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We investigate the phase diagram and the nature of the phase transitions of three-dimensional monopole-
free CPN−1 models, characterized by a global U (N) symmetry, a U (1) gauge symmetry, and the absence of
monopoles. We present numerical analyses based on Monte Carlo simulations for N = 2, 4, 10, 15, and 25. We
observe a finite-temperature transition in all cases, related to the condensation of a local gauge-invariant order
parameter. For N = 2 we are unable to draw any definite conclusion on the nature of the transition. The results
may be interpreted in terms of either a weak first-order transition or a continuous transition with anomalously
large scaling corrections. However, the results allow us to exclude that the transition belongs to the O(3) vector
universality class, as it occurs in the standard three-dimensional CP1 model without monopole suppression. For
N = 4, 10, and 15, the transition is of first order, and significantly weaker than that observed in the presence
of monopoles. For N = 25 the results are consistent with a conventional continuous transition. We compare
our results with the existing literature and with the predictions of different field-theory approaches. They are
consistent with the scenario in which the model undergoes continuous transitions for large values of N , including
N = ∞, in agreement with analytic large-N calculations for the N-component Abelian-Higgs model.
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I. INTRODUCTION

Models of scalar fields with U (1) gauge symmetry and
U (N) global symmetry have been extensively studied with the
purpose of identifying the nature of their different phases and
transitions. They emerge as effective theories of superconduc-
tors and superfluids and of quantum SU(N) antiferromagnets
[1–8]. In particular, three-dimensional (3D) classical models
with N = 2 are supposed to describe the transition between
the Néel and the valence-bond solid state in two-dimensional
antiferromagnetic SU(2) quantum systems [9–15], that rep-
resent the paradigmatic models for the so-called deconfined
quantum criticality [16].

In the last 20 years there has been an extensive discus-
sion on the nature of the transition occurring in this class
of quantum models and in their classical counterparts. It
has been realized that the nature of the transition depends
crucially on topological aspects, for instance the Berry phase
in the quantum case, the compact or noncompact nature of
the gauge fields, and the presence or absence of monopoles
in the classical setting. In this paper we wish to understand
the role that topological defects play in the simplest clas-
sical model with U (1) gauge symmetry, the lattice CPN−1

model. The fundamental fields are complex N-component unit
vectors zx, associated with the sites of a regular lattice—we
will consider cubic lattices—and U (1) gauge variables λx,μ =
eiθx,μ associated with the lattice links. The corresponding
Hamiltonian is [17–19]

H = −N
∑
x,μ

(z̄x · λx,μ zx+μ̂ + c.c.), (1)

where the sum is over all lattice sites x and directions μ (μ̂ are
the corresponding unit vectors). The partition function is

Z =
∑

{zx,λx,μ}
e−βH . (2)

The factor N in the Hamiltonian (1) is introduced for con-
venience; with this definition, the large-N limit is defined by
taking N → ∞ keeping β fixed. One can easily check that
Hamiltonian (1) is invariant under the global U (N) transfor-
mations

zx → U zx, U ∈ U (N ), (3)

and the local U (1) gauge symmetry

zx → eiαx zx, λx,μ → eiαxλx,μe−iαx+μ̂ . (4)

The model has a continuous transition for N = 2 in the O(3)
universality class, while the transition is of first order for any
N � 3 [20,21]. Note that the transition is not continuous even
for N = ∞, in disagreement with analytic calculation [18,20]
performed for this model (see Ref. [21] for a discussion).

As we already mentioned, we expect the critical behavior
to depend on topological properties. Topological defects like
monopoles (or hedgehogs) are supposed to be relevant in
determining the phase behavior. For instance, the disordered
phase and the corresponding phase transition is absent in an
O(3) vector model in which all hedgehogs are suppressed
[22,23], while a partial suppression leads to a phase transi-
tion that appears different from the Heisenberg one [23,24].
Analogously, the failure of the usual analytic calculations
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in the large-N limit for model (1) has been ascribed to the
presence of topologically nontrivial configurations that forbid
the ordering of the gauge fields in the high-temperature phase
[21,25].

To explore the role that topological defects play in classical
scalar U (1) gauge systems, we consider the monopole-free
CPN−1 (MF CPN−1) model. In this model the statistical aver-
age is performed by summing only over the gauge-field con-
figurations in which monopoles are absent, where monopoles
are defined using the De Grand–Toussaint prescription [26].
The model we consider here is strictly related with the Abelian
Higgs model with noncompact gauge fields, which is often
referred to as the noncompact CPN−1 model in the literature
on deconfined quantum criticality (see, e.g., Refs. [7,24]),
and, for N = 2, to the O(3) model with hedgehog suppression
discussed in Refs. [22–24]. They all share the same global
symmetry group and are characterized by the suppression of
topological defects.

