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Receiver operating characteristic curves for a simple stochastic process that carries a static signal
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The detection of a weak signal in the presence of noise is an important problem that is often studied in terms
of the receiver operating characteristic (ROC) curve, in which the probability of correct detection is plotted
against the probability for a false positive. This kind of analysis is typically applied to the situation in which
signal and noise are stochastic variables; the detection problem emerges, however, also often in a context in
which both signal and noise are stochastic processes and the (correct or false) detection is said to take place
when the process crosses a threshold in a given time window. Here we consider the problem for a combination
of a static signal which has to be detected against a dynamic noise process, the well-known Ornstein-Uhlenbeck
process. We give exact (but difficult to evaluate) quadrature expressions for the detection rates for false positives
and correct detections, investigate systematically a simple sampling approximation suggested earlier, compare
to an approximation by Stratonovich for the limit of high threshold, and briefly explore the case of multiplicative
signal; all theoretical results are compared to extensive numerical simulations of the corresponding Langevin
equation. Our results demonstrate that the sampling approximation provides a reasonable description of the
ROC curve for this system, and it clarifies limit cases for the ROC curve.
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I. INTRODUCTION

Living organisms often face the problem of detecting the
presence of a signal in a noisy background. In solving this
task, they can make two possible mistakes: They either react
although no signal is present, which is a false positive, a false
alarm, or a so-called type I error, or they do not react when
the signal was there, which is a miss, or type II error. The
likelihood of both error types is influenced by how sensitive
the reaction criterion is or, in other words, on how high the
decision threshold is. The consequences of each kind of error
depend on the context so that, in general, finding an optimal
sensitivity threshold for a detection procedure or equipment
can be challenging, a problem that was first formally analyzed
in the context of radio engineering [1].

The standard way of representing the trade-off between
sensitivity and specificity of the detector’s response is the
receiver operating characteristic (ROC) curve [2–5]. It was
introduced for a military purpose, that is, to study the per-
formance of radar receivers [6], and since then it has found
wide application in classification problems in the most diverse
contexts, including medical physics [7,8], stochastic nonlinear
systems [9–12], experimental and theoretical neuroscience
[13–16], analysis of earthquake occurrence [17,18], network
structure and function [19–24], and gravitational wave detec-
tion [25–27].

Since the earlier works, a pillar of most analytical ap-
proaches is represented by the Gaussian channel, in which the
noise that obfuscates the signal is Gaussian, white (temporally
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uncorrelated), and simply added to the signal. The centrality
of the Gaussian channel cannot be surprising considering its
pivotal role in Shannon’s information theory [28] as detecting
the presence of a signal can indeed be viewed as transmitting
one single bit of information. Although the fast thermal noise
emerging in artificial detectors can in most situations be
approximated as white, in neural signal detection, for instance,
distracting fluctuations often display pronounced temporal
correlations stemming, for instance, from synaptic filtering
[29,30], slow channel noise [31,32], or network interactions
[33–36].

Although colored (temporally correlated) Gaussian noise
has indeed been studied in the context of optimal Neyman-
Pearson detectors [3,5,10], here we investigate analytically a
different detection problem in which the signal is static, the
noise is temporally correlated, and the detector is triggered
instantly when a fixed threshold is reached. However, the
detector is only active in a finite time window, so that the time
dependence cannot be ignored.

The noise process we consider in this study is the Ornstein-
Uhlenbeck (OU) process, a prototypical stochastic process
that has been the subject of illustrious scientific papers [37,38]
and chapters in distinguished textbooks [39,40]. Building
on classic results, we are able to derive an exact analytical
solution for the ROC curve. Unfortunately, this exact ex-
pression involves the numerical evaluation of nested integrals
of special functions, which proves very challenging, and
renders this solution impractical. However, we show that a
sampling approximation, which is conceptually simple and
easy to compute, yields a reasonably accurate estimate for all
parameters. Due to this analytical approximation, we can fully
characterize the system and infer the limiting behavior for
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infinitely long observation time: in this limit, perfect detection
of an arbitrarily weak signal is possible. Furthermore, we
show how our findings relate to a result by Stratonovich [41],
which is valid in the limit of high detection threshold, and
we briefly explore how our results can be extended to the
situation in which the signal affects the noise intensity instead
of the mean. Preliminary results indicate that the proposed
approximation can also be applied to a generic stationary
Gaussian process if its autocorrelation function is known.

II. MODEL AND DEFINITIONS

Let x̂(t ) be an OU process subject to a static offset s. The
time evolution of x̂(t ) is [37,38]

τc ˙̂x(t ) = −x̂(t ) + s +
√

2σ 2
x̂ τcξ (t ), (1)

where τc is the autocorrelation time of the process, σ 2
x̂ its

stationary variance, and ξ (t ) is Gaussian white noise with
zero mean and unit intensity. In other words, if averaging over
trials is indicated by angular brackets, then 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t ′)〉 = δ(t − t ′).

In our interpretation of the equation, the additive offset s
carries a static signal, which can be present (s �= 0) or absent
(s = 0), depending on the trial. In both cases, we assume that
the system had enough time to reach the equilibrium, i.e., we
assume that the probability to find the process at a particular
value of x̂ is given by the stationary probability distribution,
which will depend on the parameters of the system (τc, σ

2
x̂ )

and on the presence or absence of the signal.
To detect the signal, a simple threshold detector active for

a given time window T̂ is employed. The precise definition of
the working principle of the detector is given below. First, it is
convenient to rescale time in units of τc and the displacement
from the origin of x̂ in units of σx̂. We will indicate the rescaled
process by x(t ), which evolves according to

ẋ(t ) = −x(t ) + δ +
√

2ξ (t ), (2)

where δ = s/σx̂. Furthermore, let us define T = T̂ /τc, i.e., the
time window in units of the correlation time. In this way, the
total number of parameters determining the system is reduced
from 4 (s, σx̂, T̂ , τc) to 2 (δ, T ). We note that the absolute value
of δ can be regarded as a signal-to-noise ratio (SNR); however,
δ itself is not an SNR in general because it can be negative (a
case that will briefly be addressed below for completeness).
For the main part of this study δ > 0, and in this case the
reader is not mistaken to think of δ as an SNR.

