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Behavior of the random-field XY model on simple cubic lattices at hr = 1.5
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We have performed studies of the three-dimensional random-field XY model on 32 samples of L × L × L
simple cubic lattices with periodic boundary conditions, with a random field strength of hr = 1.5, for L = 128,
using a parallelized Monte Carlo algorithm. We present results for the sample-averaged magnetic structure factor
S(�k) over a range of temperature, using both random hot start and ferromagnetic cold start initial states, and �k
along the [1,0,0] and [1,1,1] directions. At T = 1.875, S(�k) shows a broad peak near |�k| = 0, with a correlation
length which is limited by thermal fluctuations, rather than the lattice size. As T is lowered, this peak grows
and sharpens. By T = 1.5, it is clear that the correlation length is larger than L = 128. The lowest temperature
for which S(�k) was calculated is T = 1.421875, where the hot start and cold start initial conditions usually do
not find the same local minimum in the phase space. Our results are consistent with the idea that there is a finite
value of T below which S(�k) diverges slowly as |�k| goes to zero. This divergence would imply that the relaxation
time of the spins is also diverging. That is the signature of an ergodicity-breaking phase transition.

DOI: 10.1103/PhysRevE.101.062134

I. INTRODUCTION

The behavior of the three-dimensional (3D) random-field
XY model (RFXYM) at low temperatures and weak to mod-
erate random-field strengths continues to be controversial. A
detailed calculation by Larkin [1] showed that in the limit
that the number of spin components, n, becomes infinite,
the ferromagnetic phase becomes unstable when the spatial
dimension of the lattice is less than or equal to four, d � 4.
Dimensional reduction arguments [2,3] appeared to show that
the long-range order is unstable for d � 4 for any finite n � 2.
However, there are several reasons for questioning whether
dimensional reduction can be trusted for XY , i.e., n = 2,
spins.

The existence of replica-symmetry breaking (RSB) in
random-field models was first shown by Mezard and Young
[4] in 1992. Mezard and Young emphasized the Ising case,
and the fact that this applies for all finite n seems to have been
overlooked by most people for a number of years. The result
was confirmed by Brezin and De Dominicis [5], who also
emphasized the Ising case. A detailed analysis of perturbation
theory finds that dimensional reduction is not correct. The
renormalization group critical point describing the paramag-
net to ferromagnet phase transition becomes unstable in six
dimensions. They argue that below six dimensions, there is
a phase transition from the paramagnetic phase into a RSB
glassy phase which has no magnetization. It is expected that
there is still a ferromagnetic phase below the glassy phase
for some range of dimensions below six, but this point is not
discussed in detail.

Some time ago, Monte Carlo calculations [6,7] showed
that there was a line in the temperature vs random-field plane
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of the phase diagram of the three-dimensional (3D) random-
field XY model (RFXYM), at which the magnetic structure
factor becomes large as the wave number k becomes small.
Gingras and Huse [6] claim that the phase transition occurs
at the temperature where vortex lines undergo a percolation
transition, as is true for the pure 3D XY model. The current
author does not understand why this should be an exact
result when there is a random field, but it seems to be a
good approximation. Additional calculations [8] indicated
that there appeared to be small jumps in the magnetization
and the energy of L = 64 lattices at a random-field strength of
hr = 2.0, at a temperature somewhat below T = 1.0. Further
calculations [9] showing similar behavior for other values
of the random-field strength were also performed. If such
behavior persisted for larger values of L, with the sizes of
these jumps being independent of L for large L, this would
demonstrate that there is a ferromagnetic phase at weak to
moderate random fields and low temperatures for this model.
However, Aizenman and Wehr [10,11] have proven under
certain conditions that this should not happen in 3D. The sizes
of these jumps should scale to zero as L goes to infinity.
The rates of the scaling characterizes the phase transition,
analogous to the critical exponents which describe critical
behavior in second-order phase transitions. Behavior of this
type would appear to be a reasonable description of the phase
transition from the paramagnet to the RSB phase predicted
by Brezin and De Dominicis [5]. This type of behavior was
recently seen in Monte Carlo calculations by the author [12]
at hr = 1.875.