We consider different values of N , i.e., N = 2, 4, 10, 15,
and 25. In all cases, we observe a finite-temperature transition
associated with the local order parameter

Qab
x = z̄a

xzb
x − 1

N
δab, (5)

which is a gauge-invariant Hermitian and traceless N × N
matrix that transforms as

Qx → U †Qx U (6)

under the global U (N) transformations (3).
We analyze the nature of the transition using finite-size

scaling (FSS) methods. In all cases, we observe that the sup-
pression of monopoles changes significantly the behavior of
the system. For N = 2 our results are definitely not consistent
with an O(3) continuous transition. Monopoles are essential
to guarantee the Heisenberg nature of the transition for N = 2.
We are, however, unable to establish the order of the transition
for the MF CP1 model. Our data are consistent with a very
weak first-order transition or with a continuous transition
with large scaling corrections. For N = 4, 10, and 15 the
transition is of first order, as in the model with monopoles,
but is significantly weaker. Finally, for N = 25, we observe a
continuous transition. The latter result implies the existence
of a value Nc such that the first-order transition observed
for 4 � N � 15 turns into a continuous one as N increases
beyond Nc. This leads us to conjecture that the MF CPN−1

model has a continuous transition in the large-N limit, as
predicted by a perturbative analysis of the Abelian-Higgs field
theory [18,27].

The paper is organized as follows. In Sec. II we define the
3D MF CPN−1 model we consider, while in Sec. III we define
the basic observables that are determined in the Monte Carlo
simulations. The numerical results are presented in Sec. IV. In
Sec. IV A we present the results for N = 4, 10, and 15, which
are all consistent with a first-order transition. In Sec. IV B we
discuss the results for N = 2. In spite of the large simulated
systems, we are unable to draw any conclusion on the order
of the transition. Finally, in Sec. IV C we discuss the results
for N = 25, which are definitely consistent with a continuous
transition. Finally, in Sec. V we summarize our main results
and compare them with the existing relevant literature.

II. LATTICE MF CPN−1 MODEL

In our paper we consider the CPN−1 model with Hamil-
tonian (1) on a cubic lattice with periodic boundary condi-
tions. We define monopoles and antimonopoles using the De
Grand–Toussaint prescription [26]. In this approach one starts
from the noncompact lattice curl �x,μν associated with each
plaquette:

�x,μν = θx,μ + θx+μ̂,ν − θx,ν − θx+ν̂,μ, (7)

where θx,μ is the phase associated with λx,μ, λx,μ = eiθx,μ .
Here μ and ν are the directions that identify the plane in which
the plaquette lies. Note that �x,μν is antisymmetric in μ and
ν, so that we associate two different quantities that differ by a
sign with each plaquette. Let us now consider a closed lattice
surface S made of elementary plaquettes. We associate �x,μν

with each plaquette P = (x, μν), ordering μ and ν so that the
unit vector μ̂ × ν̂ points outward with respect to the surface.
It is then easy to verify that∑

P∈S

�x,μν = 0. (8)

Indeed, with the chosen orientation of the plaquettes, each
variable θx,μ [(x, μ) is a link belonging to S] appears twice in
the sum (8), with opposite sign; it follows that all terms cancel,
obtaining Eq. (8). To define monopoles, let us introduce the
function

m(x) = x − �x + 1/2�. (9)

It satisfies −1/2 � m(x) < 1/2 and the relation m(x) = x for
any x in the interval [−1/2, 1/2]. Moreover m(x) − x is al-
ways an integer. We can now define the number of monopoles
or antimonopoles within the surface S as

Nmono(S) =
∑
P∈S

m

(
�x,μν

2π

)
. (10)

Because of the relation (8), Nmono(S) is always an integer. Note
that a nonvanishing number is only obtained if |�x,μν | > π

on some plaquettes. Thus, a finite density of monopoles is
only observed in the disordered high-temperature phase, up to
the critical point. In the low-temperature phase, only isolated
pairs of a monopole and an antimonopole are present. Their
number decreases rapidly with increasing β, since θx,μ = 0
(mod 2π ) on all plaquettes for β → ∞.

To define a monopole-free version of the CPN−1 model,
which we name MF CPN−1, we restrict our configuration
space, considering only configurations for which Nmono(C) =
0 on any elementary lattice cube.

III. OBSERVABLES

In our numerical study we consider cubic lattices of linear
size L with periodic boundary conditions. We simulate the
system using the same over-relaxation algorithm we em-
ployed in our previous work [21,28]. It consists in a stochastic
mixing of microcanonical and standard METROPOLIS updates
of the lattice variables [29]. The only difference is the addition
of a check: if the proposed move generates a monopole, the
move is rejected.
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We compute the energy density and the specific heat,
defined as

E = 1

NV
〈H〉, C = 1

N2V
(〈H2〉 − 〈H〉2), (11)

where V = L3. We consider correlations of the gauge invari-
ant operator Qab

x defined in Eq. (5). Its two-point correlation
function is defined as

G(x − y) = 〈Tr Q†
xQy〉, (12)

where the translation invariance of the system has been taken
into account. The susceptibility and the correlation length are
defined as

χ =
∑

x

G(x) = G̃(0), (13)

