be employed on the
sequence probabilities to calculate the CDR, as with the KL
divergence. We also note that while we have here considered
stationary processes, a modified form of the CDR can be
applied to nonstationary processes, where instead of taking
L → ∞ we take the longest sequence possible; the measure
will then yield the average decay of process similarity per
symbol.

A further generalization that can be considered is the
effect of relabeling the alphabet, such that each output is
ascribed to a different symbol. In general, the observed statis-
tics after such a relabeling will be different, and as such
the CDR between the original and relabeled processes will
generally be nonzero. However, from another perspective,
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FIG. 4. CDR between an OU process and a totally random
Gaussian process showing (a) convergence with L for different initial
states, and (b) convergence with decreasing time-step size �t . For
(a) �t = 1, and for both plots we take x in the range (−3, 3) with
step size �x = 2, θ = 1, μ = 0, σ = 1. The qualitative behavior of
the red curve appears typical in order of magnitude and convergence
length.

one can argue that the two processes still exhibit statistically
identical behavior—with merely a different nomenclature for
the events. To remedy this, one can consider an alphabet-
symmetrized form of the divergence rate, where it is mini-
mized over all permutations of the alphabet for one of the
processes. This would then identify a process and its relabeled
version as having zero CDR.

Finally, we remark that there exist other members of the di-
vergence rate family which satisfy all of the requirements for a
process distinguishability measure. Consider the Bures [10] or
Hellinger distance [8] DB(P, Q; L) = √

1 − F (P, Q; L), where
the fidelity F (P, Q; L) := ∑

x0:L

√
P(x0:L )Q(x0:L ). Taking this

as our distance measure, we obtain the fidelity divergence rate
(FDR):

RF (P,Q) = − lim
L→∞

1

2L
log2[F (P, Q; L)]. (12)

In Appendix D, we show that the FDR satisfies all the re-
quirements and provide an efficient way to calculate it from
deterministic HMM representations of the processes.

V. CONCLUSION

To summarize, we have discussed a set of conditions we
believe a good measure of process distinguishability should
satisfy and proposed a family of divergence rates that satisfy
them. We focused on a particular example of this family, the
CDR, and developed an efficient method for its computation.
We illustrate the advantages of our measure relative to previ-
ously proposed measures by applying it to example scenarios
where other measures behave pathologically. Finally, we dis-
cussed a number of possible generalizations of the measure.

Our measure can be applied to a broad range of areas,
particularly those dealing with stochastic processes such as
HMMs [17], computational mechanics [24,28] and quantum
stochastic modeling [29–35]. Other areas of application in-
clude assessment of the accuracy of machine learning models,
benchmarking the performance of time-series inference pro-
tocols, finding the optimal approximate representations of a
process, and quantifying the robustness of processes to noise.
Our method for efficiently computing the CDR uses tools
from tensor networks [36–39], adding to the growing list of
applications of these methods for stochastic processes [23,40–
45] and machine learning [46–54].
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APPENDIX A: TENSOR NETWORKS AND THEIR
RELATION TO HMMS

A tensor network decomposes a large tensor into several
smaller tensors connected by a network structure. These tech-
niques have many promising applications, a key one being in
simplifying the numerical simulation of quantum many-body
systems. They possess a comprehensive pictorial representa-
tion in which each tensor is represented by a node with several
legs, as shown in Fig. 5(a).

To represent a HMM we can use a special type of ten-
sor network, called matrix product states [23]. Transitions
between states in the HMM are described by the transition
matrix T x

i j := P(s j, x|si ); this is a rank 3 tensor and is thus rep-
resented by a node with three legs, as shown in Fig. 5(b). The
stationary distribution of the HMM states πi is represented
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FIG. 5. Pictorial representation of tensor networks. (a) Each leg represents an index of a tensor, with linking between legs representing
summation over the corresponding index. (b) Tensor network representation of a HMM. (c) Multi-index tensor representing the probability of
an output sequence.

by the square, and the triangle represents 1i, a column vector
filled with 1s.

