
PHYSICAL REVIEW E 101, 062131 (2020)

Generalization of the Kubo relation for confined motion and ergodicity breakdown
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A time-dependent generalized Kubo relation is derived by introducing the notion of a diffusion function for
a particle confined in a harmonic potential. The relation reduces to the standard Kubo relation as a special
case but holds for anomalous diffusion, nonergodic processes, and bounded motion. We analyze in detail the
behaviors of the diffusion and memory functions and report a generalized Stokes-Einstein relation concerning
anomalous diffusion. Furthermore, we demonstrate that when a high finite-frequency cutoff is imposed on the
noise spectral density, a breakdown in ergodicity accompanied by the appearance of nonstationarity in the
velocity autocorrelation function occurs in forced systems. This breakdown is taken as explicit evidence for
either decay-spring-memory or recovering-force effects leading to nonexponential relaxation kinematics.
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I. INTRODUCTION

One of the fundamental expressions in Brownian motion
theory is the famous Kubo relation, which links the diffusion
constant D with the velocity autocorrelation function (VACF)
Cv (t ) for a particle undergoing force-free Brownian motion,
that is, D = ∫ ∞

0 Cv (t )dt [1]. The former is an observable
in experiments; the latter, an obtainable, is easily computed
from molecular dynamics simulations and amenable to direct
measurement [2]. This relation has been widely applied in the
study of chemical physics [3–5], soft matter [6], and quantum
physics [7], but nonetheless is only valid for normal diffusion.
There are many formalisms that describe anomalous diffusion
[8–10], although the details of the analysis differ depending
on which of the various models was adopted. Correspondence
between the models is possible [6]. A theoretical description
of diffusion processes has initiated a change in paradigm
to account for the numerous manifestations of anomalous
diffusion and nonergodic processes. In this circumstance, the
generalized Langevin equation (GLE) provides a powerful
coarsened multitimescale approach to particle dynamics in
a fluid environment. The practical applications of the GLE
entail adopting a statistical model for the random forces.

If the experimental curves cannot be fitted by expressions
obtained by solving a diffusion equation with a constant
diffusion coefficient, one assumes that the effective diffu-
sion coefficient depends on the timescale and tries to fit
the data using essentially the same expressions that now
contain a time-dependent diffusion coefficient D(t ) [6,11].
Sokolov investigated the time-dependent Kubo relation per-
tinent to nonstationary velocity processes for free Brownian
motion [6]. It is certainly interesting to generalize the Kubo
relation to other time-dependent processes, including novel
correlated effects.

*jdbao@bnu.edu.cn

Furthermore, when the motion is bounded because of
the experimental setup, for example, for a polymer solution
interacting according to the dumbbell model, a fluid modeled
using fluctuating linearized hydrodynamics theory [12], or
the motion of particles in liquids for which the dynamics is
influenced by the surrounding cage formed by the nearest
neighbors [5,13], the mean-square displacement (MSD) of
the tagged particle becomes stable with the diffusion constant
falling to zero after an initial rise related to the transient
anomalous diffusion. This is a specific result that is induced by
the so-called cage effect [14]. From the fluctuation-dissipation
theorem, this effect may be compatible with thermal equilib-
rium in time-independent bounded confining potentials. How-
ever, using the standard Kubo relation to extract dissipative
characteristics is difficult [15].

More importantly, for spatially confined motion, the relax-
ation kinematics associated with the VACF may arise either
in oscillatory behavior or in strongly nonexponential decay
[13]. The usual expectation suggests that a bounded potential
should help the system become ergodic and subsequently ap-
proach thermal equilibrium. However, surprisingly, we show
the contrary to be true. Only a small number of prior studies
have considered the consequences of the underlying oscilla-
tions in view of the ergodicity breakdown of forced systems
[16]. It has been stressed that further theoretical investigations
must be conducted on this issue [17].