The work reported here describes Monte Carlo calculation
conducted at a random-field strength of hr = 1.5. The results
for L × L × L simple cubic lattices with L = 128 will be
presented. One significance of hr = 1.5 is that Garanin et al.
[13] have claimed that in the 3D RFXYM, there is a large
magnetization at T = 0 for this value of hr . The region of the
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phase diagram which is studied here also overlaps the region
studied by Gingras and Huse [6].

II. THE MODEL

For fixed-length classical spins, the Hamiltonian of the
RFXYM is

H = −J
∑

〈i j〉
cos(φi − φ j ) − hr

∑

i

cos(φi − θi ). (1)

Each φi is a dynamical variable which takes on values between
0 and 2π . The 〈i j〉 indicates here a sum over nearest neighbors
on a simple cubic lattice of size L × L × L. We choose each
θi to be an independent, identically distributed, quenched
random variable, with the probability distribution

P(θi ) = 1/2π (2)

for θi between 0 and 2π . We set the exchange constant to
J = 1. This gives no loss of generality, since it merely defines
the temperature scale. This Hamiltonian is closely related to
models of vortex lattices and charge density waves [6,7].

Larkin [1] studied a model for a vortex lattice in a super-
conductor. His model replaces the spin-exchange term of the
Hamiltonian with a harmonic potential, so that each φi is no
longer restricted to lie in a compact interval. He argued that
for any nonzero value of hr , this model has no ferromagnetic
phase on a lattice whose dimension d is less than or equal to
four. The Larkin approximation is equivalent to a model for
which the number of spin components, n, is sent to infinity.
A more intuitive derivation of this result was given by Imry
and Ma [2], who assumed that the increase in the energy of an
Ld lattice when the order parameter is twisted at a boundary
scales as Ld−2 for all n > 1, just as it would for hr = 0. Using
this assumption, they argued that when d � 4, there is a length
λ, now called the Imry-Ma length, at which the energy which
can be gained by aligning a local spin domain with its local
random field exceeds the energy cost of forming a domain
wall. They claimed that this implies the magnetization would
decay to zero when the system size L exceeds λ.

Within a perturbative ε-expansion, one finds the phe-
nomenon of “dimensional reduction” [3] for the properties of
the paramagnetic-to-ferromagnetic critical point. The critical
exponents of any d-dimensional O(n) random-field model
appear to be identical to those of an ordinary O(n) model of
dimension d − 2. For the n = 1 case, the random-field Ising
model (RFIM), this was soon shown rigorously to be incorrect
for d < 4 [14,15]. However, Brezin and De Dominicis [5]
later showed that the existence of RSB in this model [4]
means that the paramagnetic-to-ferromagnetic critical point is
unstable in less than six dimensions. More recently, extensive
numerical results for the Ising case at T = 0 have been
obtained for d = 4 and d = 5 [16,17]. They determined that
dimensional reduction is ruled out numerically in the Ising
case for d = 4, but not for d = 5 [18]. The algorithm used to
obtain these numerical results for the RFIM does not work for
T > 0, and it is not clear what the finite T behavior should be.
According to Brezin and De Dominicis [5], there should be a
glassy RSB phase sandwiched between the paramagnet and
the ferromagnet when d < 6. This behavior is likely to occur
in the RFXYM also, as long as d is high enough for a ferro-

magnetic phase to exist. Further, there does not seem to be any
reason why a glassy phase should not continue to exist for the
RFXYM in d = 3, even if there is no ferromagnetic phase.

The scaling behavior at low T is somewhat different
for n � 2. Because translation invariance is broken for any
nonzero hr , it seems quite implausible to the current author
that the twist energy for Eq. (1) scales as Ld−2 for large
L when d � 4, even though this is correct to all orders in
perturbation theory. The problem with assuming this scaling is
that the Imry-Ma length provides a natural length scale to the
problem. We need to scale out to the Imry-Ma length before
we can learn the true long-distance behavior of the model.
This means that the effective strength of the randomness
cannot be assumed to grow without bound when d � 4, just
because it grows for weak nonzero hr . We must do a detailed
calculation to find out what actually happens.

This point needs to be emphasized. When the random field
is weak, the Imry-Ma length λ becomes long. No matter
how weak the random field is, we must always go to lengths
larger than λ to see the crossover to the true thermodynamic
limit. In this work, we will demonstrate numerically that the
calculations of Gingras and Huse [6] were done on lattices
which were too small to reveal this true thermodynamic limit.
This is also true of the current author’s work done on the
model at that time [7].

