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Given a quantum many-body system and the expectation-value dynamics of some operator, we study how
this reference dynamics is altered due to a perturbation of the system’s Hamiltonian. Based on projection
operator techniques, we unveil that if the perturbation exhibits a random-matrix structure in the eigenbasis of
the unperturbed Hamiltonian, then this perturbation effectively leads to an exponential damping of the original
dynamics. Employing a combination of dynamical quantum typicality and numerical linked cluster expansions,
we demonstrate that our theoretical findings for random matrices can, in some cases, be relevant for the dynamics
of realistic quantum many-body models as well. Specifically, we study the decay of current autocorrelation
functions in spin-1/2 ladder systems, where the rungs of the ladder are treated as a perturbation to the otherwise
uncoupled legs. We find a convincing agreement between the exact dynamics and the lowest-order prediction
over a wide range of interchain couplings.
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I. INTRODUCTION

Understanding the dynamics of interacting quantum many-
body systems is notoriously challenging. While their com-
plexity grows exponentially in the number of degrees of free-
dom, the strong correlations between the constituents often
prohibit any exact solution. Although much progress has been
made due to the development of powerful numerical machin-
ery [1] and the advance of controlled experimental platforms
[2,3], the detection of general (i.e., universal) principles which
underlie the emerging many-body dynamics is of fundamental
importance [4]. To this end, a remarkably successful strategy
in the past has been the usage of random-matrix ensembles
instead of treating the full many-body problem. Ranging back
to the description of nuclei spectra [5] and of quantum chaos
in systems with classical counterparts [6], random-matrix
theory also forms the backbone of the celebrated eigenstate
thermalization hypothesis (ETH) [7–9], which provides a
microscopic explanation for the emergence of thermalization
in isolated quantum systems. More recently, random-circuit
models have led to insights into the scrambling of information
and the onset of hydrodynamic transport in quantum systems
undergoing unitary time evolution [10–12].

Concerning the out-of-equilibrium dynamics of quantum
many-body systems, a particularly intriguing question is how
the expectation-value dynamics of some operator is altered if
the system’s Hamiltonian is modified by a (small or strong)
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perturbation. Clearly, the effect of such a perturbation in a (in-
tegrable or chaotic) system can be manifold. In the context of
prethermalization [13–18], the perturbation breaks a conser-
vation law of the (usually integrable) reference Hamiltonian,
leading to a separation of timescales, where the system stays
close to some long-lived nonthermal state, before eventually
giving in to its thermal fate at much longer times. Moreover,
in the study of echo protocols, time-local perturbations have
been shown to entail irreversible quantum dynamics [19],
analogous to the butterfly effect in classical chaotic systems.
Furthermore, the observation that some types of temporal
relaxation, such as the exponential decay, are more common
than others can be traced back to their enhanced stability
against perturbations [20].

In this paper, we consider a closed quantum many-body
system H0 which is affected by a perturbation V , such that the
total Hamiltonian takes on the form

H = H0 + λV , (1)

where λ denotes the strength of the perturbation. Given the
expectation-value dynamics of some operator O in the unper-
turbed system,

〈O(t )〉H0 = Tr[Oρ(t )] , (2)

where ρ(t ) = e−iH0tρ(0)eiH0t [and ρ(0) is a mixed or pure
out-of-equilibrium initial state], we explore the question of
how 〈O(t )〉H0 is altered due to the presence of the perturba-
tion, i.e., if ρ(0) now evolves with respect to the full Hamilto-
nian H. Employing the time-convolutionless (TCL) projection
operator method [21,22], we unveil for the idealized case of
V exhibiting a random-matrix structure in the eigenbasis of
H0 that such a perturbation effectively leads to an exponential
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damping of the original dynamics (see also Refs. [23,24]),

〈O(t )〉 = 〈O(t )〉H0 e−λ2γ t , (3)

where the damping rate γ depends on the microscopic prop-
erties of H0 and V . In order to illustrate that our analytical
findings for random matrices can indeed be relevant for the
dynamics of realistic quantum many-body systems, we nu-
merically study the decay of current autocorrelation functions
in spin-1/2 ladder models, where the rungs of the ladder are
treated as a perturbation to the otherwise uncoupled legs.
Especially for small to intermediate values of the interchain
coupling, we find a convincing agreement between the exact
dynamics and the leading-order prediction.

This paper is structured as follows. In Sec. II, we discuss
the TCL formalism and present an analytical derivation of
Eq. (3) for the case of V having an ideal random-matrix
structure in the eigenbasis of H0. Next, in Sec. III, we test
the applicability of Eq. (3) by studying the real-time dynamics
for more realistic models and perturbations using an efficient
combination of dynamical quantum typicality and numerical
linked cluster expansions. We summarize and conclude in
Sec. IV.