The problem addressed in this paper is to extend the Kubo
relation to account for situations in which a tagged particle is
subject to a harmonic potential. This relation does not exhaust
the subject because diffusion in various environments and
external fields is a fundamental transport phenomenon being
the starting point of many different formalisms. We highlight
the effect of memory possessing a decay-spring behavior and
demonstrate a condition that leads to ergodicity breakdown.
The remainder of the paper is organized as follows. Section II
discusses the significance of the time-dependent diffusion
function and summarizes the physical restrictions imposed on
the related memory function. In Sec. III we derive a time-
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dependent generalized Kubo relation and analyze the scaling
behavior of the diffusion function subject to non-Ohmic type
noise. We also report an alternative form of the Stokes-
Einstein formula. In Sec. IV we identify a condition that leads
necessarily to ergodicity breaking for a forced system and
analyze a self-oscillation phenomenon. A summary is given
in Sec. V.

II. DIFFUSION AND MEMORY FUNCTIONS

To analyze at best the diffusive (dispersion) behavior of
a system of interest undergoing a stochastic process, it is
convenient to introduce the time-dependent diffusion function
D(t ) as a time derivative of a position variance [3,18,19],
defined by

D(t ) = 1

2

d

dt
〈�x2(t )〉, (1)

where 〈�x2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2, when combined with the
average position, fully describes a Gaussian-type function that
gives the probability density of finding a particle at position
x at time t . This occurs in the motion described by a linear
GLE subjected to Gaussian noise. Here the time-dependent
diffusion function is indeed an effective notion and determines
the temporal rate of change of the spatial spread for the
system. For the problem of Brownian motion in a periodic
potential, which arises in several fields of science, and for long
enough times, the particles are then distributed over many
potential wells. This diffusion can be described by an effective
diffusion constant [20–22]. The same notion also holds for a
finite position variance at any time, for instance, a bounded
potential such as a harmonic potential imposed on the system
or from the experimental setup directly.

Previously, several authors have defined a time-dependent
diffusion function associated with a time-varying slope of
the position variance, i.e., D(t ) = 〈�x2(t )〉/2t [21–23]. Note
that a time-decreasing D(t ) at long times corresponds to
subdiffusion whereas a time-increasing D(t ) at long times
corresponds to superdiffusion. For D(t ) = const, asymptot-
ically one is dealing with normal diffusion. We stress that
only in the asymptotic long-time regime is a finite diffusion
coefficient D found, i.e., D = limt→∞ D(t ) < ∞. L’Hôpital’s
second rule reduces Eq. (1) to align with the standard result
of normal diffusion. The present definition for D(t ) behaves
as a generalization that is also suitable for transitive processes
because the original expression used in the asymptotic regime
has been replaced by the temporal variation of the position
variance. Note that Eq. (1) retains its practical advantage in
estimating the transition time of a system from an initial state
to a stationary state. In the Monte Carlo simulations, one can
stop time evolution when either the D(t ) function arrives at
a stable value or a scaling law emerges (see Sec. III C and
Appendix A).

The approach by means of the temporal variation of par-
ticle position to study the diffusive behavior of a system
has been widely used in the literature in recent decades.
For instance, in using the fractional Riemann-Liouville time
derivative of order α (0 < α < 2) to get the scaling coefficient
prepower law of time for anomalous diffusion, Kneller and
Stackura determined the coefficient of fractional diffusion,

which is equal to a constant in the long-time limit [14,24,25].
Moreover, another scheme, specifically, D(t ) = 1

2
d
dt 〈x2(t )〉,

was used to determine the time-dependent diffusion function
by calculating the MSD [5]. At the initial stages, the diffusion
function is found to be proportional to time. In the preparation
of the particle, the initial velocity is set to a specific value,
i.e., the particle is initially not at rest but undergoes thermal-
ization as {v2(0)}th = kBT/m [26]. The force-free situation is
discussed in Appendix B.

We begin with Zwanzig’s GLE [27] for a particle of mass
m moving in a potential U (x) and a friction kernel γ (t ).
Specifically, we have

ẋ = v(t ), mv̇ = −m
∫ t

0
γ (t − t ′)v(t ′)dt ′ − U ′(x) + ε(t ).

(2)

Here x and v denote the particle’s position and velocity,
respectively, and ε(t ) denotes Gaussian noise having sta-
tistical properties 〈ε(t )〉 = 0 and 〈v(0)ε(t )〉 = 0 (here 〈· · · 〉
indicates an ensemble average). The fluctuation-dissipation
theorem provides a relation for the correlation function of a
random force in terms of the memory function 〈ε(t )ε(t ′)〉 =
mkBT γ (|t − t ′|), where kB denotes the Boltzmann constant
and T the temperature.