An alternative derivation of the Imry-Ma result by Aizen-
man and Wehr [11], which claims to be mathematically rig-
orous, also makes an assumption that the model is defined
on a lattice which has a probability distribution which is
invariant under rotation and translation. Thus, their argument
is only rigorous for a model which is defined on some lattice
which is locally disordered, but has rotational invariance on
the average.

It may be that there exists a better argument, which can
show that this technical issue is not essential. It is not clear,
however, that such an argument ought to exist. It could be true
that in the 3D n = 2 case, the Imry-Ma argument fails when
the random fields are weak enough, as a consequence of the
existence of vortex lines on the dual lattice. This possibility
has been suggested by a number of authors, e.g., Chudnovsky
and co-workers [13,19]. However, the current author does not
find the existing numerical work by the Chudnovsky group to
be convincing because they are not using weak random fields.

The model we study here is defined on a finite simple cubic
lattice, which does not have the property of average rotational
invariance. Although the average over the probability distri-
bution of random fields restores translation invariance, one
must take the infinite volume limit first. It is not correct to
interchange the infinite volume limit with the average over
random fields. Taking an average over random-field config-
urations does not remove the necessity of going beyond the
Imry-Ma length to reach the large system behavior.

This problem of the interchange of limits is equivalent
to the existence of RSB. A functional renormalization group
calculation going to two-loop order was performed by Tissier
and Tarjus [20], and independently by Le Doussal and Wiese
[21]. They found that there was a stable critical fixed point
of the renormalization group for some range of d below
four dimensions in the n = 2 random-field case. However,
it is not clear from their calculation what the nature of the
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low-temperature phase is, or whether this fixed point is stable
down to d = 3. Tarjus and Tissier [22] later presented an
improved version of this calculation, which explains more
explicitly why dimensional reduction fails for the n = 2 case
when d � 4. The difference between these calculations and
the RSB calculations is that they are looking at the stability of
the ferromagnetic phase near T = 0, and not the stability of
the paramagnet-ferromagnet transition.

III. STRUCTURE FACTOR AND MAGNETIC
SUSCEPTIBILITY

The magnetic structure factor, S(�k) = 〈| �M(�k)|2〉, for XY
spins is

S(�k) = L−3
∑

i, j

cos(�k · �ri j )〈cos(φi − φ j )〉, (3)

where �ri j is the vector on the lattice which starts at site i and
ends at site j, and here the angle brackets denote a thermal
average. For a random-field model, unlike a random bond
model, the longitudinal part of the magnetic susceptibility, χ||,
which is given by

T χ||(�k) = 1 − M2 + L−3
∑

i �= j

cos(�k · �ri j )

× [〈cos(φi − φ j )〉 − Qi j], (4)

is not the same as S(�k) even above Tc. For XY spins,

Qi j = 〈cos(φi )〉〈cos(φ j )〉 + 〈sin(φi )〉〈sin(φ j )〉, (5)

and

M2 = L−3
∑

i

Qii = L−3
∑

i

[〈cos(φi )〉2 + 〈sin(φi )〉2]. (6)

When there is a ferromagnetic phase transition, S(�k = 0) has
a stronger divergence than χ (�k = 0).

The scalar quantity 〈M2〉, when averaged over a set of ran-
dom samples of the random fields, is a well-defined function
of the lattice size L for finite lattices. With high probability,
it will approach its large L limit smoothly as L increases.
The vector �M, on the other hand, is not really a well-behaved
function of L for an XY model in a random field. Knowing the
local direction in which �M is pointing, averaged over some
small part of the lattice, may not give us a strong constraint on
what 〈 �M〉 for the entire lattice will be. When we look at the
behavior for all �k, instead of merely looking at |�k| = 0, we
get a much better idea of what is really happening.

IV. NUMERICAL RESULTS FOR S(�k) AND χ(|�k| = 0)

In this work, we will present results for S(�k). The data were
obtained from L × L × L simple cubic lattices with L = 128
using periodic boundary conditions. The calculations were
done using a clock model which has 12 equally spaced dy-
namical states at each site. In addition, there is a static random
phase at each site which was chosen to be 0, π/24, π/12,
or 3π/24 with equal probability. This random phase does
not play an essential role, but it is convenient. It reduces
the effective strength of the 12-fold anisotropy without a
significant slowing down of the computer algorithm. It is

expected to reduce the chance of any issue with the quality
of the pseudorandom-number generators. It also provides an
increased number of ordered initial states for the calculations
which start in such ordered initial states. The algorithm used
in this work is a version of the algorithm which was used in
our earlier calculations [12].