II. PROJECTION OPERATOR APPROACH TO IDEAL
RANDOM-MATRIX MODELS

A. Derivation of the main result

Let us now derive Eq. (3) within the framework of the
TCL projection operator technique. In the TCL formalism, the
decomposition of the Hamiltonian (1) is usually done in such
a way that the observable of interest (here the operator O)
is either conserved in the unperturbed system or only shows
slow dynamics under evolution with H0. Moreover, in order
to apply the TCL formalism, one needs to define a suitable
projection operator P2 = P , which projects onto the relevant
degrees of freedom. For a comprehensive review, see, e.g.,
Refs. [21,22].

In order to simplify the upcoming derivation, let us assume
that H0 has a very high and almost uniform density of states

� ≈ 1/�ω , (4)

where �ω is the mean level spacing. Moreover, we shift the
true eigenvalues of H0 slightly, such that they result as Eω =
�ω · ω, with ω being an integer. Although these conditions
are not necessarily fulfilled for a given system, we expect
corrections to our results to be irrelevant on timescales t �
2π/�ω.

To begin with, we define a Fourier component of the
operator O in the eigenbasis of H0,

Oω = 1√
zω

∑
η

|η〉Oη,η+ω 〈η + ω| + H.c. , (5)

with normalization zω = 2
∑

η |Oη,η+ω|2, and construct a set
of corresponding projection operators Pω, which project onto
the relevant part of the density matrix ρ(t ),

Pωρ(t ) = Tr[ρ(t )Oω]Oω . (6)

Note that from the definition of Oω, it immediately follows
that

〈O(t )〉 =
∑

ω

√
zω〈Oω(t )〉 , (7)

which holds for any H, and in the special case λ = 0, we can
further write

〈O(t )〉H0 =
∑

ω

√
zω〈Oω(0)〉 cos(�ω · ωt ) . (8)

In particular, the dynamics of Oω in the Schrödinger picture
and in the interaction picture (subscript I) are related by

Tr[Oωρ(t )] = Tr[OωρI (t )] cos(�ω · ωt ) . (9)

Next, we focus on initial states ρ(0), which fulfill
Pωρ(0) = ρ(0) [22]. For such initial states, the TCL
framework then yields a time-local equation for OI,ω(t ) =
Tr[OωρI (t )], comprising a systematic perturbation expansion
in powers of λ [22],

ȮI,ω(t ) = −γω(t )OI,ω(t ); γω(t ) =
∑

n

λnγω,n(t ), (10)

where the γω,n(t ) are time-dependent rates of nth order. Be-
cause of our choice of the Pω, all odd orders of this expansion
vanish (as it is often the case in the TCL framework [22]), and
the leading-order term is

γω,2(t ) =
∫ t

0
dt ′Kω,2(t ′) , (11)

with

Kω,2(t ) = Tr{i[Oω,VI (t )]i[Oω,V]} , (12)

and VI (t ) = eiH0tVe−iH0t . Here, the second-order kernel can
be rewritten as Kω,2(t ) = K̃ω,2(t ) + K̂ω,2(t ), with

K̃ω,2(t ) = Tr[−OωVI (t )OωV − VI (t )OωVOω] , (13)

K̂ω,2(t ) = Tr[OωVI (t )VOω + OωVVI (t )Oω] . (14)

Let us stress that we made no assumptions on the specific form
of the perturbation V up to this point.

For the idealized case of V being an entirely random (and
possibly banded) matrix in the eigenbasis of the unperturbed
system H0, it is possible to derive an analytic expression for
the leading-order rate γ2(t ). Focusing on this case, the terms
in (13) consist of sums in which each addend carries a product
of two uncorrelated random numbers. If the random numbers
have mean zero, these sums should be negligible,

K̃ω,2(t ) ≈ 0 . (15)

In contrast, the terms in (14) do contribute, and we find

K̂ω,2(t ) = 4

zω

∑
η,κ

|Vκ,η|2|Oη,η+ω|2 cos[(κ − η)�ωt]

≈ 4�v2

zω

∑
η

∫ W

−W
|Oη,η+ω|2 cos(χt ) dχ (16)

= 2�v2

∫ W

−W
cos(χt ) dχ = 4�v2

sin(W t )

t
. (17)
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Several comments are in order. Since V is a random matrix, we
have approximated in Eq. (16) all squared individual matrix
elements by their averages v2, i.e., |Vκ,η|2 ≈ v2. Furthermore,
we have used an index shift κ → χ + η and converted the
original sum over κ to an integral, where W denotes the half-
bandwidth of V . From (16) to (17), we have exploited that
sum and integral can be evaluated independently and used the
definition of zω. Inserting (17) into the definition of γω,2(t )
yields