To ensure that the analysis of the function of the present
model yields a maximization, we consider a linear GLE;
specifically, the external potential is set to U (x) = 1

2 m�2
0x2

as a recovering-force structure. This describes a number of
physical problems, e.g„ the dynamics of a Brownian oscilla-
tor. Equation (2) is easily solved using the Laplace transform
technique [12,28], which yields

v(t ) = v(0)h(t ) − �2
0x(0)H (t ) + 1

m

∫ t

0
h(t − t ′)ε(t ′)dt ′,

(3)

x(t ) = x(0)G(t ) + v(0)H (t ) + 1

m

∫ t

0
H (t − t ′)ε(t ′)dt ′, (4)

where x(0) and v(0) denote the initial position and velocity of
the particle, respectively, and G(t ) = 1 − �2

0

∫ t
0 H (t ′)dt ′. The

Laplace transforms of h(t ) and H (t ) are given as

ĥ(s) = s

s2 + sγ̂ (s) + �2
0

, Ĥ (s) = s−1ĥ(s), (5)

where γ̂ (s) denotes the Laplace transform of the memory
kernel γ̂ (s) = ∫ ∞

0 γ (t ) exp(−st )dt and h(t ) the velocity re-
laxation function; H (t ) = ∫ t

0 h(t ′)dt ′ behaves as a relaxation
time for the velocity degrees of freedom.

One of the key features of the GLE is the fact that it
contains a time-dependent function γ (t ), termed a memory
function. In this work we assume that thermal colored noise as
well as the memory function meets all requirements necessary
so that the phenomenological GLE remains physical [1,29–
31]. The conditions are as follows.

(i) The memory function vanishes in the long-time limit
limt→∞ γ (t ) = 0. This is always the case provided the ran-
dom force (noise) is irreversible in the sense that the noise
correlation function and the memory function vanish as t →
∞ [30].

062131-2



GENERALIZATION OF THE KUBO RELATION FOR … PHYSICAL REVIEW E 101, 062131 (2020)

(ii) The noise spectral density (NSD) is non-negative. The
energy considerations require that the NSD must be positive
on the real axis, i.e., ρ(ω) � 0 for ω � 0. The condition of
positivity is of fundamental physical importance [29].

(iii) The magnitude of the memory function at any time
is not larger than its initial value γ (t ) � γ (0) [30]. This is
because γ (t ) is essentially the correlation function of the
stationary random force ε(t ), which satisfies the inequality

〈[ε(0) − ε(t )]2〉 = 2〈ε2(0)〉 − 2〈ε(0)ε(t )〉 � 0,

⇒ 〈ε(0)ε(t )〉 � 〈ε2(0)〉. (6)

The property that is being invoked here is, by definition, the
stationarity of the random force.

(iv) The Laplace transform of the memory function obeys
lims→∞ γ̂ (s)/s = 0 in the large-s limit, s being the Laplace
variable. This last condition is more difficult to handle than
the other three; here we have the aid of the initial-value and
linear-response theorems. Starting from Eq. (3), we know that
the velocity relaxation function h(t ) satisfies h(0) = 1 at the
initial time. Given the example of �2

0 = 0, this leads to the
relation h(0) = lims→∞{s/[s + γ̂ (s)]} = 1. We give a simply
proof of this property using the Laplace transform of h(t ), i.e.,

ĥ(s) =
∫ ∞

0
h(t ) exp(−st )dt = −1

s

∫ ∞

0
h(t )d exp(−st )

= 1

s

(
h(0) +

∫ ∞

0
exp(−st )dh(t )

)
. (7)

We then have

lim
s→∞[sĥ(s)] = h(0) = 1 ⇒ lim

s→∞

(
s

s + γ̂ (s)

)
= 1,

⇒ lim
s→∞ γ̂ (s)/s = 0. (8)

In brief, we have demonstrated the properties of the mem-
ory function and in terms of their physical significance em-
phasized the conditions for the validity of the GLE.