The probability of a particular sequence x0:L being gener-
ated by a HMM is given by

P(x0:L ) =
∑

s0
i ,s

1
i ···sL−1

i

π0
i P

(
s1

i , x0

∣∣s0
i

)
. . . P

(
sL

i , xL−1

∣∣sL−1
i

)
.

(A1)
This can be represented by a tensor network, as shown in
Fig. 5(c). The nomenclature “matrix product state” becomes
clear: The sequence tensor is obtained by multiplying by a
matrix T xl at each step.

A HMM, and its tensor network representation, decompose
the large tensor P(x0:L ) into products of small tensors T x

i j . As a
result, HMMs exponentially reduce the memory requirement
of representing a stochastic process to O(LN2) from O(|A|L )
where L is the length of the sequence, N is the number of
states of the HMM, and |A| is the size of output alphabet.

APPENDIX B: PROOF OF THEOREM 2, LEMMA 1, AND
COROLLARY 1

Here, we present our efficient method of computing the
coemission divergence rate (CDR), in the process proving
Theorem 2 and Lemma 1. Every stationary stochastic process
has a HMM representation [24]; we consider two stationary
stochastic processes P and Q with HMMs T x

i j := P(s j, x|si )
and T̃ x

mn := Q(s̃n, x|s̃m), where si and s̃m are the corresponding
hidden states. The corresponding pictorial representations are
shown in Fig. 6(a).

The coemission probability is

C(P, Q; L) =
∑
xt :t+L

P(xt :t+L )Q(xt :t+L ), (B1)

obtained by contracting the output indices xt :t+L over tensors
T and T̃ , as shown in Fig. 6(b). The tensor structure in the

dashed square, which repeatedly appears in the network, has
four legs, i.e., is a rank 4 tensor. Combining the left two legs
together as a row index, and the right two legs as a column
index, this becomes the transfer matrix

(EPQ)im, jn :=
∑

x

P(s j, x|si )Q(s̃n, x|s̃m). (B2)

The leftmost and rightmost tensors represent the left and
right boundaries, respectively. The left boundary 〈bl| is a row
vector with elements vi j = πiπ̃ j . The right boundary |br〉 is
a column vector filled with 1s, such that the hidden states at
the last step are equally weighted, i.e., P(xt :t+L )Q(xt :t+L ) =∑

s j ,sn
P(xt :t+L, s j )Q(xt :t+L, sn).

If EPQ is diagonalizable, it has an eigenvalue decomposi-
tion

EPQ =
∑

i

μi|ri〉〈li|, (B3)

where μi are eigenvalues of EPQ, sorted in order of decreasing
magnitude, and |ri〉 and 〈li| are the associated right and left
eigenvectors. Consequently, we have

EL
PQ = μL

1 (|r1〉〈l1| +
∑
i �=1

(
μi

μ1

)L

|ri〉〈li|). (B4)

As EPQ is constructed from probabilities, it is non-negative.
Its left- and right-leading eigenvectors are then non-negative
according to the Perron-Frobenius theorem [55,56]. Thus,
the left- and right-boundary vectors have nonzero overlap
with the associated leading left and right eigenvectors of the
matrix EPQ, and therefore the coemission probability has the
following scaling:

C(P, Q; L) = 〈bl|EL
PQ|br〉

= μL
PQ

{
αPQ + O

[(
μ2

μPQ

)L
]}

∼ αPQμL
PQ, (B5)

FIG. 6. (a) Tensor network representation of the transition matrices of P and Q. (b) Tensor network representation of the coemission
probability.
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FIG. 7. The perturbed coin process has two hidden states, s0 and
s1. The system occupies s0 when the last output was 0, and similarly,
s1 after output 1.

where μPQ := μ1 and αPQ = 〈bl|r1〉〈l1|br〉 is positive. This
scaling holds even if EPQ is not diagonalizable; this can be
proved using the Jordan form of the matrix.