The numerical simulation of Eq. (2) will be performed by
using a simple Euler integration scheme, i.e., for x� = x(t�) =
x(t0 + ��t )

x�+1 = x�(1 − �t ) + δ�t +
√

2�tη�, (3)

where η� are independent Gaussian numbers with zero mean
and unit variance, i.e., 〈η�〉 = 0 and 〈η�ηk〉 = δ�,k , and we will
use an integration time step of �t = 10−4 for all numerical
examples. To obtain each numerically measured ROC curve in
this study, we will evaluate Eq. (3) from the initial to the final
point (i.e., for Nsteps = T/�t time steps) and repeat the sim-
ulation of each trajectory Ntrials = 2 × 106 times. This large
number of simulated trajectories should yield an accurate
numerical estimate of the true ROC curve, except for values
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FIG. 1. Illustration of the system considered in this study. One
realization of the process in the presence of the signal and one
realization of the process in the absence of the signal are shown
(the two lines are joined by arrows to their labels). The detector
responds whenever the threshold θ (dashed line) is exceeded at
least once within the detection time window (0, T ) (dotted vertical
lines). If such an event occurs in the presence of the signal, then a
correct detection event is registered, as in this case. If x(t ) exceeds
the threshold for δ = 0, then a false positive is recorded for the
corresponding trial. Trajectories were simulated according to Eq. (3).
Parameters: δ = 1.0 and T = 10.

extremely close to zero or 1. The initial point is drawn from
the stationary distribution P0(x − δ), where P0(x) is defined in
Eq. (13) below.

The detector works as depicted in Fig. 1: It responds
whenever x(t ) exceeds the detection threshold θ (horizontal
dashed line) at least once within the allowed time window
t ∈ (0, T ) (vertical dashed dotted lines), where t = 0 indicates
the time at which the detector is switched on. If the threshold
is crossed at least once in the presence of the signal, then
a correct detection event for that trial is registered (multiple
threshold crossings within the same trial do not matter). The
trial average conditional on a frozen value of the signal δ

defines the correct-detection rate Y (θ, δ, T ),

Y (θ, δ, T ) =
〈

max
t∈(0,T )

{H[x(t ) − θ ]}
〉
δ
, (4)

where H (·) indicates the Heaviside step function. When the
signal is absent, i.e., if δ = 0, a response of the detector is to
be interpreted as a false positive. Hence, the false-positive rate
X (θ, T ) is defined as

X (θ, T )=Y (θ, 0, T )=
〈

max
t∈(0,T )

{H[x(t ) − θ ]}
〉
δ=0

. (5)

In our simple setup, it directly follows from the definitions
Eqs. (4) and (5), that false-positive and correct-detection
rates for a given threshold only differ in a static shift of the
argument, that is,

X (θ, T ) = fT (θ )

Y (θ, δ, T ) = fT (θ − δ). (6)

Hence, it suffices to calculate one of the detection rates, e.g.,
the false-positive rate and its dependence on the threshold
fT (θ ). If we can invert the function, then the ROC curve is
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FIG. 2. Receiving operating characteristic (ROC) curves ob-
tained from numerical simulation of Eq. (3) by systematically vary-
ing θ for T = 5 and different values of δ, as indicated in the legend.
Filled circles represent positive values of δ, filled squares refer to
negative values, values of δ are distinguished by different line styles
(see legend). Dark green diamonds joined by the solid line show are
obtained for δ = −0.5 from the detector defined in Eq. (10), which
responds in the opposite way as the detector used in the rest of this
study.

explicitly given by (see also Refs. [3,10])

Y (X , δ, T ) = fT
[

f −1
T (X ) − δ

]
. (7)

The ROC curve is obtained by plotting the correct-
detection rate as a function of the false-positive rate on
systematic variation of the detection threshold θ through all
possible values. A few examples of ROC curves for our
detector are shown in Fig. 2 for several values of the signal δ,
as indicated in the legend. A very high θ corresponds to a very
low detector sensitivity and is represented by the lower left
corner of the plot range; a low θ corresponds to a high detector
sensitivity, which is represented by portion of the ROC curve
located in the upper right corner of the plot.

Focusing first on positive values of δ, we can see that for
a weak signal (δ = 0.1, blue circles with dash-dotted line in
Fig. 2) the ROC curve is close to the diagonal, which repre-
sents the chance level, i.e., false-positive and correct-detection
rates are equal for any value of θ . When the signal is enhanced
(δ = 0.5, green circles with dotted line), the distance of the
ROC curve from the diagonal grows. Eventually (δ = 5, red
circles with no line), the signal is so large that the ROC curve
is close to that of an ideal detector, which can achieve a 100%
correct-detection rate with a false-positive rate of 0%.

Turning our attention to the ROC curves obtained at neg-
ative values of δ (blue squares with dashed-dotted line and
green squares with dotted line for δ = −0.1 and δ = −0.5,
respectively), we notice that they are below the chance level,
i.e., the detector reacts less often than chance in the presence
of a signal. Furthermore, there is a symmetry with respect
to the diagonal. In other words, the ROC curve for −δ is a
mirror image of the ROC curve for δ with respect to the line
Y = X . This symmetry makes intuitively sense and can be

better understood by the following simple argument. Defining
θ̃ = θ + δ and employing Eq. (6) yields

Y (θ,−δ, T ) = fT (θ + δ) = X (θ̃ , T ), (8)

X (θ, T ) = fT (θ̃ − δ) = Y (θ̃ , δ, T ), (9)

which is precisely the symmetry with respect to the diagonal
observed in Fig. 2.

Performance below the chance line indicates that the de-
tector defined in Eqs. (4) and (5) is a bad detector in the case
δ < 0. Note that if we do not consider the detection procedure
as given, and ROC curves are defined as the upper boundary of
the ROC space for all feasible tests [5], then no curve below
the diagonal line can be an actual ROC curve. One simple
way to solve this problem would be to define a new detector,
which reacts in the opposite way to Eqs. (4) and (5). The
false-positive and correct-detection rates measured by such a
detector are

X̄ (θ, T ) = 1 − X (θ, T ), Ȳ (θ, δ, T ) = 1 − Y (θ, δ, T ),

(10)

respectively. The ROC curve obtained from this reversed pro-
cedure for δ = −0.5 is shown in Fig. 2 (dark green diamonds
with solid line); it is above chance level and similar, but
not exactly the same, as that obtained for δ = 0.5 from the
original detection procedure. Rewriting the above equations
as X̄ (θ, T ) − 1/2 = 1/2 − X (θ, T ) and Ȳ (θ, δ, T ) − 1/2 =
1/2 − Y (θ, δ, T ) reveals that the curve is symmetrical with
respect to the center point (1/2, 1/2) to that obtained from
the original detector (and not mirrored around the diagonal
like the ROC curves for δ values of opposite sign but from
the same detector). In the rest of this study, we will restrict
ourselves to positive signals (δ > 0).