γω,2(t ) ≈ 4�v2

∫ t

0
dt ′ sin(W t ′)

t ′ ≈ 2π�v2 , (18)

for times t 	 π/W , and we abbreviate

γ = 2π�v2 . (19)

From the inspection of Eq. (10) it then follows that OI,ω(t ) =
〈Oω(0)〉e−λ2γ t , and a transformation back to the Schrödinger
picture yields our main result in Eq. (3). Note that γ is of the
very same form as a rate describing the transition out of an
initially fully populated eigenstate |η〉 of H0, as induced by
V , calculated from Fermi’s golden rule.

B. Discussion of the main result

Let us discuss our main result (3) in some more detail.
First, we note that Eq. (3) is consistent with very recent
findings in Refs. [23,24], although the employed approaches
to arrive at this result have been very different. While the
approaches in Refs. [23,24] rely heavily on the concept of
the perturbations being effectively represented by random
matrices, their results on dynamics technically address aver-
ages over ensembles of random matrices. However, either by
relying on “self-averaging” [24] or as the result of a detailed
calculation [23], the outcome for a specific perturbation is
expected to be very close to the ensemble average. In contrast,
since the present analysis is based on projection operator
techniques, it is in principle applicable to any specific (matrix)
form of the perturbation. The result of this technique is given
as a perturbation series containing all orders of the interaction
strength λ; cf. Eq. (10). However, even in leading order, the
evaluation is in general rather involved.

Next, we note that our derivations within the TCL approach
are rigorous for an idealized random perturbation V up to
second order in the perturbation strength. This truncation
relies on V2 being dominantly diagonal (in the eigenbasis of
H0). Random matrices also, but not exclusively, exhibit this
feature [25].

While we have derived Eq. (3) for an idealized model and
perturbation, this does not necessarily exclude the possibility
that this equation is relevant also beyond such idealized cases.
For instance, the ETH assumes a (almost) random-matrix
structure of physical operators in the eigenbasis of generic
Hamiltonians [8,9], as numerically verified for various models
[26–28]. In fact, in the upcoming Sec. III, we numerically il-
lustrate that Eq. (3) is indeed also applicable to understand the
dynamics of certain realistic quantum many-body systems and
perturbations. In this context, let us add that the phenomenon
of an exponential damping has been found for an even wider
range of realistic models, for instance, in Refs. [29–32].

Nevertheless, we should stress that for a given model and
perturbation, it is a priori certainly questionable whether a
unitary basis transformation of the (originally nonrandom)
perturbation can indeed yield entirely uncorrelated matrix
elements. One criterion to check whether our arguments for
random matrices also hold for realistic models is the evalua-
tion of higher order corrections. For example, the fourth-order
rate γ4(t ) in the TCL formalism reads

γ4(t ) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 K2(t − t1) K2(t2 − t3)

+ K2(t − t2) K2(t1 − t3)

+ K2(t − t3) K2(t1 − t2)

− Tr{[[O,VI (t1)],VI (t )] [[O,VI (t3)],VI (t2)]}, (20)

where we have dropped the subscript ω for simplicity. If
one finds that γ4(t ) is significantly smaller than γ2(t ) on
the timescale of relaxation, this could be interpreted as an
indication that V (in the eigenbasis of H0) is sufficiently
well describable by a (pseudo)random matrix. Note that, in
practice, the (numerical or analytical) evaluation of Eq. (20)
is considerably more difficult compared to the second-order
rate in Eq. (12) [33].

While the detailed analysis of correlations between matrix
elements is beyond the scope of the present paper, let us note
that one can find various realistic models where γ4(t ) � γ2(t )
[34], while there are naturally also other models where this
property as well as Eq. (3) do not hold anymore. One simple
example would be the case where observable and perturbation
commute, i.e., [O,V] = 0, and the second-order rate γ2(t )
vanishes exactly. Another example where our framework nec-
essarily fails by construction would be given by reversing
the roles of H0 and H, i.e., by defining a new unperturbed
Hamiltonian as H′

0 = H0 + λV , which is then perturbed by
V ′ = −λV such that H′ = H0.

III. NUMERICAL ILLUSTRATION FOR QUANTUM
MANY-BODY SYSTEMS

Let us now numerically illustrate that our main result (3)
can be relevant for the dynamics of realistic quantum many-
body systems. First, in Sec. III A, we introduce the specific
model and observable under consideration. In Sec. III B, we
then discuss our numerical approach which is used to study
the real-time dynamics of the unperturbed and the perturbed
system in Secs. III C and III E, respectively. Moreover, we
comment on the matrix structure of the realistic perturbation
in the eigenbasis of H0 in Sec. III D.