III. GENERALIZED KUBO RELATION

A. Derivation of the generalized Kubo relation

Given the Kubo relation [1], the normal diffusion coef-
ficient is calculated by the integral over the VACF Cv (t )
or, equivalently, by the velocity’s power spectrum at zero
frequency: D = ∫ ∞

0 Cv (τ )dτ = 1
2 Sv (ω = 0). This is a simple

interpretation of the zero-frequency theory [32]. With the
present definition of the diffusion function as a temporal time
derivative of the position variance, the work reported in this
paper is mainly concerned with the generalized Kubo relation
in connection with the VACF and is time dependent. Thus,
a frequency-dependent diffusive theory should be established
within the framework of the function D(t ). The Kubo relation
then has a time dependence similar to its standard form, in
which infinite time is replaced formally by a finite time.
However, realistic transitive features do not emerge from an
arbitrary initial preparation. That is, a term is lacking in
the time-dependent Kubo relation, which we will identify
explicitly in Eq. (11) below.

Diffusion is characterized by the variance of the particle
position x(t ). To elucidate the physical meaning of the time-

dependent diffusion function, we employ a generic form for
this variance for a particle in a harmonic potential,

〈�x2(t )〉 = kBT

m�2
0

[
1 − G2(t ) − �2

0H2(t )
]
. (9)

It includes the result for force-free motion, i.e., taking the limit
�2

0 → 0 [33,34] (see Appendix B).
Differentiating Eq. (9) with respect to time and using

Eq. (1), we derive a strictly rigorous relation between the
temporal diffusion function D(t ) and the time-dependent
functions related to the VACF,

D(t ) = kBT

m
[G(t ) − h(t )]H (t ). (10)

A connection with the Kubo relation can be made. Multi-
plying both sides of Eq. (3) by v(0) and using the statistical
properties of noise and assuming {x(0)v(0)} = 0, we obtain
as a consequence the velocity relaxation function h(t ) given
by h(t ) = 〈v(t )v(0)〉/{v2(0)}. Hence, Eq. (10) is rewritten as

D(t ) = kBT

m

(
1 − C̃v (t ) − �2

0

∫ t

0
dt ′

∫ t ′

0
C̃v (t ′′)dt ′′

)

×
∫ t

0
C̃v (t ′)dt ′, (11)

where C̃v (t ) = Cv (t )/{v2(0)} = h(t ) is the normalized VACF
and {v2(0)} is required to be finite. Herein we denote by {· · · }
the average with respect to the initial preparation of the state
variables, i.e., an average over their initial values.

Equation (11) is referred to as the generalized time-
dependent Kubo relation, which is independent of initial
preparation. In particular, for force-free motion (�2

0 = 0)
under the conditions (i) Cv (t → ∞) = 0, (ii) D(t ) approaches
a constant when the upper limit of the integral is set to infin-
ity (i.e., normal diffusion), and (iii) {v2(0)} = kBT

m , Eq. (11)
reduces to the standard Kubo relation [1]. Moreover, it is
not limited to just Markovian diffusion. For non-Markovian
normal diffusion, the effective Markovian friction strength
γ̂ (0) = ∫ ∞

0 γ (t )dt can be used to replace the coefficient of
friction in Markovian diffusion. Nevertheless, if the process
considered is not ergodic, i.e., Cv (t → ∞) �= 0, the term
1 − C̃v (t ) taking the place of unity needs to be added to the
time-dependent Kubo relation.

B. Alternative version of the Stokes-Einstein formula

There are two ingredients involved in diffusion that have
become prototypical in the connection between the corre-
lation function and the transport coefficient. The first is
a consequence of the Langevin theory [35] and gives an
exponential decay for the VACF of a sphere 〈v(t )v(0)〉 =
kBT
m exp(−t/τ ), in which τ is the relaxation time given by

the Stokes law τ = m/6πηR, where η is the fluid viscosity
and R is the sphere radius. The second ingredient is the
Green-Kubo formula connecting the diffusion constant D with
the VACF, D = ∫ ∞

0 〈v(t )v(0)〉dt = kBT/6πηR, which is also
written in an equivalent form D

τ
= kBT

m [36]. This expression
was already obtained by Einstein [37], which holds only for
normal diffusion but can be modified to cover non-Markovian
cases. There have been a number of attempts to calculate
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the transport coefficients of apparently dissipative systems
and the Fourier transform of the VACF was widely used
in semiphenomenological spectral studies of fluids, magnets,
and other systems. Its generalization to a measurable approach
for arbitrary frequency-dependent friction is a challenge.