As explained in the next subsection, an exact integral
expression for fT (θ ) can be found. Because, however, the
numerical quadrature of the integrals proves difficult, in the
following subsections we will discuss analytical approxima-
tions to the ROC curve as well.

III. RESULTS

A. First-passage-time theory

As outlined above, it suffices to study the probability of a
detection in the absence of the signal (δ = 0). In this case, the
transition probability density P(x, t |x0, t0) corresponding to
Eq. (2), i.e., the probability density that the process is around
x at time t if it was at x0 at the earlier time t0 < t , is governed
by the well-known Fokker-Planck equation (FPE) [39,40],

∂t P(x, t |x0, t0) = ∂x(x + ∂x )P(x, t |x0, t0) (11)

= −∂xJ (x, t |x0, t0), (12)

where in Eq. (12) the (conditional) probability current
J (x, t |x0, t0) was introduced, reflecting the fact that the FPE
is a continuity equation.

If we impose natural boundary conditions (relevant for
times t < 0 prior to the detection window) and wait long
enough (or, equivalently, shift the initial time t0 into the distant
past), then the transition probability approaches the stationary
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solution

P0(x) = lim
t0→−∞ P(x, t |x0, t0) = exp(−x2/2)√

2π
, (13)

a normal distribution with zero mean and unit variance. This
is the kind of distribution that is found when the observation
time window starts at t = 0.

A particular realization can trigger a detection in two
ways: (i) the process is above the threshold already at the
beginning of the detection window, i.e., x(0) = x0 > θ ; (ii)
otherwise, if x(0) = x0 < θ , x(t ) reaches the threshold at least
once before t = T . In other words, in the second case the
first-passage time (FPT) from x0 < θ to θ is smaller than T .
The probabilities for these two mutually exclusive ways of
triggering a detection, pinst and pFP, can be both expressed by
integrals and their sum yields the function fT (θ ),

X (θ, T ) = fT (θ ) = pinst(θ ) + pFP(θ, T ). (14)

The first term, the nonvanishing probability pinst(θ ) to find
the process at time t = 0 above threshold, is simply given by
the integral of the upper tail of the stationary distribution

pinst(θ ) =
∫ +∞

θ

dx0 P0(x0) = 1

2
erfc

(
θ√
2

)
, (15)

which in the last step was expressed by the complementary
error function [42].

The second term in Eq. (14), i.e., the probability of reach-
ing the threshold before the detector is switched off, is given
by the integral of the FPT density from t = 0 to t = T , i.e.,
the cumulative FPT probability, averaged over all possible
starting positions x0 < θ :

pFP(θ, T ) =
∫ θ

−∞
dx0 P0(x0)

∫ T

0
dt ρFPT(t, θ |x0). (16)

In Eq. (16), ρFPT(t, θ |x0) is the first-passage time density,
i.e., the probability density corresponding to x(t ) = θ given
that x(t = 0) = x0. This probability is given by the time-
dependent probability current through x = θ , corresponding
to the solution of Eq. (11) with an absorbing boundary con-
dition imposed on the threshold, i.e., P(θ, t ) = 0 for t > 0,
and the initial condition P(x, 0) = δ(x − x0). Unfortunately,
this density cannot be found analytically for a generic initial
point x0 < θ [43,44]; efficient numerical procedures have
been worked out for this problem [45,46], which we will
not pursue here. Instead, we will use the fact that, although
ρFPT(t, θ |x0) is not known, its one-sided Fourier transform can
be calculated [44,47,48]

ρ̂FPT(ω, θ |x0) = e
x2
0−θ2

4
Diω(−x0)

Diω(−θ )
, (17)

where Diω(z) is the parabolic cylinder function [42].
Equation (16) can be rewritten by first substituting

ρFPT(t, θ |x0) =
∫ +∞

−∞

dω

2π
ρ̂FPT(ω, θ |x0)e−iωt (18)

and then performing the time integral from 0 to T :∫ T

0
dt ρFPT(t, θ |x0)=

∫ +∞

−∞

dω

2π

1−e−iωT

iω
ρ̂FPT(ω, θ |x0). (19)

The false-positive rate is then

X (θ, T ) = 1

2
erfc

(
θ√
2

)
+

∫ +∞

0

dω

π

×
∫ θ

−∞
dx0P0(x0)Re

[
1−e−iωT

iω
ρ̂FPT(ω, θ |x0)

]
,

(20)

where Re[·] indicates the real part. Furthermore, we changed
the order of integration, and used the Hermitian symmetry
of the Fourier-transformed FPT density [ρ∗(ω) = ρ(−ω)] to
restrict the integration with respect to the frequency to the
positive range ω � 0.

Although Eq. (20) is an exact expression, its practical use
is limited by the difficult numerical evaluation of the double
integral; see Appendix A. In Sec. III D we will compare
Eq. (20) to simulations and the other analytical expressions
introduced in the following sections for one specific choice of
parameters.

In the next subsection, we discuss an analytical approxima-
tion to the ROC curve which is rather simple and surprisingly
accurate for most parameter choices.

B. Sampling approximation

The false-positive and correct-detection rates are defined
as the probability that x(t ) is found at least once above
the barrier θ within the allowed time window. One simple
approximation of this situation is to replace the Gaussian
stochastic process x(t ) with a suitable number of discrete
draws of a Gaussian variable. If these draws are separated by
a sufficiently long time interval, then they can be regarded as
independent. One reasonable choice is to set this interval equal
to the autocorrelation time τc of the process [23,49], which is
unity in rescaled time units. If these assumptions are made,
then the false-positive rate is simply (the index “sa” stands for
sampling approximation)

X (θ, T ) ≈ Xsa(θ, T ) = 1 − [p0(θ )]n(T ), (21)

where

p0(θ ) = 1 − pinst(θ )

=
∫ θ

−∞
dx0 P0(x0) = 1

2

[
1 + erf

(
θ√
2

)] (22)

is the probability of not being above threshold at any given
time, and

n(T ) = T + e−T (23)

represents the effective number of draws (in the following the
dependence on T will be dropped). While the term T in the
above expression should be sufficiently justified by what was
said before, the exponential function was chosen arbitrarily as
a rapidly decaying function starting at one, which ensures that
even for a very short time window the number of effective
draws is one, because limT →0 n(T ) = 1. Note, furthermore,
that n does not need to be an integer and that n ≈ T for large
time windows.