A. Model and observable

We study a (quasi-)one-dimensional spin-1/2 lattice model
with ladder geometry [35–39], where the rung part of the
ladder is treated as a perturbation to the otherwise uncoupled
legs; i.e., the Hamiltonian reads H = J‖H0 + J⊥V , with

H0 =
L∑

l=1

2∑
k=1

Sx
l,kSx

l+1,k + Sy
l,kSy

l+1,k + �Sz
l,kSz

l+1,k (21)
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and

V =
L∑

l=1

Sx
l,1Sx

l,2 + Sy
l,1Sy

l,2 + �Sz
l,1Sz

l,2 . (22)

Here, Sl,k = (Sx
l,k, Sy

l,k, Sz
l,k ) are spin-1/2 operators, J‖ (J⊥) is

the coupling constant on the legs (rungs), and L denotes the
length of the ladder. Moreover, the anisotropy � is chosen
to be either � = 0 (XX ladder) or � = 1 (XXX ladder).
While, for J⊥ = 0, H consists of two separate chains and is
integrable, this integrability is broken for any J⊥ �= 0.

For this model, let us study the current autocorrelation
function

C(t ) = 〈 j(t ) j〉eq

L
= Tr[ρeq j(t ) j]

L
, (23)

where ρeq = e−βH/Z is the canonical density matrix, β =
1/T denotes the inverse temperature, and j(t ) = eiHt je−iHt .
Moreover, the spin-current operator j follows from a lattice
continuity equation [40], and is given by

j = J‖
L∑

l=1

2∑
k=1

(
Sx

l,kSy
l+1,k − Sy

l,kSx
l+1,k

)
. (24)

(Note that j is independent of the perturbation V .) Specif-
ically, we here focus on the case of infinite temperature
β = 0 (ρeq = 1/4L), and the correlation function C(t ) can be
interpreted as the expectation-value dynamics

C(t ) = 〈 j(t )〉 = Tr[ jρ(t )] , (25)

resulting from an initial state

ρ(0) ∝ 1 + ε j , Tr[ρ(0)] = 1 , (26)

with ε sufficiently small. Given the decomposition in Eqs. (21)
and (22) and choosing a simple projection onto the current j,

Pρ(t ) = 1

4L
+ Tr[ jρ(t )]

Tr[ j2]
j , (27)

the TCL formalism can be readily applied to Eq. (25). As
a consequence, the derivations outlined in Sec. II for the
expectation-value dynamics 〈O(t )〉 carry over to the high-
temperature correlation function C(t ), which allows us to test
whether our results for random matrices are relevant for this
more realistic setting.

B. Numerical approach

The correlation function C(t ) is an important quantity in
the context of transport. Despite the integrability of H0, the
dynamics of C(t ) is nontrivial even for J⊥ = 0 [41]. While
C(t ) has been numerically studied by various methods [38,42–
44], we here rely on a combination of dynamical quantum
typicality (DQT) [45–55] and numerical linked cluster expan-
sions (NLCE) [56,57], recently put forward by two of us [58].

1. Dynamical quantum typicality

On the one hand, the concept of DQT relies on the fact
that a single pure quantum state can imitate the full statistical

ensemble. Specifically, for β = 0, C(t ) can be written as a
scalar product with the two pure states [53,54]

|ψ (t )〉 = e−iHt j |ϕ〉 , (28)

|ϕ(t )〉 = e−iHt |ϕ〉 , (29)

according to

C(t ) = 〈ϕ(t )| j |ψ (t )〉
L 〈ϕ|ϕ〉 + ε , (30)

where the reference pure state |ϕ〉 is randomly drawn (Haar
measure [49]) from the full Hilbert space with dimension
D = 4L. Importantly, the statistical error ε = ε(|ϕ〉) vanishes
as ε ∝ 1/

√
D (for β = 0), and the approximation becomes

very accurate already for moderate values of L. Since the
time evolution of pure states can be conveniently evaluated by
iteratively solving the Schrödinger equation, e.g., by means of
fourth-order Runge-Kutta [53,54] or Trotter decompositions
[59], it is possible to treat large D, out of reach for standard
exact diagonalization (ED).