ξ 2 ≡ 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (14)

where G̃(p) = ∑
x eip·xG(x) is the Fourier transform of

G(x), and pm = (2π/L, 0, 0). In our FSS analysis we use
renormalization-group invariant quantities. We consider

Rξ = ξ/L (15)

and the Binder parameter

U =
〈
μ2

2

〉
〈μ2〉2

, μ2 = 1

V 2

∑
x,y

Tr Q†
xQy. (16)

We also consider the gauge invariant vector correlation func-
tion [21,28]

GV (t, L) = 1

3V

∑
x,μ

Re

〈
z̄x · zx+tμ̂

t−1∏
k=0

λx+kμ̂,μ̂

〉
. (17)

IV. NUMERICAL RESULTS

A. Phase behavior for N = 4, 10, and 15

We begin by discussing the behavior of the model for N =
4, 10, and 15. As we shall discuss, all results are consistent
with a first-order transition. In Fig. 1 we show the behavior
of the specific heat as a function of β. It shows clearly a
maximum that becomes larger and larger with increasing L,
signaling the presence of a phase transition. An estimate
of the transition temperature can be obtained by analyzing
the Binder parameter U as a function of β. Irrespective
of the nature of the transition—it may be of first order or
continuous—the curves corresponding to different sizes in-
tersect at a temperature that converges to the transition tem-
perature as L → ∞. We obtain βc = 0.4285(5), 0.3712(3),
and 0.3472(3) for N = 4, 10, and 15, respectively. These re-
sults are significantly lower than the transition values for
the model in which monopoles are allowed [20,21]: βc =
0.5636(1), 0.4253(5), and 0.381(1) for the same values of
N . This decrease of βc is expected, since the suppression of
monopoles gives rise to an effective ordering interaction, that
makes the high-temperature phase less stable.

From the data reported in Fig. 1, we can estimate the max-
imum Cmax(L) of the specific heat. At a first-order transition,
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FIG. 1. Estimates of C vs β for the MF CPN−1 model for N = 4
(a), N = 10 (b), N = 15 (c), and several lattice sizes L up to L = 48.
The lines interpolating the data with L = 24, 32, and 48 are obtained
using the multihistogram reweighting method [30].

it behaves as

Cmax(L) = 1
4�2

hV [1 + O(V −1)], (18)

where V = Ld is the d-dimensional volume (d = 3) and �h is
the latent heat. At a continuous transition, instead, we have

Cmax(L) = aLα/ν + Creg, (19)
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where the constant term Creg is due to the analytic background.
It is the dominant contribution if α < 0. If we fit Cmax(L)
with a simple power behavior aLδ , we obtain δ = 0.7(2),
1.3(2), and 1.1(3) for N = 4, 10, and 15. This behavior is
quite different from that expected at a first-order transition
(δ = d = 3). If we assume that the transition is continuous, we
should have δ = α/ν, which would give ν = 0.54(3), 0.47(3),
and 0.49(4) (we use the hyperscaling relation 2 − α = dν) for
N = 4, 10, and 15, respectively.

The large difference between the estimates of δ and the
first-order prediction δ = 3 might be taken, a priori, as an in-
dication that the transition is continuous. However, experience
with similar models that undergo weak first-order transitions
indicates that in many cases the analysis of the specific heat
is not conclusive. The behavior (18) may set in at values
of L that are much larger than those at which simulations
can be actually performed. In the case of weak first-order
transitions, a more useful quantity is the Binder parameter U .
At a first-order transition, the maximum Umax(L) of U for each
size L behaves as [31,32]

Umax(L) = c V [1 + O(V −1)] . (20)

On the other hand, U is bounded as L → ∞ at a continuous
phase transition. Indeed, at such transitions, in the FSS limit,
any renormalization-group invariant quantity R scales as

R(β, L) = fR(X ) + O(L−ω ), X = (β − βc)L1/ν, (21)

where fR(X ) is a regular function, which is universal apart
from a trivial rescaling of its argument, and ω is a correction-
to-scaling exponent. Therefore, U has a qualitatively different
scaling behavior for first-order or continuous transitions. In
practice, a first-order transition can be simply identified by
verifying that Umax(L) increases with L, without the need of
explicitly observing the linear behavior in the volume.

In the case of weak first-order transitions, the nature of the
transition can also be understood from the combined analysis
of U and Rξ [20]. At a continuous transition, in the FSS limit
the Binder parameter U (more generally, any renormalization-
group invariant quantity) can be expressed in terms of Rξ as

U (β, L) = FR(Rξ ) + O(L−ω ), (22)

where FR(x) is universal. This scaling relation does not hold at
first-order transitions, because of the divergence of U for L →
∞. Therefore, the order of the transition can be understood
from plots of U versus Rξ . The absence of a data collapse is
an early indication of the first-order nature of the transition, as
already advocated in Ref. [20].

To understand the order of the transition, in Fig. 2 we
report the Binder parameter as a function of Rξ . The observed
behavior is not consistent with a continuous transition. Data
do not scale and, moreover, the Binder parameter has a
maximum that increases with the size L, a behavior that can
only be observed at first-order transitions.