According to the general relation between false-positive
and correct-detection rates expressed by Eq. (6), the correct-
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FIG. 3. ROC curves for different values of δ (a) and T (b) obtained from simulations (symbols) together with the sampling approximation
Eq. (25) (continuous lines). Parameters: (a) T = 10 and (b) δ = 0.6.

detection rate is

Y (θ, δ, T ) ≈ Ysa(θ, δ, T ) = 1 − [p0(θ − δ)]n. (24)

If Eq. (21) is solved for θ and is inserted into Eq. (24), then
we obtain

Ysa(X , δ, T )=1 −
(

1

2

{
1+erf

[
θn(Xsa)√

2
− δ√

2

]})n

, (25)

where

θn(Xsa) =
√

2 erf−1[2(1 − Xsa)
1
n − 1]. (26)

For n = 1, this formula reduces to the known result for a
Gaussian variable with additive signal [6].

Despite the crudeness of the underlying approximation,
Eq. (25) is in rather good agreement with the numerical sim-
ulations, as shown in Fig. 3. More precisely, Fig. 3(a) shows
ROC curves for a fixed time window T = 10 and different
values of the signal δ. Numerical simulations are indicated
by symbols of different shape and color, which correspond to
different values of δ, as indicated in the legend. Continuous
lines represent the analytical approximation Eq. (25).

When the signal is weak, the ROC curve is close to the
diagonal. When the signal is increased, it rapidly approaches
the ideal ROC curve. Letting δ → ∞ results in Y (X ) → 1
for any value of the false-positive rate X , as is intuitively
expected and also confirmed by closer inspection of Eq. (25).
Interestingly, the slope of the ROC curve at the origin is
always vertical when δ > 0, as shown in Appendix B.

The effect of varying the detection time window T on
constant δ is shown in Fig. 3(b), in which the different
values of T are represented by different symbols (as indicated
in the legend), and the sampling approximation Eq. (25)
is represented by solid lines, which agree with simulations
rather well. When the detection time window is very short
[Fig. 3(b) black circles], the time-dependent process can be
well approximated by a single value and the ROC curve is

essentially that of a Gaussian random variable. If the time
window is enlarged, then the ROC curve does not change
appreciably at first, that is, as long as the time window is
shorter than the autocorrelation time of x(t ), as a comparison
of the ROC curves for T = 0.01, 0.1, 1 reveals [black circles,
red squares, and green diamonds in Fig. 3(b), respectively].
Further extending the detection time window results in an
appreciable increase in the distance of the ROC curve from
the diagonal [Fig. 3(b) triangles with different orientations, as
indicated in the legend]. Note that each tenfold increment in
the time window T causes an increase in the distance of the
ROC curve from the diagonal which is maybe twofold at first,
and then even smaller. In other words, the growth is rather
slow, if compared to the effect of increasing δ.

Although it is clear that Y (X , T ) can only increase
when the detection time window T is enlarged, it is an
interesting question whether this growth always saturates at
unity or at some other value smaller than one. Because of
the very slow growth of Y as a function of T , exploring this
problem numerically beyond the time windows considered in
Fig. 3(b) is impractical. In Appendix C, we show by analytical
arguments that

lim
T →∞

Ysa(X , T ) = 1 (27)

for every nontrivial value of X (i.e., X �= 0, 1).
Figure 3 shows that the sampling approximation Eq. (25)

is in good agreement with the numerical simulations for many
combinations of signal strength and detection time window.
In the following, we perform a two-dimensional parameter
scan to assess the quality of the approximation in a systematic
way. To this end, we introduce the integrated distance between
theory and the simulation

ε(δ, T ) =
∫ 1

0
dX |Ysa(X , δ, T ) − Ysim(X , δ, T )|, (28)
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tions and sampling approximation defined as in Eq. (28) as a function
of δ and T .

where Ysim(X , δ, T ) is the correct-detection rate measured in
numerical simulations. The results are shown in Fig. 4, which
reveals that the discrepancy is largest in the intermediate
range of both δ and T , but its absolute magnitude is rather
small everywhere. Assuming that for δ > 0, both curves will
be above the diagonal and the maximum possible error is
εmax = 0.5; the global maximum in Fig. 4 is less than 3% of
this value.

In Sec. III D, we will compare all theoretical approaches
considered in this study to each other and to numerical simu-
lations for the choice of parameters (δ = 1, T = 5), which, as
seen in Fig. 4, is in the vicinity of the global maximum of the
discrepancy ε.

C. High-threshold (Stratonovich) approximation

In the case that the detection threshold is far from the
region of high probability, Stratonovich calculated the mean
repetition rate of clusters of threshold crossings [41], which is

λ0(θ ) =
(√

2π

∫ θ

0
dx e

x2

2

)−1

. (29)

When the threshold is high, the probability that x(t ) is found
above threshold in the absence or presence of the signal is low
and can be approximated by the crossing rate times the time
window

X (θ, T ) ≈ Xstr(θ, T ) = λ0(θ )T = iT/π

erf[i(θ )/
√

2]
(30)

Y (θ, δ, T ) ≈ Ystr(θ, δ, T ) = λ0(θ − δ)T

= iT/π

erf[i(θ − δ)/
√

2]
, (31)

where the integral in Eq. (29) was replaced by using the error
function with imaginary argument.

Equation (29) was derived by Stratonovich as the inverse
mean FPT of the level θ starting from zero, under the assump-
tion that θ is high [41]. He also pointed out that the choice of
the starting level (here the origin) is not crucial as long as it
lies within the region of high probability. Assuming that x(t )
starts in the region of high probability, however, implies that
the possibility that x(t = 0) is already above the threshold is
discarded. Hence, the approximation is not valid in the limit
of very small detection time window T → 0. This limit case
could be easily accounted for by adding the corresponding
probabilities pinst from Eq. (15) to the above estimates of X
and Y .

In the following subsection, we compare all theoretical
expressions introduced above to numerical simulations and
show in particular that Eqs. (30) and (31) are accurate when
the threshold is high and the detection rate is small, as
expected.

D. Comparison of the different analytical expressions

The various results from our exact expression, simulations,
and approximations are compared in Fig. 5 for a parameter set
for which the sampling approximation shows a pronounced
deviation from simulation results (δ = 1, T = 5, close to the
global maximum of the deviation shown in Fig. 4); the ROC
curve is plotted in Fig. 5(a), while false-positive and correct-
detection rates are shown in Figs. 5(b) and 5(c).