2. Numerical linked cluster expansion

On the other hand, NLCE provides a means to obtain C(t )
directly in the thermodynamic limit L → ∞. Specifically, the
current autocorrelation is calculated as the sum of contribu-
tions from all connected clusters which can be embedded on
the lattice [56],

〈 j(t ) j〉eq

L
=

∑
c

LcWc(t ) , (31)

where Wc(t ) is the weight of cluster c with multiplicity Lc.
The notion of a cluster here refers to a finite number of
lattice sites which are coupled by the respective Hamiltonian.
In fact, for a one-dimensional chain geometry [and also a
(quasi-)one-dimensional ladder system], the identification of
clusters becomes very simple. Namely, clusters are just chains
(or ladders) of finite length. More details can be found in
Refs. [56–58]. Moreover, since there is only one distinct
cluster for a given cluster size, we have Lc = 1 in Eq. (31).

Given a cluster c, its weight Wc(t ) is obtained by the so-
called inclusion-exclusion principle,

Wc(t ) = 〈 j(t ) j〉(c)
eq −

∑
s⊂c

Ws(t ) , (32)

where 〈 j(t ) j〉(c)
eq denotes the (extensive) current autocorrela-

tion evaluated on the cluster c (with open boundary con-
ditions). Furthermore, the sum in Eq. (32) runs over the
weights Ws(t ) of all subclusters s of c. Recall that for the
(quasi-)one-dimensional geometry considered here, all sub-
clusters are again just chains or ladders of finite size and
Eq. (32) can be organized rather easily.

Within the NLCE, the contribution of each cluster is
evaluated numerically exact. Thus, in practice, the series in
Eq. (31) has to be truncated to a maximum cluster size cmax

which remains computationally feasible. This truncation in
turn leads to a breakdown of convergence of C(t ) at some
time τ , where a larger cmax leads to a longer τ ; see also
Refs. [58,60]. Thanks to the combination of NLCE with DQT
(cf. Sec. III B 1 and Ref. [58]), we can evaluate 〈 j(t ) j〉(c)

eq on
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large clusters beyond the range of ED, and obtain C(t ) in the
thermodynamic limit for rather long times.

Eventually, let us note that while we here focus on β = 0,
both DQT and NLCE allow for accurate calculations of C(t )
at β > 0 as well [54,55,58].

C. Results for unperturbed dynamics

Now, let us study C(t ) in the unperturbed system H0.
For vanishing anisotropy � = 0, the spin current j is ex-
actly conserved in the unperturbed system, [H0, j] = 0. As a
consequence, we know the unperturbed dynamics for � = 0
exactly and only need to study the case � = 1 numerically,
where H0 corresponds to two separate Heisenberg chains. In
the remainder of Sec. III C, we change the notation and denote
by L the length of a single chain (and not of the ladder).

In Fig. 1(a), 〈 j(t ) j〉eq/L is shown for periodic boundary
conditions (PBC), obtained by ED (L = 18) and DQT (L =
32, 34, 36) [54,61]. While the curves for different L coincide
at short times, the ED curve starts to deviate from the DQT
data for t � 8. Moreover, for t � 20, C(t ) takes on an ap-
proximately constant value which decreases with increasing
L [54].

Next, NLCE results for C(t ) are shown in Fig. 1(b) for
various expansion orders cmax � 39. For increasing cmax, we
find that C(t ) is converged up to increasingly longer times,
until the expansion eventually breaks down. [Note that, for
times above the convergence time, the data for C(t ) obtained
by NLCE (i) have no physical meaning anymore and (ii) can
for instance become negative, which leads to the disconti-
nuity of the curves in the semilogarithmic plot used.] As a
comparison, Fig. 1(b) also shows data obtained by the time-
dependent density matrix renormalization group (tDMRG)
[38,62]. Apparently, tDMRG and NLCE agree perfectly for

0.001

0.01

0.1
L ≤ 36

0.001

0.01

0.1

0 10 20 30 40 50

cmax ≤ 39

j(
t)

j
e
q
/
L

L = 36
L = 34
L = 32

L = 18

j(
t)

j
e
q
/
L

tJ

FIG. 1. (a) C(t ) for J⊥ = 0 and � = 1 at β = 0, obtained by ED
(L = 18) and DQT (L � 39) for PBC. L here denotes the length of
a single chain. (b) C(t ) obtained by NLCE up to expansion order
cmax � 39. As a comparison, we depict tDMRG data [38].

times t � 27. Moreover, for the largest cmax = 39 considered
by us, the NLCE data are converged up to times t ≈ 40.
This fact demonstrates that the combination of DQT and
NLCE provides a powerful numerical approach to real-time
correlation functions, and compared to Fig. 1(a) also out-
performs standard finite-size scaling on short to intermediate
timescales.

Note that the determination of the unperturbed dynamics
extends earlier results of Ref. [58] and is an important building
block of this paper in order to evaluate the prediction from the
TCL formalism in Sec. III E.