To further confirm the discontinuous nature of the transi-
tion we have studied the distributions of the order parameter
and of the energy:

PE (E ) = 〈δ[E − H/(NV )]〉,
PM (M2) = 〈δ(M2 − μ2)〉, (23)
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FIG. 2. Estimates of U vs Rξ for the MF CPN−1 model for N = 4
(a), N = 10 (b), N = 15 (c), and several lattice sizes L up to L = 48.
The continuous lines interpolating the data with L = 24, 32, and 48
are obtained using the multihistogram reweighting method [30].

where μ2 is defined in Eq. (16). In Fig. 3 we show PM (M2) for
N = 10 and several values of L. For each size, we consider
the value of β at which the distribution shows two peaks
of approximately the same height Pmax. As expected for a
first-order transition, if Pmin is the minimum of the distribution
between the two maxima, we observe that the ratio Pmax/Pmin

increases with L. This increase is not consistent with a con-
tinuous transition. Indeed, at such transitions the distribution
PM (M2) may have two peaks—this is the case for the 3D Ising
model [33]. However, in the Ising case the ratio Pmax/Pmin

is constant in the large-L limit. It is worth noting that the
transition is very weak. The ratio Pmax/Pmin is only slightly
larger than 1 (the dip is barely significant if we take statistical
errors into account) for L = 24, and is approximately equal to
1.2 and 1.4 for L = 32 and 48. This implies that there is still
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FIG. 3. Distribution PM (M2) for the MF CP9 model for different
values of L. For each value of L we report the distribution for the
value of β at which PM (M2) has two peaks of approximately the
same height. The distributions are obtained using the multihistogram
reweighting method [30].

a significant overlap between the two phases, which explains
the strong size dependence of the distribution. It is important
to note that the distribution has two peaks only in a very tiny β

interval. For L = 48, they are observed only when β belongs
to the interval [0.3709,0.3710]. Therefore, we made extensive
use of the multihistogram method of Ref. [30], which allowed
us to compute the distributions on a very fine grid of β values.

For both N = 4 and 15, the transition is weaker than for
N = 10. We observe two peaks only for L = 48 in the first
case and for N = 32 and 48 in the second one. This is evident
from the results reported in Fig. 4, where we show results for
different values of N and L = 48. For N = 4 two peaks are
barely visible, while for N = 15 we have Pmax/Pmin ≈ 1.15.
As a second remark, note also that the distributions become
more narrow as N increases, indicating that the spontaneous
magnetization decreases as N becomes large. We have also
studied the distributions for the energy. For N = 4 a double-
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FIG. 4. Distribution PM (M2) for the MF CPN−1 model for L =
48 and different values of N . For each value of N we report the
distribution for the value of β at which PM (M2) has two peaks of
approximately the same height. The distributions are obtained using
the multihistogram reweighting method [30].
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FIG. 5. Distribution PE (E ) for the MF CP3 model for L = 48
and different values of β. The distributions are obtained using the
multihistogram reweighting method [30].

peak structure is not observed even for L = 48, although
there is some evidence of two-phase behavior (see Fig. 5). A
double-peak structure is instead observed for both N = 10 and
15.

B. Results for N = 2

Let us now discuss the results for N = 2. In this case we
have not been able to draw any definite conclusion on the or-
der of the transition. We have performed extensive simulations
on lattices of size up to L = 80. Each data point consists in Nsw

lattice sweeps, with Nsw varying between 106 and 5 × 106.
In spite of the large number of iterations, the statistics is
not large, especially for L � 48, since autocorrelation times
are huge. For L = 64 and 80, the integrated autocorrelation
time associated with μ2 [see Eq. (16)] is of order 3000
and 5000 iterations, respectively, in the transition region, so
that the number of independent configurations varies between
500 and 1000 for these two values of L. The presence of
strong autocorrelations can be easily understood by looking
at the time dependence of μ2 reported in Fig. 6. Typical
configurations are not magnetized—μ2 is very small—but,
at intervals of the order of 103−104 iterations, a fluctuation
occurs towards configurations of larger magnetization. In
order to improve the quality of the results, we have extensively
used the multihistogram method of Ref. [30], combining all
runs corresponding to the same size L.

In Fig. 7 we report the specific heat C and the Binder
parameter U as a function of β. The parameter U shows
an intersection for β ≈ 0.4605, indicating the presence of a
phase transition. In the same β region the specific heat has a
peak that increases with the size L. For each value of L we
have determined Cmax(L). A fit of the results for L � 48 to
aLδ gives δ = 0.35(8). We have also performed a fit including
an analytic correction, fitting ln Cmax(L) to δ ln L + a + bL−δ .
Using the results for L � 32 we obtain δ = 0.7(2). The ex-
ponent δ is quite different from what one would expect for a
first-order transition, δ = 3. If the transition is continuous, δ

should be identified with α/ν. Using the hyperscaling relation
2 − α = 3ν, we would then predict ν = 0.60(2) and 0.54(3),
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FIG. 6. Time evolution of μ2 for β = 0.4598, L = 80, and N =
2. Time is measured in lattice sweeps. We report the results for a time
interval of 5 × 105 sweeps.

using the two results for δ. Note that the results for the specific
heat exclude a critical transition in the O(3) universality class,
since α < 0 for the latter model [34].