As we can expect, the first-passage-time theory (repre-
sented by dashed lines) shows in all panels an excellent agree-
ment with the simulation results (its numerical evaluation,
however, may take longer than the Langevin simulations).
We also observe that the false-positive and correct-detection
rates obtained from the sampling approximation Eqs. (24)
and (21) differ rather strongly by a constant shift from the
simulation data when they are considered separately, as shown
in Fig. 5(b) (solid lines). Such a rigid shift, however, does
not alter much the correctness of the ROC curve, as long as
the shape of the false-positive rate Xsa(θ, T ) is similar to the
actual fT (θ ). To understand why, we first recall that

X (θ, T ) = fT (θ ), (32)

Y (θ, δ, T ) = fT (θ − δ), (33)

Y (X , δ, T ) = fT
(

f −1
T (X ) − δ

)
, (34)

and notice that any constant shift applied to the argument of
fT (θ ) in Eqs. (32) and (33) cancels out in the ROC curve
Eq. (34). This fact is visualized in Fig. 5(c), in which the
correct-detection and false-positive rate from the sampling
approximation (solid lines) are shifted by the same amount. It
can be seen that the two curves fit the simulation results almost
as well as the exact FPT theory, which explains why, despite
the discrepancy observed in the prediction of correct-detection
and false-positive rates separately, the sampling approxima-
tion yields a rather good prediction of the ROC curve.

It is not surprising that the sampling approximation under-
estimates the actual fT (θ ), because it completely neglects all
threshold crossings that occur between consecutive samples.
In Appendix D, we present a way to improve the sampling ap-
proximation in this respect. Briefly, we perform a linearization
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FIG. 5. Comparison of the three theoretical approaches pursued here, the sampling approximation (continuous line), the FPT theory
(dashed line), and the Stratonovich approximation (dotted line), to numerical simulations (filled circles). (a) ROC curve; (b) correct-detection
rate Y and false-positive rate X as a function of the threshold θ ; (c) same as panel (b), but with a rigid shift along the θ axis in the sampling
approximation (same shift for Xsa Ysa, chosen such that the approximations agree with the exact FPT theory when they attain the value 1/2). See
Appendix D for a way to improve the sampling approximation and a discussion of the causes underlying the discrepancy between the sampling
approximation and the actual fT (θ ). Parameters: δ = 1.0 and T = 5; for this choice the discrepancy between sampling approximation and
simulations is close to the global maximum (see Fig. 4).

of the parabolic potential near the threshold and account for
trajectories that cross the threshold within a time window of
unit length, i.e., within one correlation time from the last sam-
ple. The analysis of this improved sampling approximation
also provides a plausible reason for why the regular sampling
approximation well approximates the shape of fT (θ ), as seen
in Figs. 5(b) and 5(c) and discussed above.

Last, we note that the Stratonovich approximation (dotted
line) gives us a reliable absolute estimate for X and Y for
high thresholds [Figs. 5(b) and 5(c)]. Accordingly, the shape
of the ROC curve in the lower left corner of Fig. 5(a) is also
accurately predicted. However, for false-positive rates larger
than X � 0.1 the discrepancy is large. We would like to add
here that a qualitative approximation for the full range can
be found by using a Poisson-like approximation for the false-
positive rate Xstr,2(θ, T ) = 1 − exp[−λ0(θ )T ], with λ0(θ ) as
given in Eq. (29). Doing this constrains the range of values
to [0,1] as expected for a probability, and the resulting shape

of fT (θ ) is roughly similar to that measured in simulations.
However, the resulting ROC curve is significantly worse than
that obtained from the sampling approximation and is there-
fore neither shown nor further discussed here.

E. Outlook: Low-pass filtered noise and multiplicative signal

In the previous subsection we briefly argued (see
Appendix D for a more detailed discussion) that missed cross-
ings between samples are the major cause for the underestima-
tion of the detection rates seen in the sampling approximation.
If this is the case, then we expect the discrepancy to be smaller
if smoother stochastic processes are considered. To give some
support to this hypothesis, we test here how the sampling
approximation performs for a low-pass filtered OU process.
In other words, we replace the driving white Gaussian noise in
Eq. (1) with an OU process η(t ) with exponential correlation
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FIG. 6. (a) Receiver operating characteristic curves obtained for low-pass filtered OU process, Eqs. (35) and (36). Filled symbols are
numerical simulations corresponding to different values of δ, as indicated in the legend; solid lines represent the sampling approximation.
(b) Comparison of the detection rate fT (θ ) obtained from the sampling approximation (black solid line) to numerical simulations of the
unfiltered OU process, i.e., driven by white noise (filled circles), and to numerical simulations of the low-pass filtered OU process, i.e., driven
by colored noise (filled squares). Parameters: T = 5, �t = 10−4, and Ntrials = 2 × 106.

function Cηη(t ) = σ 2
η e−|t |/τ generated by a second stochastic

differential equation:

τ ẋ(t ) = −x(t ) + δ + η(t ), (35)

τ η̇(t ) = −η(t ) +
√

2σ 2
η τξ (t ). (36)

The autocorrelation function of x(t ) is

Cxx(t ) = σ 2
η

1 + |t |/τ
2

e−|t |/τ . (37)

Hence, the variance of x is σ 2
x = σ 2

η /2, and its autocorrelation
time is

τc =
∫ ∞

0
dt

Cxx(t )

Cxx(0)
=

∫ ∞

0
dt (|t | + τ )

e− |t |
τ

τ
= 2τ. (38)

Numerical simulation of Eqs. (35) and (36) is done with an
Euler procedure analogous to Eq. (3). Initial conditions for
x, η are drawn from a bivariate Gaussian distribution with
correlation coefficient ρ = Cxη(0)/

√
Cηη(0)Cxx(0) = 1/

√
2,

where Cxη(0) is the cross-correlation at zero lag. The detection
procedure is the same as in the rest of this study (see Sec. II).

If we set τ = 1/2 and σ 2
η = 2 in Eqs. (35) and (36), then

x(t ) has unit variance, and its autocorrelation time is τc = 1.
With this choice, variance and autocorrelation time of x(t )
are equal to one, so that the sampling approximation can be
applied as in Eqs. (21) and (24) with no modifications.

Figure 6(a) shows the ROC curves obtained from numeri-
cal simulations for several values of δ (filled symbols as indi-
cated in the legend). The continuous lines in the correspond-
ing color represent the sampling approximation, which is in
good agreement with the simulations. Furthermore, Fig. 6(b)
shows that the underestimation of the detection rate fT (θ ) is
much less severe for the case of colored noise than for the case
of white noise [same data as in Fig. 5(b)], which supports the
initial supposition about the reasons of the discrepancy seen
in the sampling approximation.