Using the same argument, we also have

C(P, P; L) ∼ αPμL
P and C(Q, Q; L) ∼ αQμL

Q, (B6)

where μP is the leading eigenvalue of the transfer matrix EPP

and μQ is the leading eigenvalue of the transfer matrix EQQ.
Then, we have

DL2 (P, Q; L)2 = 1 − C(P, Q; L)√
C(P, P; L)C(Q, Q; L)

∼ 1

−α

(
μPQ√
μPμQ

)L

, (B7)

where α = αPQ/
√

αPαQ. Thus, the distance has the desired
scaling. The continuity of the decay rate η follows from the
continuity of the leading eigenvalues, which depend continu-
ously on the coefficients of the characteristic equations. This
proves Lemma 1, and in turn Theorem 2. Taking L → ∞
leads to

lim
L→∞

1

L
log2

[∑
xt :t+L

P(xt :t+L )Q(xt :t+L )

]
= log2 μPQ, (B8)

and analogously,

lim
L→∞

1

L
log2

[∑
xt :t+L

P(xt :t+L )P(xt :t+L )

]
= log μP, (B9)

lim
L→∞

1

L
log2

[∑
xt :t+L

Q(xt :t+L )Q(xt :t+L )

]
= log μQ. (B10)

Therefore,

RC (P,Q) = −1

2
log2

μPQ√
μPμQ

. (B11)

This proves Corollary 1.

APPENDIX C: PEDAGOGICAL EXAMPLE
OF CALCULATING THE CDR

As a pedagogical example of how our efficient method for
computing the CDR works, we study the distinguishability
between two versions of the perturbed coin process [29] (rep-
resentable by the HMM in Fig. 7) with different parameters.
This is a Markov process, as output 0 indicates the hidden
state is s0 and output 1 indicates the hidden state s1. Consider

two perturbed coin processes P and Q with parameters p and
q respectively. Then the transfer matrices are

EPP =

⎡
⎢⎣

(1 − p)2 0 0 p2

(1 − p)p 0 0 (1 − p)p
(1 − p)p 0 0 (1 − p)p

p2 0 0 (1 − p)2

⎤
⎥⎦,

EQQ =

⎡
⎢⎣

(1 − q)2 0 0 q2

(1 − q)q 0 0 (1 − q)q
(1 − q)q 0 0 (1 − q)q

q2 0 0 (1 − q)2

⎤
⎥⎦,

EPQ =

⎡
⎢⎣

(1 − p)(1 − q) 0 0 pq
(1 − p)q 0 0 p(1 − q)
p(1 − q) 0 0 (1 − p)q

pq 0 0 (1 − p)(1 − q)

⎤
⎥⎦. (C1)

Evaluating the leading eigenvalues of these matrices, we
obtain

μP = p2 + (1 − p)2,

μQ = q2 + (1 − q)2,

μPQ = pq + (1 − p)(1 − q). (C2)

Therefore, the CDR is

RC (P,Q) = −1

2
log2

pq + (1 − p)(1 − q)√
[p2 + (1 − p)2][q2 + (1 − q)2]

.

(C3)
Clearly, R(P,Q) = 0 iff the two processes are identical, i.e.,
p = q.

APPENDIX D: FIDELITY DIVERGENCE RATE

Here, we present another member of the divergence
rate family that also satisfies the desired properties of a
process distinguishability measure. This divergence rate
is called fidelity divergence rate (FDR), as the associated
distance is the Bures-Hellinger distance DB(P, Q; L) =√

1 − F (P, Q; L), which is expressed in terms of the
fidelity F (P, Q; L) := ∑

xt :t+L

√
P(xt :t+L )Q(xt :t+L ). Then

SDB (P, Q; L) =
√

1 − DB(P, Q; L)2 = √
F (P, Q; L), and the

FDR is

RF (P,Q) = −1

2
lim

L→∞
1

L
log2[F (P, Q; L)]. (D1)

Similar to the CDR, we will demonstrate that DB exhibits
the required scaling for the FDR to satisfy our requirements
and provide an efficient method for its evaluation given deter-
ministic HMM representations of the processes. A determinis-
tic (or unifilar) HMM is one for which the current hidden state
can always be deduced with certainty given the previous state
and output. This means that each state only has at most one
outgoing edge for each symbol. Every stationary stochastic
process has a deterministic HMM representation [24].