To understand the nature of the transition, in Fig. 8 we
report U versus Rξ . In this case, the plot does not allow us
to draw any definite conclusion. On one side, the data do
not scale: At fixed Rξ , the estimates of U are systematically
increasing with L for 0.2 � Rξ � 0.5. This would favor a
first-order transition. On the other hand, the estimates of U
do not show a maximum that increases with L. This behavior
is usually taken as an indication for a continuous transition,
although the recent results of Ref. [36] show that it is possible
to have a discontinuous transition even when the Binder
parameter does not show a peak for lattice sizes that are
usually considered quite large (they perform simulations up
to L = 256). Whatever the interpretation is, O(3) behavior is
clearly excluded, as already noted from the analysis of the
specific heat.

We have also computed the distributions of μ2. We do not
observe any double-peak structure. However, as β varies, the
distributions change as expected for a first-order transition
(see Fig. 9). Indeed, for β = 0.4901, PM (M2) has a peak for
M2 = 0.0004, for β = 0.4902 the curve flattens, and then it
starts showing a new distinct maximum at M2 ≈ 0.002 as β

increases. This behavior is consistent with what is observed in
Fig. 6. The large fluctuations can be interpreted as the typical
seesaw behavior observed in the presence of two distinct co-
existing phases. The system moves between the unmagnetized
phase (μ2 ∼ 10−4) and a magnetized phase with μ2 ≈ 0.002.

To conclude the analysis of the available data, we may
assume that the transition is continuous and determine the
critical exponents. First, we determine ν and the transition
value βc fitting the data to Eq. (21). The function fR(x) is
approximated by a polynomial. The results of the fits are
reported in Table I as a function of Lmin, the minimum size
of the data included in the fit. We observe a significant drop
of the estimate of ν as Lmin increases from 24 to 32. This is
due to the large scaling corrections we have already observed
when considering U versus Rξ , Moreover, the estimates of βc

obtained by using Rξ and U are not consistent within errors. If
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FIG. 7. Plot of the specific heat C (a) and of the Binder parameter
U (b) as a function of β in the transition region. Results for several
values of L up to L = 80 for N = 2 are shown. The curves (continu-
ous lines) interpolating the data with L = 48, 64, and 80 are obtained
using the multihistogram reweighting method [30].
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class [35].
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FIG. 9. Distribution PM (M2) for the MF CP1 model for L = 80
and four different values of β. The distributions are obtained using
the multihistogram reweighting method [30].

we average the results of the two analyses, we would estimate

ν = 0.52(2), βc = 0.4605(3). (24)

In Fig. 10 we report the corresponding scaling plots. As
expected, the quality of the scaling is poor: large deviations
are present. In any case, note that the estimate of ν is con-
sistent with that obtained from the specific heat, ν = 0.54(3),
obtained including the analytic corrections.

Finally, we determine the exponent η associated with the
susceptibility χ defined in Eq. (13). This quantity scales as

χ (β, L) ∼ L2−η[ fχ (X ) + O(L−ω )], (25)

or, equivalently, as

χ (β, L) ∼ L2−η[Fχ (Rξ ) + O(L−ω )]. (26)

We therefore fit the data to ln χ = (2 − η) log L + f̂χ (Rξ ),
where we approximate the function f̂χ (x) with a polynomial
in x. To estimate the role of the scaling corrections we include
in the fit only the data corresponding to sizes L � Lmin. We
obtain η = 0.352(7) and 0.335(10) for Lmin = 24 and 32,
respectively. In this case, scaling corrections appear to be
small (χ2/DOF is approximately 0.99 for Lmin = 24 and 0.56
for Lmin = 32; DOF is the number of degrees of freedom
of the fit), as is also evident from the scaling plot (see

TABLE I. Results of the fits to Eq. (21) for different values of
Lmin, the minimum size of the data included in the fit. For the function
f (x) we take a 12th-order polynomial for Lmin = 24 and 32, and a
sixth-order polynomial for Lmin = 48. Here χ 2 is the sum of the fit
square residuals and DOF is the number of degrees of freedom.

Lmin χ 2/DOF ν βc

U4 24 39/33 0.547(5) 0.46057(3)
32 22/22 0.516(17) 0.46054(4)
48 8/14 0.56(6) 0.46066(10)

Rξ 24 160/33 0.594(4) 0.46035(1)
32 58/22 0.527(9) 0.46030(2)
48 6/14 0.53(3) 0.46040(5)
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FIG. 10. Plot of U (a) and of Rξ (b) as a function of X = (β −
βc )L1/ν , using βc = 0.4605 and ν = 0.52, the estimates (24).

Fig. 11). Conservatively, we will take η = 0.335(10) as our
final estimate.