As a final possible extension of the basic problem, we
consider the situation in which signal is still static, but not
additive. Instead, it affects the noise intensity, as it happens
in many cases of interest [50–55]. Going back to the basic
definition of our system with units Eq. (1), we consider a
signal β > 0 that modulates the noise intensity (we set the
additive signal to zero for simplicity)

τc ˙̂x(t ) = −x̂(t ) +
√

2(1 + β )σ 2
x̂ τcξ (t ). (39)

Once again, we compute the ROC curve for a given strength
of the signal β.

If we rescale time in units of τc and measure the displace-
ment x̂ in units of σx̂, as done in Sec. II, then Eq. (39) becomes

ẋ(t ) = −x(t ) +
√

2(1 + β )ξ (t ). (40)

Correct-detection and false-positive events will be registered,
as above, when the process exceeds the threshold θ at least
once within the detection window T . Hence, correct-detection
and false-positive rates are defined as in Eqs. (5) and (4) with
β playing the role of δ.

When β = 0, Eq. (40) is identical to Eq. (2) with δ = 0.
Indeed, in the absence of any signals there is no difference to
the situation considered in the previous sections. Therefore,
the false-positive rate will not change in this new scenario and
be equal to

Xms(θ, T ) = fT (θ ), (41)

where fT (θ ) is the same function as in the previous case, as in
Eq. (6).

Dividing by
√

1 + β casts Eq. (40) into an equation that is,
once more, formally equivalent to the case of no signal:

˙̄x(t ) = −x̄(t ) +
√

2ξ (t ), (42)
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FIG. 7. Examples of ROC curves obtained for a static modula-
tion of the noise intensity, as in Eq. (40), for different values of β

with T = 5. Continuous lines are obtained from Eqs. (41) and (43),
where fT (θ ) = Xsa (θ, T ), i.e., the sampling approximation Eq. (21).

where x̄ = x/
√

1 + β. This rescaling, however, involves the
threshold as well, which changes to θ̄ = θ/

√
1 + β. Hence,

the correct-detection rate is equal to the false-positive rate
with rescaled threshold

Yms(β, θ, T ) = Xms(θ̄ , T ) = fT

(
θ√

1 + β

)
. (43)

Note that this is a general argument and does not depend on
how fT (θ ) is computed or estimated. As an example of these
ideas, Fig. 7 shows the ROC curves obtained from numerical
simulations for several values of the signal β, as indicated in
the legend, together with theoretical estimates obtained from
the sampling approximation combined with Eqs. 41) and (43).
Interestingly, Fig. 7 shows that the shape of the ROC curves is
less symmetrical than that for an additive signal [Fig. 3(a)],
and the agreement between the theory and simulations is
rather good for all tested values of β.

IV. DISCUSSION

In this study, we considered a static signal embedded in
an Ornstein-Uhlenbeck noise. The assumption of a static
signal is meant to be an idealized representation of a broader
situation, i.e., a signal affected by noise which is temporally
correlated on timescales that are much faster than those of
the signal. In this sense, we investigated the problem in a
controlled environment, in which it was possible to perform
extensive numerical simulations and to work out an exact
expression against which we could test ideas that can be
applied in other contexts. In fact, the basic idea underlying
the sampling approximation was already explored to deal
with a specific detection problem involving a nonstatic signal
[23,24,49,56], and this approximation worked satisfactorily in
this more general situation as well.

In the present study, the response of the detector was
triggered whenever the process exceeded a fixed threshold
within the allowed time. The simplicity of this mechanisms

makes it also very general. Indeed, threshold systems with
external drive are used to model extremely diverse phenom-
ena, which encompass earthquakes [18,57], credit defaults in
bond markets [58,59], the firing threshold in neuronal models
[60], tipping points in climate models [61], among others.
In the context of signal detection and processing, noise in
threshold elements can lead to the remarkable phenomenon
of stochastic resonance [62] (SR). In single threshold-based
or bistable systems, SR was discovered both for subthresh-
old [48,63,64] and suprathreshold signals (resonant trapping)
[65]; a different mechanism for suprathreshold stochastic
resonance (SSR) was revealed in arrays of threshold elements
[66,67]. Typically, SR and SSR are quantified by means of
the signal-to-noise ratio, or spectral and information-theoretic
measures. However, to measure SR in bistable potentials
[68–70], ROC curves have also been employed [9,71]. The
framework put forward in the present study could be extended
to investigate the SSR by using ROC curves, and to explore
how a finite detection time window affects SSR (it has been
shown, for instance, that a finite time window for encoding
has a drastic effect on the signal distribution that maximizes
channel capacity [72,73]).

As discussed in Sec. (III D), the sampling approximation
misses a lot of crossings, and the detection rates, taken sep-
arately, are underestimated by the sampling approximation.
A way to account for these missed crossing and improve the
approximation is discussed in Appendix D. This improved
approximation, however, involves an integral expression that
cannot be solved analytically. Although its numerical integra-
tion is considerably easier than that of the full FPT theory, the
improved sampling approximation is still more cumbersome
that the regular sampling approximation and, more impor-
tantly, it is not clear whether it can be straightforwardly
extended to other stochastic processes, as opposed to the
regular sampling approximation, which can be applied as it
is to any Gaussian process of known stationary variance and
autocorrelation time. In this respect, we note that the Ornstein-
Uhlenbeck process is “jagged,” i.e., it is everywhere non-
differentiable. Consequently, each time the process reaches
a certain level, a cluster of infinitely many crossings occur,
as discussed by Stratonovich [41], which suggests that the
underestimation of the single detection rates would be less
severe for smooth processes. The preliminary results for a
low-pass filtered OU process presented in Sec. III E support
this conjecture and demonstrate how easily the sampling ap-
proximation can be applied to any Gaussian stationary process
of known autocorrelation function. Given the simplicity of
the underlying idea, it can be expected that some discrepancy
between the sampling approximation and the actual fT (θ ) is
unavoidable also for smooth processes. However, we remark
that discrepancies in the single detection rates such as those
observed in Sec. III D and Fig. 6(b) do not affect important
summary statistics (such as the area under the curve) that
depend solely on the ROC curve, which was approximated
rather well in all considered cases.