D. Matrix structure of the perturbation

Before discussing the real-time dynamics of C(t ) in the
presence of V , let us study the matrix structure of the realistic
perturbation V from Eq. (22) in the eigenbasis of H0. To
this end, we restrict ourselves to a single symmetry subsector
with magnetization Sz = −1, momentum k = 2π/L, and even
parity p = 1 to eliminate trivial symmetries. (Both H0 and V
are entirely real in this case.)

First, we employ a suitable coarse graining according
to [28]

g(E , E ′) =
∑

mn |Vmn|2D(Ē )

D(E )D(E ′)
, (33)

where the sum runs over matrix elements Vmn in two energy
shells of width 2δE , En ∈ [E − δE , E + δE ] and Em ∈ [E ′ −
δE , E ′ + δE ]. D(E ), D(E ′), and D(Ē ) denote the number of
states in these energy windows with mean energy Ē = (E +
E ′)/2. In Figs. 2(a) and 2(b), this coarse-grained structure

−2

2

E

g(E, E )

−2 2E

−2

2

E

0 0.01 0.02

g(E, E )

0

200

m

Vmn

0020 n
0

200

m

−0.1 0 0.1

Vmn

FIG. 2. Matrix structure of V in the eigenbasis of H0 in the
symmetry subsector with magnetization Sz = −1, momentum k =
2π/L, and even parity p = 1, both for the Heisenberg ladder (top)
and the XX ladder (bottom). The length of the ladder is L = 9 in all
cases.
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of V is shown. Both for � = 1 and � = 0, we find that V
is a banded matrix with more spectral weight close to the
diagonal. However, especially in the case of the XX ladder,
g(E , E ′) is not homogeneous within this band, but rather
exhibits some fine structure.

For a more detailed analysis, a close-up of 200 × 200
individual matrix elements Vmn is shown in Figs. 2(c) and
2(d). We find that there is a coexistence between regions
where the Vmn appear to be random, and regions where the Vmn

vanish (e.g., due to additional conservation laws). Moreover,
in the case of the XX ladder, these regions are more extended.

While it becomes obvious from Fig. 2 that the perturbation
V is certainly not an entirely random matrix in the eigenbasis
of H0 (which is also integrable such that the ETH is generally
not expected to apply), we here refrain from a more detailed
analysis of the residual correlations between the matrix el-
ements. Nevertheless, given the overall banded structure of
V and its apparent partial randomness, it is reasonable that
our derivations from Sec. II can be relevant for this realistic
model.

E. Comparison between perturbed dynamics
and exponential damping

1. XX ladder

Next, we come to the actual discussion of C(t ) in spin
ladders. (L now denotes the length of the ladder.) Given the
decomposition of H0 and V in Eq. (21) and the choice of
the projector in Eq. (27), we can directly apply the TCL
formalism to the decay of C(t ) in this model. First, we
consider the case � = 0, i.e., the XX ladder. To start our
analysis, we present in Figs. 3(a) and 3(b) the second-order
kernel K2(t ),

K2(t ) = Tr{i[ j,VI (t )]i[ j,V]}
Tr{ j2} . (34)

Due to [ j,H0] = 0, or in cases where the dynamics in H0

is slow compared to the dynamics in H [63], this kernel
simplifies to

K2(t ) = Tr{i[ j,VI ](t )i[ j,V]}
Tr{ j2} . (35)

The corresponding decay rate γ2(t ) reads

γ2(t ) =
∫ t

0
dt ′K2(t ′) . (36)
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FIG. 3. [(a), (b)] Second-order kernel K2(t ) and decay rate γ2(t )
for the XX ladder.
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FIG. 4. C(t ) in XX ladders with several interchain couplings J⊥
at β = 0, obtained by DQT for two different L � 18 (small and large
symbols). The curves indicate the second-order TCL prediction (37).

Comparing data for L = 9, 15, we observe that finite-size
effects are negligible, and γ2(t ) ≈ 0.63 becomes essentially
constant for times t � 2. Note that, since the XX chain can
be brought into a quadratic form, K2(t ) and γ2(t ) could in
principle even be obtained analytically for this particular case
(see also Ref. [34]).