In conclusion the results for N = 2 may be still interpreted
in terms of two different scenarios. A first possibility is that
the transition is of first order. This would explain the poor scal-
ing we observe when we plot U versus Rξ , the inconsistencies
in the results of ν and βc obtained in the analysis of U and Rξ ,
and the shape of the distribution of the order parameter (see
Fig. 9). However, the absence of a divergence in the behavior
of the Binder parameter does not allow us to exclude that the
transition is continuous and that the observed inconsistencies
are simply due to scaling corrections that are particularly large
in this model. A continuous transition is also supported by the
behavior of the susceptibility that shows a good scaling, which
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FIG. 11. Plot of χ/L2−η as a function of Rξ , using η = 0.335.
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FIG. 12. Plot of the Binder parameter U vs Rξ , for several values
of L up to L = 64 for N = 25. The curves interpolating the data with
L = 32 (dashed line) and 48 (continuous line) are obtained using the
multihistogram reweighting method [30].

allows us to obtain an apparently accurate estimate of the
exponent η. If the transition is continuous, it does not belong
to the Heisenberg universality class: O(3) behavior is clearly
excluded by the data.

C. Results for N = 25

We finally present our results for N = 25. We have per-
formed simulations on lattices of size 16 � L � 64. Autocor-
relations are very large (of the order of 103 for L = 64), so that
simulations of larger lattices are unfeasible. Note that most of
the data correspond to L � 48. For L = 64 we have a single
data point. As we shall discuss, all results are consistent with
a continuous transition.

We first analyze the behavior of the Binder parameter and
of the specific heat as a function of β. The specific heat
shows a very clear maximum that increases with L and the
Binder parameter curves at fixed L have a crossing point for
β ≈ 0.320, which allows us to identify the transition region.
To determine the order of the transition, we consider the plot
of U versus Rξ (see Fig. 12). It is quite evident that all results
approximately fall onto a single curve with small scaling cor-
rections. This is confirmed by the curves obtained by using the
multihistogram reweighting method of Ref. [30]: the curves
corresponding to L = 32 and 48 cannot be distinguished on
the scale of the figure except at the peak. Note that the curves
apparently indicate that Umax(L) decreases as L is increased,
which is the opposite behavior of that expected at first-order
transitions. The downward trend at the peak is also confirmed
by the result obtained for L = 64: the estimate of U is lower
than the L = 48 curve (see Fig. 12). We can thus exclude that
the transition is of first order.

Next, we determine the critical exponents. We fit the results
for U and Rξ to Eq. (21). We approximate fR(x) with a
12th-order polynomial. The results of the fits are reported in
Table II as a function of Lmin, the minimum size of the data
included in the fit. There is some dependence on Lmin, due
to scaling corrections. For Lmin = 24, the estimates obtained
from Rξ and U are consistent, so that we can finally estimate

βc = 0.319 965(20), ν = 0.595(15). (27)

TABLE II. Results of the fits to Eq. (21), as a function of Lmin.
For the function fR(x) we take a 12th-order polynomial. Results for
the MF CP24 model are shown.

Lmin χ 2/DOF ν βc

Rξ 16 89/31 0.579(2) 0.319943(3)
24 39/23 0.597(4) 0.319963(5)

U4 16 112/31 0.567(5) 0.319938(10)
24 48/23 0.593(9) 0.319969(13)

Errors should be considered as conservative. They are ob-
tained by requiring consistency between the results obtained
for the two values of Lmin. The data are reported in Fig. 13
as a function of X = (β − βc)L1/ν . Scaling is quite good,
especially for the correlation-length ratio. As a consistency
check, we have determined ν using the specific heat. We find
that the the maximum of the specific heat Cmax(L) scales as Lδ

with δ = 0.46(15). It implies ν = 0.58(3), which is consistent
with Eq. (27).

We also study the critical behavior of the susceptibility χ ,
performing fits to the ansatz:

ln χ = (2 − η) ln L + f̂χ (Rξ ). (28)

We obtain η = 0.929(3), 0.868(5), and 0.871(11) for Lmin =
16, 24, and 32. Note that the results for the two largest values
of L are consistent, allowing us to estimate

η = 0.87(1). (29)
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MF CP24 model are shown.
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In Fig. 14 we report χ/L2−η versus Rξ . The quality of the
scaling is excellent.

Finally, we analyze the behavior of the correlation function
GV (x). We find that GV (x) behaves as A exp(−x/ξz ), where
the correlation length ξz varies between 2.7 and 3.5 in the
critical region for any L in the interval 24 � L � 64. Similar
results are obtained also for N = 4, 10, and 15. In all cases
ξz is small: we find ξz = 2.1(1), 2.6(1), and 2.8(1), for N =
4, 10, and 15, respectively, where the error takes into account
the L and β dependence in the transition region. For finite N ,
the correlation ξz is expected to be finite [37–39]. It should,
however, diverge in the limit N → ∞, as in this limit the
gauge degrees of freedom are frozen and λx,μ can be taken
equal to 1. The smallness of ξz for N = 25 indicates that we
are still quite far from the large-N limit.