The idea of adding p-fold symmetry-breaking terms to an
XY model goes back to Jose et al. [23], who studied the effects
of nonrandom fields of this type on the Kosterlitz-Thouless
(KT) transition in 2D. The result they found was that the KT
transition survives the addition of terms of this type near Tc

if p > 4, but that the system becomes ferromagnetic at some
lower value of T . This work was extended to p-fold fields
which varied randomly in space by Houghton et al. [24] and
Cardy and Ostland [25]. It was found that the KT transition
survives in the random p-fold field case for p � 3.

Generalizing this idea to d > 2 is straightforward. It has
been known for some time that a nonrandom Zp model of
this type is in the universality class of the ferromagnetic XY
model whenever p > 4 [26]. For random phase Zp models
without a random-field term, there are no analytical results.
However, it has been found numerically that in 3D, the model
is in the universality class of the pure XY model under
most conditions, even if the number of dynamical states of
each spin is only three [27]. Under conditions of very low
temperature, this model may undergo an incommensurate-to-
commensurate type of charge-density-wave phase transition.
Thus it is expected that when we include the random-field
term, the model will behave essentially as a random-field
XY model, as long as we do not attempt to work at very
low temperatures and random-field strengths much weaker
than the ones used here [7]. However, we want to have more
than merely being in the same universality class, which only
requires three dynamical states at each site. We have found
that if we use at least eight dynamical states at each site, then
the results we find numerically do not depend on the number
of dynamical states, at least for T � 1.00.

Based on earlier Monte Carlo calculations [6,8], we know
the approximate location of the phase boundary in the (hr, T )
plane. This is true despite the fact that we are not cer-
tain what the nature of the low-temperature phase is. The
reason why this is possible is that we are able to locate
the phase boundary by finding where the static ferromag-
netic correlation length first diverges as we lower T or hr .
It was not known a priori if it would be possible to do
calculations under conditions where we could get past the
crossover region and see the large lattice behavior on the phase
boundary.

The direction of the random field at site i, θi, was chosen
randomly from the set of the 48th roots of unity, independently
at each site. Since θi has 48 possible values, our past experi-
ence with models of this type [12] indicates that there is no
reason to expect that the discretization will affect the behavior
in an observable way.

The computer program uses three independent
pseudorandom-number generators: one for choosing initial
values of the dynamical variables, φi, in the hot start initial
condition, one for setting the static random phases, θi, and a
third one for the Monte Carlo spin flips, which are performed
by a single-spin-flip heat-bath algorithm.
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The pseudorandom-number generators for the φi and the
θi are standard linear congruential generators which have
been used for many years. Given the same initial seeds,
they will always produce the same string of numbers, which
is a property needed by the program. They have excellent
statistical properties for strings of numbers up to length 108 or
so, which is adequate for our purpose here. The use of separate
generators for choosing the initial values of the dynamical φi

and the static random θi was not really necessary, since the
hot starts were always done at a high value of T . However,
the cost of doing this is negligible, and it would have allowed
the use of random initial start conditions at any value of T ,
although that was not done in the work reported here.

The pseudorandom-number generator used for the Monte
Carlo spin flips was the library function random_number sup-
plied by the Intel Fortran compiler, which is suitable for par-
allel computation. It is believed that this generator has good
statistical properties for strings of length 1014, which is what
we need here. However, the author has no ability to check
this for himself. The spin-flip subroutine was parallelized
using OPENMP, by taking advantage of the fact that the simple
cubic lattice is two-colorable. It was run on Intel multicore
processors of the Bridges Regular Memory machine at the
Pittsburgh Supercomputer Center. The code was checked by
setting hr = 0, and seeing that the known behavior of the pure
ferromagnetic 3D XY model was reproduced correctly. It was
found, however, that using more than two cores in parallel did
not result in any additional speedup of the calculation. This
made it impractical to study 3D lattices larger than L = 128.