We also briefly explored the generalization of a static
modulation of the noise intensity of the process, which could
be understood as a caricature of an integrator reading out a
slow modulation of the variance of the activity of a population
[74–76]. In the more general case, a signal will affect all
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statistical properties of the process in different ways. While it
is unlikely that in such a complex scenario an exact analytical
treatment is possible, we remark that the basic idea of the
sampling approximation can still be used, as long as the signal
varies slowly.

Can the methods presented here be generalized to the case
of a time-dependent signal or a time-dependent threshold?
First-passage problems with time-dependent parameters are
generally much more difficult [77–80]; however, in the limit
case of weak time-dependent modifications to the signal or
the threshold, results from Refs. [81,82] may be applicable, at
least if the underlying noise process is simple.
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APPENDIX A: NUMERICAL INTEGRATION OF EQ. (14)

The numerical evaluation of the double integral in Eq. (14)
is nontrivial and for the full range of thresholds rather difficult.
For the parameter set discussed in Sec. III D and the results
displayed in Fig. 5, we have evaluated the double integral as
follows. For the integration with respect to x0 we replaced
the range (−∞, θ ) by (x− inf , θ ) with x− inf = −5 and tested
for selected values of the threshold that the result did not
change on enlarging the interval. Concerning the integration
with respect to ω, for the frequency interval ω ∈ (0, 10) we
used the full expression for the parabolic cylinder functions in
Eq. (18), for the range (10, ωmax) we used the high-frequency
approximation for the parabolic cylinder functions [48,84]

Da(z) ∼ 1√
2

exp
{

iz
√

a + a

2
[ln(a/e) − iπ ]

}

×
2∑

n=0

in(2a)−n/2Qn(z)

Q0(z) = 1, Q1(z) = − z(z2 − 6)

12
√

2
,

Q2(z) = z6 − 12z4 − 36z2 + 96

576
. (A1)

The integration over x0 can be carried out analytically in this
approximation (but not if the exact parabolic cylinder func-
tions are used). For the integration with respect to frequency,
we used a numerical integration of xmaple, the NAG routine
d01akc, which employs adaptive Gauss 30-point and Kronrod
61-point rules.

The upper limit ωmax turned out to be particularly critical
for low values of the threshold. For instance, for θ = 0.25
and lower, we needed at least ω = 104 to obtain convergence
within the line thickness of Fig. 5.

APPENDIX B: SLOPE OF THE ROC CURVE
IN THE LIMIT X → 0

We consider the slope of the ROC curve as X → 0 as
computed from the sampling approximation Eq. (25), i.e., the
limit

lim
Xsa→0

dYsa(Xsa)

dXsa
= lim

θ→+∞
dYsa

dθ

dθ

dXsa
= lim

θ→+∞

dYsa
dθ

dXsa
dθ

, (B1)

where the change of variable in the second step was done
according to Eq. (26). Intuitively, a low false-positive rate is
equivalent to increasing the threshold. It follows from Eq. (24)
that

dYsa

dθ
= n[p0(θ − δ)]n−1 d p0(θ − δ)

dθ
, (B2)

where the derivative d p0(θ−δ)
dθ

is simply a Gaussian function. In
this and in the following section we will make often use of the
asymptotic expansion of the error function for large arguments
[42]:

erf (x) ≈ 1 − e−x2

x
√

π
. (B3)

By exploiting Eqs. (B2) and (B3), we can rewrite Eq. (B1) as
follows:

lim
θ→+∞

dYsa
dθ

dXsa
dθ

= (1 − e−θ2/2eθδ−δ2/2)n−1eθδ−δ2/2

(1 − e−θ2/2)n−1

= lim
θ→+∞

eθδ−δ2/2.

(B4)

Hence, if δ > 0, then

lim
Xsa→0

dYsa(Xsa)

dXsa
= lim

θ→+∞
dYsa

dθ

dθ

dXsa
= +∞. (B5)

In other words, the ROC curves always intersect the point
(0,0) vertically except when when δ = 0. In this case, the ROC
curve is the diagonal, which has slope one everywhere.

The result in Eq. (B5) can be derived also from the
Stratonovich approximation Eq. (31), which is valid exactly
in the limit of small false-positive rate. To this end, we use the
asymptotic expansion of the error function in Eq. (31), which
is in this case equivalent to the expansion of the integral in
Eq. (29) (see Ref. [41]),

lim
Xstr→0

dYstr(Xstr )

dXstr
= lim

θ→+∞

dYstr
dθ

dXstr
dθ

= lim
θ→+∞

(θ − δ)e−θ2/2eθδ−δ2/2

θe−θ2/2

= lim
θ→+∞

eθδ−δ2/2 = +∞, (B6)

which is consistent with Eq. (B5).

APPENDIX C: ASYMPTOTIC LIMIT OF Ysa(δ, θ, T ) FOR
T → ∞

Here, we discuss the limiting behavior of the correct-
detection rate Ysa(X , T ) for infinitely large detection time
window at a fixed false-positive rate. Because n = T + e−T ,
the limit T → ∞ is equivalent to n → ∞. Hence, we can

062132-10



RECEIVER OPERATING CHARACTERISTIC CURVES FOR … PHYSICAL REVIEW E 101, 062132 (2020)

consider Eq. (25) as a function of n (we will also drop the
index sa on X and Y as well as all arguments other than n to
avoid an overladen notation)

Y (n) = 1 −
{

1

2

[
1 + erf

(
θn√

2
− δ√

2

)]}n

, (C1)

and recall that

θn =
√

2 erf−1[2(1 − X )
1
n − 1] (C2)

is the position of the threshold. Although it is a function
of both n and X , X is fixed, and this dependence is there-
fore omitted for simplicity. It follows from Eq. (C2) that
θn → +∞ when n → ∞. It is also intuitively clear that
the threshold must be increased to keep the false-positive
rate constant while increasing the detection time window. A
simple rearrangement of Eq. (C2) leads to

erf

(
θn√

2

)
= 2e

ln(1−X )
n − 1 ≈ 1 + 2

ln(1 − X )

n
, (C3)

where we replaced the exponential function on the right side
by its series expansion up to the linear term. Because θn is
large, we can replace the error function on the left-hand side of
Eq. (C3) with its asymptotic expansion Eq. (B3). Performing
this substitution and rearranging yields

e−θ2
n /2

√
2πθn

≈ − ln(1 − X )

n
, (C4)

which is valid for large n. Turning back to Eq. (C1), if
we replace once again the error function by its asymptotic
expansion for large argument Eq. (B3), rearrange, and use
Eq. (C4), we obtain

lim
n→+∞Y (n) = lim

n→+∞1 −
⎛
⎝1− e− θ2

n
2√

2πθn

θneθnδ− δ2

2

θn − δ

⎞
⎠

n

,

= lim
n→+∞ 1 −

[
1 + ln(1 − X )

n

θneθnδ− δ2

2

θn − δ

]n

,

= lim
n→+∞ 1 −

[
1 + ln(1 − X )

n
α(n, δ)

]n

, (C5)

where in the last step we defined

α(n, δ) = θneθnδ− δ2

2

θn − δ
(C6)

and we point out that the term ln(1−X )
n α(n, δ) < 0.