V. CONCLUSIONS

This paper reports a study of the phase diagram and of
the nature of the phase transitions of 3D lattice MF CPN−1

models characterized by a global U (N) symmetry and a
U (1) gauge symmetry, and the absence of monopoles. We
consider the usual lattice nearest-neighbor formulation of the
CPN−1 model with an explicit gauge field—the corresponding
Hamiltonian is given in Eq. (1)—restricting the configuration
space to gauge-field configurations in which no monopoles are
present. To define monopoles, we use the definition proposed
by De Grand and Toussaint [26]. To determine the phase
diagram of the 3D MF CPN−1 model we perform Monte Carlo
simulations for N = 2, 4, 10, 15, and 25. The analysis of
the finite-size data allows us to identify a finite-temperature
transition in all cases, related to the condensation of a local
gauge invariant bilinear order parameter Qx [see Eq. (5)].

For N = 2 we considered lattices of size up to L = 80. In
spite of the relatively large systems considered, we are unable
to draw a definite conclusion on the nature of the transition.
We can only safely exclude that the transition belongs to the
O(3) universality class, as it occurs in the CP1 model in which
monopoles are allowed. Some results show features that are
typical of first-order transitions: the results for the Binder
parameter U do not approach a universal curve when plotted
versus Rξ = ξ/L, and the distributions of the order parameter
and of the energy are quite broad, although without the typical

two-peak shape that signals the presence of two coexisting
phases. On the other hand, we do not observe an increase
of the maximum Umax(L) of the Binder parameter, which is
a signature of a first-order transition, so that a continuous
transition is not excluded.

If we assume that the MF CP1 has a continuous transition,
we can estimate the critical exponents. For the correlation-
length exponent ν, the quality of the FSS fits is poor. The
exponent significantly decreases as the smallest-volume data
are excluded from the fit, a phenomenon that is often con-
sidered as the signature of a weak first-order transition: in
these cases ν decreases towards 1/d = 1/3 as larger size data
are included. If we only consider the largest sizes, we would
estimate ν = 0.52(2), but it is clear from the quality of the fits
that this estimate should be only considered as an effective
estimate in the range of values of L considered. It remains
an open problem to establish if such a drift stops and the
estimate stabilizes, as appropriate for a continuous transition,
or moves towards the first-order value 1/3. The exponent
ν can also be determined from the specific heat, using the
hyperscaling relation 2 − α = 3ν. We obtain ν = 0.54(3),
which is consistent with the previous estimate. We have also
analyzed the behavior of the susceptibility χ of the order
parameter Qx. In this case, we observe good scaling and little
size dependence of the results. We estimate η = 0.335(10).
The good scaling of χ is presently the only real evidence in
favor of a continuous transition.

It is interesting to compare these results with those ob-
tained in other models. An O(3) σ model with hedgehog
suppression was considered in Ref. [24]. The estimates of
ν and η are different from ours, as they obtain ν = 1.0(2)
and η ≈ 0.6. The MF CP1 and the model of Ref. [24] have
the same global symmetry and the same order parameter, but
consider different types of topological defects; therefore, they
may develop a different behavior. A loop model, expected
[40,41] to share the same universal large-distance behavior
with the MF CP1, was considered in Ref. [7]. The numerical
results obtained on very large systems (up to L = 512) show
some similarities, but also some notable differences, with
ours. For instance, they also find significant violations of FSS
and a significant dependence of the estimates of ν from the
system sizes considered. The loop-model estimates of ν vary
from 0.6 at small sizes to ν ≈ 0.46 for the largest ones. We
can also compare our estimate of η with that obtained in
Ref. [7] for the Néel order parameter, which corresponds to
our operator Qx. The FSS analysis of the order parameter
or of the corresponding susceptibility shows significant FSS
violations. On the other hand, the analysis of the short-
distance behavior of the two-point correlation function gives
a quite clear power-law behavior up to distances r ∼ 100 with
quite good scaling collapse. This allows Ref. [7] to estimate
η = 0.259(6), which, however, significantly differs from our
estimate η = 0.335(10). This difference may be explained
either by a different universality class or by the fact that at
least one of the two models does not undergo a continuous
transition. Of course, it is also possible, as suggested in the
literature on quantum antiferromagnets, that the transition is
continuous with anomalously large and slowly decaying—
even logarithmic [12], associated with a dangerously irrele-
vant variable—scaling corrections.
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The results for N = 4, 10, and 15 are instead quite conclu-
sive on the order of the transition. In all cases, we have clear
evidence that the transition is of first order. The maximum
Umax(L) of the Binder parameter increases with L and, for suf-
ficiently large L, we observe two maxima in the distributions
of the order parameter and of the energy (for the energy only
for N = 10 and 15). The transition is significantly weaker
than in the usual CPN−1 model in which monopoles are
allowed. In particular, while in the latter model the transition
becomes stronger as N increases, for the MF CPN−1 the oppo-
site occurs for N � 10: the transition for N = 10 is stronger
than for N = 15. As expected for first-order transitions, the
maximum Cmax(L) of the specific heat diverges. In our range
of values of L, however, the increase is slower than the
expected one, Cmax(L) ∼ Ld = L3. Apparently, it increases as
Lδ , with δ ∼ 1, which would imply, using the usual relations
valid for continuous transitions, an effective exponent ν of the
order of 0.5. This shows that effective estimates of ν around
1/2 are not uncommon in the presence of weak first-order
transitions, casting additional doubts on the interpretation of
the results for N = 2 as a continuous transition.