There were 32 different realizations of the random fields
θi that were studied. Each lattice was started off in a random
spin state at T = 2.375, above the Tc for the pure O(2) model,
which is approximately 2.202 [28]. The Tc for a pure Z4 model
is 2.2557, half that of the pure Ising model. As far as the
author knows, there are no highly accurate calculations of Tc

for pure Zp models with p > 4 on a simple cubic lattice. It
is expected, however, that these will converge to the Tc for
the O(2) model exponentially fast in n. The reason for this is
that cos(θ j − θi ) for nearest neighbor i and j at Tc, which is
the energy per bond at Tc, is 0.33 on this lattice. This means
that the typical angle between nearest-neighbor spins at Tc is
slightly less than 2π/5. Once the mesh size for θi becomes less
than the typical value of θ j − θi, the effect of the discretization
disappears rapidly.

Each lattice was then cooled slowly to T = 1.421875,
using a cooling schedule which depended on T . Although the
relaxation of the spins is not a simple exponential function, it
is quite apparent that the relaxation is becoming very slow as
T = 1.421875 is approached. At T = 1.421875, the sample
was relaxed until an apparent equilibrium was reached over
an appropriate timescale. This timescale was at least 737.280
Monte Carlo steps per spin (MCS). Some samples required
relaxation for up to three times longer than these minimum
times.

After each sample was relaxed at T = 1.421875, a se-
quence of six equilibrated spin states obtained at intervals
of 40 960 MCS was Fourier transformed and averaged to
calculate S(�k). Finally, an average over the 32 samples was
performed. Similar procedures were followed at higher values
of T , where the equilibration times were shorter. The results
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FIG. 1. Structure factor vs |�k| for 128 × 128 × 128 lattices with
hr = 1.5 at various temperatures, using slowly cooled spin states.
Both the x axis and the y axis are scaled logarithmically. The points
shown are averages of the data along the [1,0,0] or [1,1,1] directions.
One σ statistical error is approximately the size of the plotting
symbols.

for S(�k) along the [1,0,0] and [1,1,1] directions at a sequence
of temperatures from T = 1.875 down to T = 1.421875 are
shown in Fig. 1. In this range of T , for small values of |�k|,
S(|�k|) is increasing as T is lowered. At T = 1.875, S(|�k|)
is virtually independent of |�k| for small |�k|, indicating that
the spin correlations are limited by thermal fluctuations. At
T = 1.421875, the spin correlations continue to increase as
|�k| gets smaller, indicating that the spin correlation length is
greater than the lattice size. However, the small |�k| data for
T = 1.421875 do not fall on a straight line on this log-log
plot. We do not know what would happen for larger lattices,
but we have no evidence that the data can be explained by a
critical point with a correlation length that diverges like some
power of temperature.

Data were also obtained for the same sets of samples using
ordered initial states and warming from T = 1.375. At least
two, and sometimes more, initial ordered states were used for
each sample. The initial magnetization directions used were
chosen to be close to the direction of the magnetization of the
slowly cooled sample with the same set of random fields. This
type of initial state was chosen because it was found in the
earlier work [8] that this is the way to find the lowest-energy
minima in the phase space. The data from the initial condition
which gave the lowest average energy for a given sample
was then selected for further analysis and comparison with
the slowly cooled state data for that sample. The relaxation
procedure at T = 1.421875 for the warmed states was the
same one used for the cooled states, and the calculation of
S(|�k|) proceeded in the same way. In Fig. 2, we compare the
S(|�k|) for the slowly warmed initial states with the data for the
slowly cooled initial states at T = 1.421875.

For purposes of comparison with Fig. 2, in Fig. 3 we show
data from Ref. [12], analyzed in the same way. These data for
lattices with hr = 1.875 at T = 1.0 are qualitatively similar
to the data in Fig. 2. Although hr is now larger, T is smaller.
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FIG. 2. Structure factor vs |�k| for 128 × 128 × 128 lattices with
hr = 1.5 at T = 1.421875, comparing the slowly warmed states with
the slowly cooled states. The points shown are averages of the data
along the [1,0,0] or [1,1,1] directions. Both the x axis and the y axis
are scaled logarithmically. One σ statistical error is approximately
the size of the plotting symbols.