To proceed, Fig. 4 presents numerical data for the current
autocorrelation function C(t ) for XX ladders with two differ-
ent system sizes L � 18 and different coupling ratios J⊥/J‖ =
1/4, 1/2, 1 (symbols) [64], i.e., weak and strong values of the
perturbation. Note that the data are vertically shifted for better
visibility. Moreover, while the data are here obtained by DQT,
we present NLCE data for the nonintegrable ladder model in
Appendix B. As a comparison, the curves in Fig. 4 indicate
our main result (3), i.e., the lowest-order prediction from the
TCL formalism which reads

C(t ) = C0(t ) exp

[
−J2

⊥

∫ t

0
dt ′γ2(t ′)

]
. (37)

Recall that j is exactly conserved in the unperturbed system,
i.e., C0(t ) = const., and the decay of C(t ) is solely due to V .
In Eq. (37), we take into account the full time dependence of
the damping rate γ2(t ). Namely, due to the linear growth of
γ2(t ) at short times, Eq. (37) leads to a Gaussian damping for
t � 1, and turns into a conventional exponential damping for
longer t ,

C(t ) ∝
{

e−aJ2
⊥t2

t � 1

e−bJ2
⊥t t > 1

. (38)

As an important result, we find that Eq. (37) describes the
actual decay of C(t ) remarkably well, albeit the agreement
is certainly better for smaller J⊥/J‖. In this context, let us
emphasize that for time-dependent problems, a truncation
to lowest order is in general (for nonrandom matrices) not
meaningful, even if the perturbation is small. For small
perturbations, the relevant timescales are long and higher
orders can become relevant on these timescales. Thus, the
good agreement in Fig. 4 confirms that our derivations in the
context of Eq. (3) can be relevant also for realistic pertur-
bations and quantum many-body systems. A more detailed
comparison and discussion can be found further below in
Sec. III E 3.
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FIG. 5. [(a), (b)] Analogous data as in Fig. 3, but now for the
XXX ladder. (c) Analogous data as in Fig. 4, but now for the XXX
ladder.

2. XXX ladder

In order to corroborate our findings further, let us study
another similar model. Namely, we consider the dynamics of
C(t ) for the case of � = 1, i.e., the XXX ladder.

The second-order kernel K2(t ) and the corresponding
damping rate γ2(t ) are shown in Figs. 5(a) and 5(b) for various
L � 15. Here, we again use for the kernel K2(t ) the simplified
version in Eq. (35), which is strictly valid for [ j,H0] = 0 only.
Despite having [ j,H0] �= 0 in the case of the XXX ladder, it
turns out that the finite-size scaling of this simplified form is
much more favorable compared to the exact form in Eq. (34)
(not depicted here) and, as discussed below, allows for an
accurate description of the decay process.

Next, in Fig. 5(c), the autocorrelation function C(t ) is
shown for several values of the interchain coupling J⊥/J‖ =
1/5, . . . , 1. We find that data for two different system sizes
L = 14, 15 (symbols) nicely coincide with each other; i.e.,
at least on the timescales depicted, trivial finite-size effects
are negligible. This can be understood by, e.g., the onset of
quantum chaos in the nonintegrable ladder and the smaller
mean free path of spin excitations. (Additional NLCE data for
the XXX ladder can be found in Appendix B.)

Analogous to our discussion in the context of Fig. 4, let us
now compare this temporal decay of C(t ) to the prediction
of an exponential damping. To this end, the unperturbed
correlation function C0(t ) is exponentially damped according
to Eq. (37). Note that, as an important difference to the
case � = 0, we now have a situation where the unperturbed
dynamics C0(t ) explicitly depends on time [see Fig. 1(b)].

Similar to the case of the XX ladder, we find that Eq. (37)
agrees very well with the exact C(t ) for all values of J⊥ shown
here, even when the perturbation is not weak. Let us stress that
there is no free parameter involved.
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FIG. 6. Ratio C(t )/C0(t ) between the autocorrelation function
C(t ) in ladders with different J⊥ and the unperturbed dynamics C0(t ).
The exact dynamics (symbols) is compared to the prediction from the
second-order TCL formalism; cf. Eq. (37). (a) XXX ladder; (b) XX
ladder.

3. Detailed analysis of agreement and discussion

Eventually, for a more detailed analysis, Fig. 6 shows the
ratio C(t )/C0(t ) between the perturbed and the unperturbed
dynamics on a logarithmic scale, both for the XXX ladder
[Fig. 6(a)] and the XX ladder [Fig. 6(b)]. Again, we compare
the exact dynamics obtained by DQT and NLCE (symbols) to
the prediction from the second-order TCL formalism (curves);
i.e., the curves in Fig. 6 now represent the exponential
damping term exp[−J2

⊥
∫ t

0 γ2(t ′)dt ′].
For the XXX ladder, we find that while the exact dynamics

exhibits some additional oscillations at intermediate times, the
overall decay is convincingly captured by the TCL approach
for the interchain couplings J⊥ = 1/5, 1/4, 1/3 shown here.
In particular, for XX ladders with J⊥ = 1/4, 1/2, we find a
very good agreement between the exact dynamics and the
second-order prediction, at least for times t (J⊥)2 � 4.