Our conclusions for the nature of the transition for 4 �
N � 15 differ from those of Refs. [5,6], that observed instead
continuous transitions in the same range of values of N .
Note, however, that this is not necessarily an inconsistency.
A priori, it is always possible that a MF CPN−1 fixed point
exists for these values of N , but that our model is outside its
attraction domain. We mention that the existence of a range
of values of N , where the model undergoes a weakly first-
order transition, is consistent with the renormalization-group
analysis of Ref. [46].

Finally, we have studied the MF CPN−1 model with N =
25. In this case, data are consistent with a conventional
continuous transition. Data (with L up to 64) show a good
FSS, with exponents

ν = 0.595(15), η = 0.87(1). (30)

It is interesting to compare our results with the predic-
tions of the field-theory approaches that are used to de-
scribe the large-distance behavior of the model: the gauge
invariant Landau-Ginzburg-Wilson (LGW) approach (see
Refs. [20,28]), which has also been successfully applied to
systems with non-Abelian gauge symmetries [42,43], and the
Abelian-Higgs field theory [27,44–46]. The first approach
predicts a first-order transition for N � 3. For N = 2, contin-
uous transitions necessarily belong to the O(3) universality
class. Our results are clearly not consistent with the LGW
predictions, as we find a continuous transition for N = 25
(the results for N = 2 might still be consistent with the LGW
approach if the phase transition of the MF CP1 model is
of first order). This shows that the LGW approach is not
appropriate to describe the monopole-free model. However,
this is not surprising. If monopoles are relevant in defining
the long-distance behavior of the model, the effective theory
should include somehow the information on the topology of
the gauge fields. This is clearly not possible in the LGW
approach, as the gauge degrees of freedom are integrated out.

The Abelian-Higgs field theory [44] predicts continuous
transitions for N > Nc,FT and first-order ones for N < Nc,FT.

TABLE III. Estimates of the transition point for the CPN−1

model with monopoles (βstd
c ), taken from Refs. [20,21], and for the

MF CPN−1 model without monopoles (βc).

N βc βstd
c

2 0.4605(3) 0.7102(1)
4 0.4285(5) 0.5636(1)
10 0.3712(3) 0.4253(5)
15 0.3472(3) 0.381(1)
20 0.353(2)
25 0.319965(20)

Close to four dimensions, we have [44] Nc,FT ≈ 183. A
three-dimensional estimate is quite problematic to obtain,
because of the non-Borel summability of the perturbative
series in powers of ε = 4 − d . Reference [46] quotes Nc,FT =
12.2(3.9). It is tempting to conjecture that the continuous
transition we have observed for N = 25 is associated with
the stable large-N fixed point occurring in the Abelian-Higgs
field theory. This would also be supported by the fact that our
estimate of the value Nc separating first-order from continuous
transitions, which should belong to the interval 15 < Nc <

25, is essentially consistent with the field-theory estimate of
Ref. [46].

Finally, let us consider the behavior for N → ∞. In
Ref. [21], we showed that the model with Hamiltonian (1)
has a first-order transition for any N � 3, including N =
∞, contradicting the analytic computations of Ref. [18]. It
was conjectured that the failure is due to the presence of
monopoles in the disordered phase that do not allow the
ordering of the gauge fields [25], even for N = ∞. If this
interpretation is correct, the MF CPN−1 model should instead
give results consistent with the analytic computations of
Ref. [18] in the large-N limit. The fact that the transition
becomes continuous as N increases supports this conjecture.
A more quantitative check can be performed using the large-N
estimates [44,47,48]:

η = 1 − 32

π2N
, ν = 1 − 48

π2N
. (31)

For N = 25 they give η = 0.87 and ν = 0.81. The estimate of
η is in perfect agreement with our result, while the estimate of
ν differs considerably. This is, however, not totally surprising,
since the critical value Nc where the order of the transition
changes (consequently 1/Nc is expected to be the radius of
the region in which the large-N expansion is predictive) may
be close to 25. If this occurs, it is clear that a quantitative
agreement requires considering several terms of the expan-
sion. As a final remark, we note that the difference βc(N )std −
βc(N ) [βc(N )std and βc(N ) are the transition points for the
model with and without monopoles, respectively, reported
in Table III] scales quite precisely as 1/N . This leads us to
conjecture that, for N = ∞, monopoles do not change the
transition temperature, but only the nature of the disordered
high-temperature phase.
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