Theorem 3. The FDR satisfies all the proposed require-
ments for a measure of process distinguishability.

Consider two stationary stochastic processes, P and
Q, with deterministic HMM representations P(s j, x|si ) and
Q(s̃n, x|s̃m), respectively, and associated transfer matrix
(EF

PQ)im, jn = ∑
x

√
P(s j |x, si )Q(s̃n, x|s̃m).
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FIG. 8. Tensor network representation of (a) the fidelity and (b) boundary vectors.

Lemma 2. DB(P, Q; L) scales as 1 − α exp(−ηL).
The fidelity

∑
x0:L

√
P(x0:L|si )Q(x0:L|s̃m), conditioned on

starting in hidden states (si, s̃m), has a pictorial representation
as shown in Fig. 8(a). The left boundary represents the ith and
mth standard basis vectors 〈i| and 〈m| in the corresponding
space, while the right boundary, denoted by |br〉, is the column
vector filled with 1s, as shown in Fig. 8(b).

The tensor structure in the dashed square is the transfer
matrix EF

PQ, which acts repeatedly on the left boundary 〈i, m|.
Similar to the proof for the coemission, if EF

PQ is diagonaliz-
able we have the eigenvalue decomposition

EF
PQ =

∑
i

μi|ri〉〈li|, (D2)

where μi are the eigenvalues of EF
PQ sorted in order of

decreasing magnitude, and |ri〉 and 〈li| are the associated right
and left eigenvectors. Consequently,

(
EF

PQ

)L = μL
1 (|r1〉〈l1| +

∑
i �=1

(
μi

μ1

)L

|ri〉〈li|), (D3)

where α = 〈bl|r1〉〈l1|br〉 is the overlap between the left vec-
tor and the leading eigenvector of EF

PQ. Because EF
PQ is

non-negative matrix, its left- and right-leading eigenvectors
are non-negative according to the Perron-Frobenius theorem
[55,56]. Since 〈i, m| spans the whole space, there always ex-
ists a vector 〈i, m| such that it has nonzero overlap with lead-
ing left eigenvector of transfer operator EF

PQ, i.e., 〈i, m|r1〉 >

0. As with the coemission, the above scaling still holds when
EF

PQ is not diagonalizable, as can be shown using the Jordan
form. Thus, we see that the fidelity decays exponentially with
the length of the sequence, and thus DB exhibits the required
scaling. The continuity of decay rate also follows from the
continuity of leading eigenvalues, hence proving Lemma 2
and Theorem 3.

Corollary 2. Given deterministic HMM representations
P(s j, x|si ) and Q(s̃n, x|s̃m) of processes P and Q, the FDR
is given by

RF (P,Q) = − 1
2 log2 μPQ, (D4)

where μPQ is the leading eigenvalue of operator EF
PQ =∑

x

√
P(s j |x, si )Q(s̃n, x|s̃m).

For certain boundary vectors 〈i, m|, we have

lim
L→∞

1

L
log2

∑
x0:L

√
P(x0:L|si )Q(x0:L|s̃m) = log2 μPQ, (D5)

where μPQ = μ1 The above quantity is the fidelity conditional
on certain past (si, s̃m). We now bound the nonconditioned

fidelity in the following:

F (P, Q; L) :=
∑
x0:L

√
P(x0:L )Q(x0:L )

=
∑
x0:L

√∑
i

πiP(x0:L|si ) ×
√∑

m

π̃mQ(x0:L|s̃m).