Note that for timescales and coupling ratios beyond the
ones shown in Fig. 6, especially in the long-time limit where
finite-size effects still play a role, the agreement between the
the lowest-order prediction and the exact dynamics becomes
less convincing. Nevertheless, let us emphasize that for short
to intermediate timescales (where most of the decay happens),
an exponential damping is a convincing description of the
relaxation dynamics of a perturbed quantum many-body
systems.

IV. CONCLUSION

How does the expectation-value dynamics of some opera-
tor changes under a perturbation of the system’s Hamiltonian?
Based on projection operator techniques, we have answered
this question for the case of a perturbation with random-matrix
structure in the eigenbasis of the unperturbed Hamiltonian. As
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a main result, we have unveiled that such a (small) perturba-
tion yields an exponential damping of the original reference
dynamics, consistent with recent results in Refs. [23,24].

In addition, we have numerically confirmed that our find-
ings can in some cases be readily applied to generic quan-
tum many-body systems. Specifically, we have studied the
decay of current autocorrelation functions in spin-1/2 ladder
systems, where the rungs of the ladder are treated as a per-
turbation to the otherwise uncoupled legs. For this example,
we have illustrated that even a truncation to second order
in the perturbation still provides a convincing description of
the main part of the decay process, also in cases where the
perturbation is not weak.

While we have shown that for the specific spin-ladder
model under consideration, the matrix representation of the
perturbation V in the eigenbasis of H0 at least partially
exhibits random segments, it is certainly questionable that
realistic physical perturbations can be generally described by
entirely random matrices. Therefore, a promising direction
of future research includes the identification of relevant sub-
structures, as well as a better understanding of the pertinent
correlations between matrix elements [65].
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APPENDIX A: NLCE DATA FOR ANOTHER
INTEGRABLE MODEL

In the main text, we have used a combination of DQT
and NLCE to calculate the unperturbed dynamics of the spin-
current autocorrelation function in the integrable spin-1/2
Heisenberg chain. This combination has allowed us to ob-
tain numerically exact information on rather long timescales,
which cannot be reached in direct calculations in systems with
periodic or open boundary conditions, due to significant finite-
size effects. To illustrate that this combination of DQT and
NLCE can yield also for other integrable models the reference
dynamics with a similar quality, we show additional data
for the Fermi-Hubbard chain, described by the Hamiltonian
H = ∑L

l=1 hl ,

hl = −th
∑

s=↓,↑
(a†

l,sal+1,s+ H.c.)+ U

(
nl,↓ − 1

2

)(
nl,↑− 1

2

)
,

(A1)
where the operator a†

l,s (al,s) creates (annihilates) at site l a
fermion with spin s, th is the hopping matrix element, and L is
the number of sites. The operator nl,s is the local occupation
number and U is the strength of the on-site interaction. For
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FIG. 7. (a) Current autocorrelation C(t ) in the Fermi-Hubbard
chain (U = 4), obtained by ED (L = 8) and DQT (L � 19) at β =
0 for periodic boundary conditions (PBC). (b) C(t ) obtained by
NLCE up to expansion order cmax � 19. As a comparison, we depict
data from the time-dependent density matrix renormalization group
(tDMRG) [66].

this model, we consider the particle current j = ∑L
l=1 jl ,

jl = −th
∑

s=↓,↑
(ia†

l,sal+1,s + H.c.) , (A2)
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periodic boundary conditions, as shown in the main text, is compared
to NLCE data for two expansion orders cmax = 18 and 19.
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and summarize our numerical results for the corresponding
autocorrelation function with U = 4 in Fig. 7. Apparently,
the situation is like the one in Fig. 1 of the main text. On
the one hand, in direct calculations with periodic boundary
conditions, strong finite-size effects set in at short times, even
for quite large L. On the other hand, NLCE for the largest
expansion order cmax is converged to substantially longer
times. Even though not shown explicitly, we have checked that
a good convergence is also reached for U = 8. We thus expect
that a perturbative analysis, as presented in this work, can be
carried out for a wide class of quantum many-body systems,
which we plan to do in detail in future work.

APPENDIX B: NLCE DATA
FOR NONINTEGRABLE MODELS

While it is certainly possible to use NLCE also for non-
integrable models, finite-size effects in direct calculations
are much less pronounced in these models, as evident from
Figs. 4 and 5 of the main text. This is why we have not
shown corresponding NLCE data in these figures and instead
relied on pure DQT data for systems with periodic boundary
conditions. To demonstrate that these DQT data are indeed
in excellent agreement with NLCE data, we show in Fig. 8
corresponding numerical results for the XXX and XX ladders,
where we have chosen J⊥/J‖ = 1 in both cases.
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