Thermal disorder in Fig. 2 is being replaced by random-field
induced disorder in Fig. 3. The resulting change in S(|�k|) is
not zero, but it is small. The crossover from the large |k|
behavior to the small |k| behavior, which happens at 1/λ, is
at a somewhat larger value of |k| in Fig. 3, as predicted by the
Imry-Ma argument. Note that the original Imry-Ma argument
[2] is a zero-temperature argument. One should not assume
this idea of thermal disorder replacing random-field induced
disorder will work for larger values of n, unless and until some
evidence of that is found. The small |k| region of Fig. 3 does
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FIG. 3. Structure factor vs |�k| for 128 × 128 × 128 lattices with
hr = 1.875 at T = 1.0, comparing the slowly warmed states with
the slowly cooled states. The points shown are averages of the data
along the [1,0,0] or [1,1,1] directions. Both the x axis and the y axis
are scaled logarithmically. One σ statistical error is approximately
the size of the plotting symbols. This figure shows a reanalysis of
data from Ref. [12].
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FIG. 4. Jump in the magnetization vs jump in the energy for
128 × 128 × 128 lattices with hr = 1.5 at T = 1.421875. States with
hot start and ordered cold start initial conditions are compared for
each sample.

not appear to be approaching a finite value for S in the limit
|k| → 0, as discussed in more detail in Ref. [12].

The reader should note that the estimates of λ from Fig. 2
and Fig. 3 imply that the L = 96 lattices studied by Gingras
and Huse [6] are passing through λ close to hr = 1.3, which is
the point where Gingras and Huse claim a phase transition oc-
curs at T = 1.5. This coincidence means that their ideas about
the nature of the phase transition are not reliable because their
lattices are not large enough to have reached the true small |k|
region at their estimated value of the phase transition point.

We now return to the discussion of the hr = 1.5 case.
The data for the slowly warmed states and the slowly cooled
states at the same value of T are indistinguishable for all
nonzero values of |k|. However, this is not necessarily true
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FIG. 5. Jump in the magnetization vs jump in the energy for
128 × 128 × 128 lattices with hr = 1.5 at T = 1.5. States with hot
start and ordered cold start initial conditions are compared for each
sample.
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FIG. 6. Jump in the magnetization vs jump in the energy for
128 × 128 × 128 lattices with hr = 1.5 at T = 1.625. States with
hot start and ordered cold start initial conditions are compared for
each sample.

at �k = 0 for a finite sample, as was discussed in detail for
the hr = 1.875 case in Ref. [12]. It is not necessarily true
that for a particular sample the spin state is very similar for
the warmed state and the cooled state. What actually happens
for individual samples is that in most cases, the spin state
of the slowly warmed state with an ordered initial condition
is significantly different at T = 1.421875 from the slowly
cooled state. However, at T = 1.625, the slowly warmed state
is, in most cases, essentially indistinguishable from the slowly
cooled state. We illustrate this for T = 1.421875 in Fig. 4,
for T = 1.5 in Fig. 5, and for T = 1.625 in Fig. 6, which
plot the differences in the magnetization and the energy for
individual samples. Note that in most, but not all samples,
at T = 1.421875, the warmed state has a lower energy and a
higher magnetization than the cooled state. At T = 1.625, the
differences are much smaller and they no longer have much
systematic dependence on the initial conditions.

In Table I, we display data for the average magnetization
per spin, |M(L)|/L3, the longitudinal magnetic susceptibility
per spin, χ||/L3, and the specific heat at zero average field,
cH=0. It was found for hr = 1.875 that |M| appears to have a
subextensive divergence at Tc [12], and it is expected that this
will also be true at hr = 1.5. However, λ is somewhat longer

TABLE I. Thermodynamic data for hot start (hs) and cold start
(cs) initial conditions at hr = 1.5, for various T . The one σ statistical
error shown is due to the sample-to-sample variations.

T |M|/L3 χ||/L3 cH=0

1.421875hs 0.070 ± 0.008 30.3 ± 1.2 1.102 ± 0.003
1.421875cs 0.102 ± 0.008 28.8 ± 1.1 1.097 ± 0.003
1.5hs 0.051 ± 0.005 33.9 ± 1.3 1.204 ± 0.004
1.5cs 0.056 ± 0.005 33.6 ± 1.4 1.120 ± 0.004
1.625hs 0.028 ± 0.003 25.2 ± 0.5 1.326 ± 0.004
1.75hs 0.0142 ± 0.0012 12.96 ± 0.36 1.302 ± 0.004
1.875hs 0.0081 ± 0.0006 6.71 ± 0.22 1.147 ± 0.004

at hr = 1.5. Thus, in order to check how |M(L)| scales with
L at hr = 1.5, we would need data for larger lattices, which is
not practical using the computers currently available.