(D6)

The inequality
√

x + y � √
x + √

y implies

F (P, Q; L) �
∑

x0:L,i,m

√
πiπ̃m ×

√
P(x0:L|si )Q(x0:L|s̃m)

� max
i,m

(∑
x0:L

√
P(x0:L|si )Q(x0:L|s̃m)

)
. (D7)

Therefore, we have

RF (P,Q) = 1

2
lim

L→∞
− 1

L
log2 F (P, Q; L)

� 1

2
lim

L→∞
− 1

L
log2 max

i,m

×
(∑

x0:L

√
P(x0:L|si)Q(x0:L|s̃m)

)

= −1

2
log2 μPQ. (D8)

On the other hand, using inequality
√∑

i pixi � ∑
i pi

√
xi,

we have

F (P, Q; L) �
∑
i,m

πiπ̃m

∑
x0:L

√
P(x0:L|si)Q(x0:L|s̃m)

� max
i,m

πiπ̃m

∑
x0:L

√
P(x0:L|si )Q(x0:L|s̃m). (D9)

Similarly, we also obtain

RF (P, Q) � − 1
2 log2 μPQ.

Thus, the proof is completed.
The fidelity divergence rate can thus be obtained by eval-

uating the leading eigenvalue of the transfer matrix EF
PQ.

The computational complexity of this method depends only
polynomially on the number of hidden states in the determin-
istic HMM representations of each process, and thus can be
efficiently computed.

Finally, we provide upper and lower bounds for the FDR
that can be calculated even when we do not have determin-
istic representations of the processes, from their statistics
alone.
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Theorem 4. Suppose two stochastic processes P,Q have finite Markov order and the larger one is κ . Then the fidelity
divergence rate has the following upper and lower bounds:

R↓ := min
x−κ:0

− log F [P(x|x−κ:0 ), Q(x|x−κ:0 )] � 2RF (P,Q),

R↑ := max
x−κ:0

− log F [P(x|x−κ:0 ), Q(x|x−κ:0 )] � 2RF (P,Q).
(D10)

First, having Markov order κ implies that

P(x0:L+κ+1) = P(xL+κ |x0:L+κ )P(x0:L+κ ) = P(xL+κ |xL:L+κ )P(x0:L+κ ). (D11)

From this, we find that

P(x0:L+κ+1) � P(x0:L+κ ) max
xL:L+κ

P(xL+κ |xL:L+κ ). (D12)

Thus, we have

F (P, Q; L + κ + 1) =
∑

x0:L+κ+1

√
P(x0:L+κ+1)Q(x0:L+κ+1)

=
∑
x0:L+κ

√
P(x0:L+κ )Q(x0:L+κ ) ×

∑
xL+κ

√
P(xL+κ |xL:L+κ )Q(xL+κ |xL:L+κ )

�
∑
x0:L+κ

√
P(x0:L+κ )Q(x0:L+κ ) × max

xL:L+κ

∑
xL+κ

√
P(xL+κ |xL:L+κ )Q(xL+κ |xL:L+κ )

= F (P, Q; L + κ ) × max
xL:L+κ

∑
xL+κ

√
P(xL+κ |xL:L+κ )Q(xL+κ |xL:L+κ ). (D13)

Substituting the above into the definition of FDR leads to

2RF (P,Q) = lim
L→∞

− 1

L
log2[F (P, Q; L)]

� lim
L→∞

− 1

L
[log2 F (P, Q; κ ) + (L − κ )R↑] = R↑.

(D14)

The lower bound 2RF (P,Q) � R↓ can similarly be obtained by replacing maximizations with minimizations and reversing the
directions of the inequalities.

[1] J. Söding, Bioinformatics 21, 951 (2004).
[2] L. R. Rabiner, Proc. IEEE 77, 257 (1989).
[3] J. Silva and S. Narayanan, IEEE Trans. Signal Process. 56, 4176

(2008).
[4] W. Horsthemke, in Non-equilibrium Dynamics in Chemical

Systems (Springer, Berlin, 1984), pp. 150–160.
[5] J. Preskill, Quantum 2, 79 (2018).
[6] R. A. Kennewick, D. Locke, M. R. Kennewick, Sr., M. R.