If δ > 0 and n is large, then α(n, δ) is an increasing
function of n that grows without bound, because, recalling
Eq. (C2), θn → +∞ when n → ∞. Hence, for every n greater
than a (large) fixed value n � n̄, we find

α(n, δ) � α(n̄, δ) (C7)

and

lim
n→+∞Y (n) = lim

n→+∞ 1 −
[
1+ ln(1 − X )

n
α(n, δ)

]n

, (C8)

� lim
n→+∞ 1 −

[
1+ ln(1 − X )

n
α(n̄, δ)

]n

, (C9)

= 1 − exp
[
ln(1 − X )α(n̄,δ)

]
, (C10)

= 1 − (1 − X )α(n̄,δ) −−−→
n̄→∞ 1, (C11)

where in Eq. (C10) we used the definition of the exponential
function, and in Eq. (C11) we made α(n̄, δ) arbitrarily large
by increasing n̄ (we assumed X �= 0, 1 since the beginning).
Because Y (n) � 1 by definition, we conclude that

lim
n→+∞Y (n) = 1, (C12)

and we argue that the slow growth of the correct-detection rate
as a function of T observed in Fig. 3 must always converge
to 1.

APPENDIX D: REFINEMENT OF SAMPLING
APPROXIMATION

In this Appendix, we discuss an improvement of the sam-
pling approximation, which points out the principal reason for
the underestimation of detection rates and provides a likely
explanation of the fact observed in Fig. 5, that such underesti-
mation can be resolved by a static shift in the argument of the
sampling approximation.

The picture underlying the sampling approximation
Eq. (21) is that the detection time window can be divided in
segments of unit length (provided that time is measured in
unit of the autocorrelation time of the process), which can
be approximated as independent. In each time interval, the
trajectory of the process is replaced by one sample, such that
all threshold crossings that can happen between two draws of
the process are missed. Hence, the sampling approximation
underestimates the actual detection rates.

In order to improve the approximation, we replace the
probability to be under the threshold p0(θ ) by a corrected
probability p1(θ )

X (θ, T ) ≈ Xrsa (θ, T ) = 1 − [p1(θ )]n(T ). (D1)

Here [in accordance with the first-passage-time theory of
Sec. (III A)], p1(θ ) is the probability that the trajectory is
found below θ at the sampling point and that it does not cross
the threshold until the next sample is drawn:

p1(θ ) =
∫ θ

−∞
dx0

e
−x2

0
2√

2π
γ (θ, x0), (D2)

=
∫ θ

−∞
dx0

e
−x2

0
2√

2π

[
1 −

∫ 1

0
dtJ (t, θ |x0)

]
. (D3)

In Eq. (D3), J (t, θ |x0) indicates the probability flux through
the detection threshold θ at time t with absorbing boundary
condition at θ and initial condition x(0) = x0. Note that ne-
glecting the trajectories that exceed the threshold is equivalent
to setting the term J (t, θ |x0) = 0. By doing so, γ (θ, x0) = 1
and the original sampling approximation Eq. (21) is recov-
ered.

As discussed in Sec. III A, the true probability flux can
be expressed as an integral over parabolic cylinder functions,
the numerical evaluation of which is difficult. If, however, the
parabolic potential is linearized at the threshold, i.e., if the
actual drift term is replaced by a the constant value −θ , then
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FIG. 8. The improved sampling approximation obtained by com-
bining Eqs. (D1) and (D5) (red solid line) is in better agreement
with numerical simulations (filled circles) than the regular sampling
approximation Eq. (21) (black dashed line). Parameters are as in
Fig. 5.

we obtain a diffusion process with drift, which can be solved,
for instance, by constructing the solution with the method of
images [85]. The probability flux is then

J (t, θ |x0) ≈ (θ − x0)√
4πt3

exp

[
− (θ − x0 + θt )2

4t

]
. (D4)

Note that when θ > 0, which is the most relevant case, the
drift term is directed away from the threshold, and the integral
from zero to infinity of Eq. (D4) is smaller than one. In
other words, the first-passage-time distribution is defective,
reflecting the fact that a finite fraction of trajectories needs

an infinite time to reach the threshold [86], an artifact of
the approximation, which tends to underestimate the actual
probability flux with the original parabolic potential. Finally,
we obtain

p1(θ ) = 1

2

[
1 + erf

(
θ√
2

)]

−
∫ θ

−∞
dx0

∫ 1

0
dt

e
−x2

0
2√

2π

(θ − x0)√
4πt3

e− (θ−x0+tθ )2

4t . (D5)

Although the integration with respect to x0 in Eq. (D5) could
be performed analytically, it results in a lengthy combination
of error functions which neither provides any further insight
nor an advantage in the numeric evaluation of the integral with
respect to t .

The improved approximation obtained from Eqs. (D1) and
(D5) is shown in Fig. 8 (red solid line) and compared to
the simple approximation from the main text (black dashed
line). Although the new approximation slightly overestimates
the detection rate for low thresholds and underestimates at
high thresholds, it is much closer to the numerical simulations
[filled circles, same data as Fig. 5(b)].

As shown in the main text in Figs. 5(b) and 5(c), a rigid
shift in the argument of the original sampling approximation
yields a good agreement with the measured detection rate.
We note that γ (θ, x0) falls rather rapidly as a function of x0

around a value ≈θ − λ, which does not strongly depend on θ .
Hence, a Heaviside function H[(θ − λ) − x0] could be used
in Eq. (D2) in place of the factor γ (θ, x0) to approximate the
integral. Replacing γ (θ, x0) with such a Heaviside function in
Eq. (D2) is equivalent to a static shift by λ in the argument
of the function p0(θ ) of the original sampling approximation
Eq. (21), which gives a possible explanation of why shifting
the sampling approximation by a fixed amount leads to a good
agreement with the numerical simulations.
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