There is a peak in χ||/L3 centered close to T = 1.5, but
it appears to have a finite maximum, as was found for larger
values of hr [12]. As should be expected, the peak in χ||/L3 in-
creases in height as hr decreases. According to the universality
argument of Sourlas [29], unless there is a phase transition
into a ferromagnetic phase, it is not expected that χ||/L3 will
diverge to infinity for any hr �= 0. There is a very broad peak
in cH=0 centered at about T = 1.625, which is not expected to
be associated with long-range correlations. T = 1.625 is the
temperature where the thermal correlation length is equal to λ.
In the terminology of relaxor ferroelectrics, this is the Burns
temperature [30].

V. DISCUSSION

The author thinks it is worth observing that the kind of
jumps we are seeing in the energy per spin and the magnetiza-
tion per spin of finite samples would need to disappear in the
limit T → 0. The multicritical critical point hypothesis for the
behavior of random-field models at T = 0 says that T should
be an irrelevant variable at that point. However, the behavior
we are seeing along the phase transition line for T > 0 is not
consistent with that hypothesis. If RSB creates a glassy phase
[5] between the paramagnet and the ferromagnet when T > 0,
then this issue is resolved. This is true for both the RFXYM
and also the RFIM.

Finding that S(�k) diverges at low temperatures in the
RFXYM as |�k| → 0 is not surprising. This behavior follows
from the results of Aharony [31] for models which have a
probability distribution for the random fields which is not
isotropic. According to Aharony’s calculation, if this dis-
tribution is even slightly anisotropic, then we should see a
crossover to RFIM behavior at a sufficiently small value of |k|.
We know [14,15] that in d = 3, the RFIM is ferromagnetic
at low temperature if the random fields are not very strong.
The instability to even a small anisotropy in the random-field
distribution should induce a diverging response in S(�k) as
|�k| → 0 for the RFXYM in d = 3. A similar effect in a
related, but somewhat different, model was found by Minchau
and Pelcovits [32].

More recently, models of quantum-mechanical spins in
random fields have been studied at T = 0 [33,34]. These cal-
culations find logarithmic divergences of the structure factor
as |�k| → 0 in these quantum versions of random-field models.
It is not clear yet that one should be able to map the classical
RFXYM at finite temperature onto a quantum model at T =
0. However, Aharony’s argument [31] about the instability in
the 3D RFXYM makes this connection plausible.

Note that it is only S which diverges for the 3D RFXYM.
Unlike the situation for the Kosterlitz-Thouless transition,
we are not seeing any divergence of χ . The difference in
the behavior of S and χ is due to the fact that the local
magnetization �Mi has a nonzero average value even at high
T in a random-field model. What is going on here is that the
Qi j terms in Eq. (4) are canceling against the 〈cos(φi − φ j )〉
terms, and giving a finite net result, even at Tc. It is very

062134-6



BEHAVIOR OF THE RANDOM-FIELD XY MODEL ON … PHYSICAL REVIEW E 101, 062134 (2020)

unclear that the behavior we are seeing can be attributed to
topological defects. However, the range of uncertainty in Tc

is significant and we cannot rule out that the RSB phase
transition occurs at the same temperature as the percolation
transition of the vortex lines on the dual lattice, as proposed
by Gingras and Huse [6].

Several years ago, calculations of Chudnovsky and co-
workers [13,19] made much stronger claims. These authors
used a downhill relaxation algorithm for the 3D RFXYM at
hr = 1.5. The states found by their algorithm are local energy
minima of the Hamiltonian which have values of |M|/L3

of approximately 0.80. We see no reason to believe that
such a downhill relaxation algorithm should be able to come
anywhere close to finding the true ground state of a sample
for large L at hr = 1.5. It is the current author’s opinion that
in order for the results of such a downhill relaxation algorithm
to be convincing, they must be done using an L which is a
power of 2. In that case, S(�k) could be calculated in the same
way it has been done here. A properly relaxed state for a
ferromagnetic state of an XY model must have a divergent
peak of S for |k| → 0.