Kennewick, Jr., and T. Freeman, System and Method for Filter-
ing and Eliminating Noise from Natural Language Utterances
to Improve Speech Recognition and Parsing, U.S. Patent No.
8,140,327, 20 March 2012.

[7] J. Huang and B. Kingsbury, in 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (IEEE,
Piscataway, 2013), pp. 7596–7599.

[8] E. Hellinger, J. Angew. Math. 136, 210 (1909).
[9] S. Kullback and R. A. Leibler, Ann. Math. Stat. 22, 79 (1951).

[10] D. Bures, Trans. Am. Math. Soc. 135, 199 (1969).
[11] B.-H. Juang and L. R. Rabiner, AT&T Tech. J. 64, 391

(1985).
[12] E. F. Krause, Taxicab Geometry: An Adventure in Non-

Euclidean Geometry, Dover Books on Mathematics Series
(Dover, New York, 1986).

[13] R. B. Lyngso, C. N. Pedersen, and H. Nielsen, in Proceedings
of the 7th International Conference on Intelligent Systems for
Molecular Biology (AAAI Press, Heidelberg, Germany, 1999),
Vol. 99, pp. 178–186.

[14] B. Fuglede and F. Topsoe, in Proceedings of the International
Symposium on Information Theory, 2004 ISIT (IEEE, Piscat-
away, 2004), p. 31.

[15] S.-H. Cha, Int. J. Math. Model. Meth. Appl. Sci. 1, 300 (2007).
[16] S. M. E. Sahraeian and B.-J. Yoon, IEEE Signal Process. Lett.

18, 87 (2011).
[17] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, Bell Syst.

Tech. J. 62, 1035 (1983).
[18] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure, Proc.

Natl. Acad. Sci. USA 91, 1059 (1994).
[19] C. Barrett, K. Karplus, and R. Hughey, Bioinformatics 14, 846

(1998).
[20] B. H. Juang and L. R. Rabiner, Technometrics 33, 251 (1991).
[21] B. Schuller, G. Rigoll, and M. Lang, in Proceedings of the 2003

IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003 (ICASSP ’03) (IEEE, Piscataway, 2003),
Vol. 2, p. II-1.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory
(John Wiley & Sons, New York, 2012).

062137-9

https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/TSP.2008.924137
https://doi.org/10.1109/TSP.2008.924137
https://doi.org/10.1109/TSP.2008.924137
https://doi.org/10.1109/TSP.2008.924137
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1090/S0002-9947-1969-0236719-2
https://doi.org/10.1090/S0002-9947-1969-0236719-2
https://doi.org/10.1090/S0002-9947-1969-0236719-2
https://doi.org/10.1090/S0002-9947-1969-0236719-2
https://doi.org/10.1002/j.1538-7305.1985.tb00439.x
https://doi.org/10.1002/j.1538-7305.1985.tb00439.x
https://doi.org/10.1002/j.1538-7305.1985.tb00439.x
https://doi.org/10.1002/j.1538-7305.1985.tb00439.x
https://doi.org/10.1109/LSP.2010.2096417
https://doi.org/10.1109/LSP.2010.2096417
https://doi.org/10.1109/LSP.2010.2096417
https://doi.org/10.1109/LSP.2010.2096417
https://doi.org/10.1002/j.1538-7305.1983.tb03114.x
https://doi.org/10.1002/j.1538-7305.1983.tb03114.x
https://doi.org/10.1002/j.1538-7305.1983.tb03114.x
https://doi.org/10.1002/j.1538-7305.1983.tb03114.x
https://doi.org/10.1073/pnas.91.3.1059
https://doi.org/10.1073/pnas.91.3.1059
https://doi.org/10.1073/pnas.91.3.1059
https://doi.org/10.1073/pnas.91.3.1059
https://doi.org/10.1093/bioinformatics/14.10.846
https://doi.org/10.1093/bioinformatics/14.10.846
https://doi.org/10.1093/bioinformatics/14.10.846
https://doi.org/10.1093/bioinformatics/14.10.846
https://doi.org/10.1080/00401706.1991.10484833
https://doi.org/10.1080/00401706.1991.10484833
https://doi.org/10.1080/00401706.1991.10484833
https://doi.org/10.1080/00401706.1991.10484833


YANG, BINDER, GU, AND ELLIOTT PHYSICAL REVIEW E 101, 062137 (2020)

[23] C. Yang, F. C. Binder, V. Narasimhachar, and M. Gu, Phys. Rev.
Lett. 121, 260602 (2018).

[24] C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104, 817
(2001).

[25] R. Mises and H. Pollaczek-Geiringer, Z. Angew. Math. Mech.
9, 152 (1929).

[26] J. R. Hershey and P. A. Olsen, in 2007 IEEE International Con-
ference on Acoustics, Speech and Signal Processing-ICASSP’07
(IEEE, Piscataway, 2007), Vol. 4, p. IV-317.

[27] J. L. Doob, Ann. Math. 43, 351 (1942).
[28] J. P. Crutchfield and K. Young, Phys. Rev. Lett. 63, 105 (1989).
[29] M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Nat. Commun. 3,

762 (2012).
[30] J. R. Mahoney, C. Aghamohammadi, and J. P. Crutchfield, Sci.

Rep. 6, 20495 (2016).
[31] C. Aghamohammadi, S. P. Loomis, J. R. Mahoney, and J. P.

Crutchfield, Phys. Rev. X 8, 011025 (2018).
[32] T. J. Elliott and M. Gu, npj Quantum Inf. 4, 18 (2018).
[33] F. C. Binder, J. Thompson, and M. Gu, Phys. Rev. Lett. 120,

240502 (2018).
[34] T. J. Elliott, A. J. P. Garner, and M. Gu, New J. Phys. 21, 013021

(2019).
[35] Q. Liu, T. J. Elliott, F. C. Binder, C. Di Franco, and M. Gu,

Phys. Rev. A 99, 062110 (2019).
[36] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,

arXiv:quant-ph/0608197).
[37] R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).
[38] K. Temme and F. Verstraete, Phys. Rev. Lett. 104, 210502

(2010).
[39] R. Orús, Ann. Phys. 349, 117 (2014).

[40] Y. Hieida, J. Phys. Soc. Jpn. 67, 369 (1998).
[41] E. Carlon, M. Henkel, and U. Schollwöck, Eur. Phys. J. B 12,

99 (1999).
[42] E. Carlon, M. Henkel, and U. Schollwöck, Phys. Rev. E 63,

036101 (2001).
[43] A. Critch and J. Morton, SIGMA 10, 95 (2014).
[44] M. Kliesch, D. Gross, and J. Eisert, Phys. Rev. Lett. 113,

160503 (2014).
[45] T. H. Johnson, T. J. Elliott, S. R. Clark, and D. Jaksch, Phys.

Rev. Lett. 114, 090602 (2015).
[46] I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011).
[47] E. Stoudenmire and D. J. Schwab, in Advances in Neural Infor-

mation Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016 (Curran Associates, Inc.,
Red Hook, NY, 2016), pp. 4799–4807.

[48] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, Phys. Rev.
X 8, 031012 (2018).

[49] E. M. Stoudenmire, Quantum Sci. Technol. 3, 034003 (2018).
[50] C. Guo, Z. Jie, W. Lu, and D. Poletti, Phys. Rev. E 98, 042114

(2018).
[51] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, Phys. Rev. B

97, 085104 (2018).
[52] S. R. Clark, J. Phys. A: Math. Th. 51, 135301 (2018).
[53] I. Glasser, N. Pancotti, and J. I. Cirac, arXiv:1806.05964.
[54] Y. Levine, O. Sharir, N. Cohen, and A. Shashua, Phys. Rev. Lett.