The results we are finding at hr = 1.5 are qualitatively
similar to the results we found previously [12] at hr = 1.875.
Chudnovsky et al. say that they find no ground-state mag-
netization near hr = 2.0. We consider an abrupt qualitative
change in the ground-state behavior between hr = 1.5 and
hr = 2.0, as claimed by Chudnovsky et al., to be implausible
for this model. Since our Monte Carlo calculations are limited
to L = 128, we cannot obtain results in the regime where
the thermal correlation length is larger than λ when hr � 1.0.
There has been no attempt in this work to equilibrate samples
at temperatures below T = 1.421875. Therefore, we have
no data which directly address the question of whether the
RFXYM shows true ferromagnetism in d = 3. We do not
claim that we know what happens for small values of hr .

It appears to the author that what is going on in this
model is a broken ergodicity transition in the phase space,
without any change in the spatial symmetry. In that sense, it
is similar to a spin-glass phase transition. However, a random-
field model does not have the twofold Kramers degeneracy
of a spin glass. Therefore, the broken ergodicity occurs in
the random-field model in a purer form, without the extra
complication of the twofold symmetry in the phase space.

The reader may be tempted to object that such a phase
transition cannot be described within the usual formalism
of equilibrium statistical mechanics, based on the canonical
partition function

Z (T ) = Tr{φi} exp(−H/T ), (7)

where H is given in Eq. (1). We are thinking now about a
particular sample, so the θi variables are fixed. For a classical
system, the standard formulas based on Z do not have any
dependence on dynamics. That is the point. The fact that our
Monte Carlo calculation sees that the hot start states and the
cold start states that we find for T � 1.5 are not the same
means that these results cannot be described by Z (T ). Our
calculation is not finding the partition function. When the
dynamical relaxation time is infinite over a range of T , Z (T )
will not give us the behavior seen in a laboratory experiment.

Of course, strictly speaking, the relaxation time is not actually
infinite in a finite sample. However, real experiments are done
on finite samples, in finite times.

The idea of the broken ergodicity transition is exactly that
we need to include dynamics in order to understand what is
going on. It is true that if we ran the Monte Carlo calculation
for any finite lattice a very long time, the results would, in
principle, eventually converge to the Z (T ) for that particular
finite lattice. However, there is an order of limits issue. A
broken ergodicity transition, like all thermodynamic phase
transitions, only exists in the limit of an infinite system. To
get correct results in the thermodynamic limit, we need to take
the limit L → ∞ in an appropriate way. We should not take
the limit of infinite time while holding L fixed. The results
which come from a Monte Carlo calculation may be thought
of as telling us that the RSB in the RFXYM is happening
in three space dimensions and one time dimension at some
Tc > 0, if hr is not too large. This is completely independent
of whether or not there might be a ferromagnetic transition
at some lower temperature. A helpful review of Monte Carlo
calculations, which discusses critical slowing down of the
dynamical behavior at a phase transition, has been given by
Sokal [35]. One could say that for the RFXYM problem,
dynamical slowing down is not a bug, it is a feature.

Hui and Berker [36] argued that the vanishing of the latent
heat implied that a critical fixed point should exist. This
author does not see, however, why such a fixed point, with
its associated divergent correlation length, should generally
exist in a model which has no translation symmetry, except
in those cases where the randomness is an irrelevant operator
[37]. It is certainly true that there are some cases where such
fixed points have been found using ε-expansion calculations.
Subextensive singularities [12] in the specific heat and the
magnetization are completely consistent with the Aizenman-
Wehr Theorem [10,11].

VI. SUMMARY

In this work, we have performed Monte Carlo studies of
the 3D RFXYM on L = 128 simple cubic lattices, with a
random-field strength of hr = 1.5. We compared the prop-
erties of slowly cooled states and slowly heated states at
T = 1.421875, T = 1.5, and T = 1.625. The temperature at
which there appears to be a phase transition described by a
divergence in the structure factor at S(|�k| = 0) is probably
between T = 1.5 and T = 1.421875. The behavior is quali-
tatively the same as what was found earlier [12] for somewhat
larger values of hr . We have also computed values of the
magnetic susceptibility and the specific heat. The data are
consistent with the idea that in d = 3, the RFXYM has a phase
transition into a phase described by broken ergodicity, as long
as the strength of hr is not too large. We do not believe that
there is a ferromagnetic phase at any value of T for hr = 1.5.
These results appear to be related to RSB [5] and to recent
work on quantum disorder [34].
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