122, 065301 (2019).
[55] O. Perron, Math. Ann. 64, 248 (1907).
[56] F. G. Frobenius, Über Matrizen aus Nicht Negativen Elementen

(Königliche Akademie der Wissenschaften, Berlin, Germany,
1912).

062137-10

https://doi.org/10.1103/PhysRevLett.121.260602
https://doi.org/10.1103/PhysRevLett.121.260602
https://doi.org/10.1103/PhysRevLett.121.260602
https://doi.org/10.1103/PhysRevLett.121.260602
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1002/zamm.19290090206
https://doi.org/10.1002/zamm.19290090206
https://doi.org/10.1002/zamm.19290090206
https://doi.org/10.1002/zamm.19290090206
https://doi.org/10.2307/1968873
https://doi.org/10.2307/1968873
https://doi.org/10.2307/1968873
https://doi.org/10.2307/1968873
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1038/ncomms1761
https://doi.org/10.1038/ncomms1761
https://doi.org/10.1038/ncomms1761
https://doi.org/10.1038/ncomms1761
https://doi.org/10.1038/srep20495
https://doi.org/10.1038/srep20495
https://doi.org/10.1038/srep20495
https://doi.org/10.1038/srep20495
https://doi.org/10.1103/PhysRevX.8.011025
https://doi.org/10.1103/PhysRevX.8.011025
https://doi.org/10.1103/PhysRevX.8.011025
https://doi.org/10.1103/PhysRevX.8.011025
https://doi.org/10.1038/s41534-018-0064-4
https://doi.org/10.1038/s41534-018-0064-4
https://doi.org/10.1038/s41534-018-0064-4
https://doi.org/10.1038/s41534-018-0064-4
https://doi.org/10.1103/PhysRevLett.120.240502
https://doi.org/10.1103/PhysRevLett.120.240502
https://doi.org/10.1103/PhysRevLett.120.240502
https://doi.org/10.1103/PhysRevLett.120.240502
https://doi.org/10.1088/1367-2630/aaf824
https://doi.org/10.1088/1367-2630/aaf824
https://doi.org/10.1088/1367-2630/aaf824
https://doi.org/10.1088/1367-2630/aaf824
https://doi.org/10.1103/PhysRevA.99.062110
https://doi.org/10.1103/PhysRevA.99.062110
https://doi.org/10.1103/PhysRevA.99.062110
https://doi.org/10.1103/PhysRevA.99.062110
http://arxiv.org/abs/arXiv:quant-ph/0608197
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevLett.104.210502
https://doi.org/10.1103/PhysRevLett.104.210502
https://doi.org/10.1103/PhysRevLett.104.210502
https://doi.org/10.1103/PhysRevLett.104.210502
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1143/JPSJ.67.369
https://doi.org/10.1143/JPSJ.67.369
https://doi.org/10.1143/JPSJ.67.369
https://doi.org/10.1143/JPSJ.67.369
https://doi.org/10.1007/s100510050983
https://doi.org/10.1007/s100510050983
https://doi.org/10.1007/s100510050983
https://doi.org/10.1007/s100510050983
https://doi.org/10.1103/PhysRevE.63.036101
https://doi.org/10.1103/PhysRevE.63.036101
https://doi.org/10.1103/PhysRevE.63.036101
https://doi.org/10.1103/PhysRevE.63.036101
https://doi.org/10.1103/PhysRevLett.113.160503
https://doi.org/10.1103/PhysRevLett.113.160503
https://doi.org/10.1103/PhysRevLett.113.160503
https://doi.org/10.1103/PhysRevLett.113.160503
https://doi.org/10.1103/PhysRevLett.114.090602
https://doi.org/10.1103/PhysRevLett.114.090602
https://doi.org/10.1103/PhysRevLett.114.090602
https://doi.org/10.1103/PhysRevLett.114.090602
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1088/1751-8121/aaaaf2
http://arxiv.org/abs/arXiv:1806.05964
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1007/BF01449896
https://doi.org/10.1007/BF01449896
https://doi.org/10.1007/BF01449896
https://doi.org/10.1007/BF01449896