Furthermore, starting from Eq. (10) or (11) and assuming
the process is ergodic, we find the limit of the ratio of the dif-
fusion function to the relaxation time for the velocity degrees
of freedom; the behavior may be regarded as a generalized
Stokes-Einstein relation

lim
t→∞

(
D(t )

H (t )

)
=

{
kBT
m , �2

0 = 0

0, �2
0 �= 0.

(12)

We stress that the above expression is more generic because
it is valid for anomalous diffusion and is independent of the
scale α. The two varying functions modifying the kinetic
behavior of diffusion and relaxation harmonize in the ratio
entering the limit on the right-hand side.

In several previous papers, the Stokes-Einstein formula
was expressed in different forms. The diffusion constant was
computed from the memory function or the VACF as D =
kBT
m [

∫ ∞
0 γ (t )dt]−1 [5] or D = kBT

m

∫ ∞
0 C̃v (t )dt [13]. However,

both are only valid for normal diffusion. This is because the
value at infinity of the integral of γ (t ) either diverges for
subdiffusion or vanishes for superdiffusion. Moreover, the
opposite results occur for the integral of Cv (t ). Recently, a
generalized asymptotic Einstein relation applying to anoma-
lous diffusion was expressed in the form limt→∞[D(t )γ (t )] =
2C(0)/m2�(α)�(2 − α) [3], where C(0) denotes the noise
intensity; however, no connection was made with the velocity
relaxation time of an underlying process.

C. Example and scaling analysis

We discuss next an example that can be solved analytically.
The expression for the diffusion function at large times makes
it possible to identify an asymptotic regime in the scaling
behavior of the system. According to the Wiener-Khintchine
theorem, the memory function related to the NSD reads

γ (t ) = 2

π

∫ ∞

0
ρ(ω) cos(ωt )dω. (13)

Once the NSD is known, the GLE is capable of describing,
within a unified framework, all types of anomalous diffusions
and relaxations.

We do not study all possible limiting behaviors of the
memory function. Instead we consider a very general model,
i.e., the non-Ohmic friction model [18,19,38,39], which takes
the form

ρ(ω) = γα (ω/ω̃)α−1 f (ω) (0 < α < 2), (14)

where ω̃ denotes a reference frequency, the constant γα allows
for the GLE (2) to have the correct dimension, and f (ω)
is a frequency modulate function. Note that the small-ω
behavior of the NSD obeys a power law characterized by
the exponent α − 1. Because 0 < α < 2, one can safely set
f (ω) = 1 in the theory [18,19]. The Laplace transform of
the memory function is given by γ̂ (s) = ω2−α

α sα−1, where
ω2−α

α = γαω̃α−1 sin−1(απ/2). At this stage, the velocity

relaxation function for the force-free particle is given by the
Mittag-Leffler function h(t ) = E2−α[−(ωαt )2−α] [18,38].

Unfortunately, solving the GLE having a harmonic poten-
tial and a memory function with a long-time tail exactly is
much more complex. This particular case is referred to as the
non-Markovian Brownian oscillator and the quadrature has to
be approximated to obtain the anomalous relaxation behavior.
The necessary condition for the existence of a long-time tail
in the relaxation dynamics of a diffusing particle has been
found by the author in Ref. [34], i.e., γ̂ (eπ i ) �= γ̂ (e−π i ). This
is also valid for the harmonic potential case. Here we report
an interesting result: The diffusion functions vary with time
for the linear GLE for the two different asymptotes

D(t ) ∼
{

Aαtα−1, �2
0 = 0

Bαt−2α−1, �2
0 �= 0,

(15)

where the two α-dependent coefficients are evaluated to be

Aα =
{

kBT
m

sin[(1−α)π]
πω2−α

α
�(1 − α), 0 < α < 1

kBT
m

sin[(α−1)π]
πω2−α

α

�(2−α)
α−1 , 1 < α < 2

(16)

and

Bα = kBT
(
ω2−α

α

)2

mπ2�6
0

sin2[(1 − α)π ]�(α)�(1 + α). (17)

The derivation of these expressions is outlined in
Appendix A. In comparison with the force-free and harmonic
potential cases, Eq. (15) displays for both an opposite
dependence on the exponent α. In particular, the normal
diffusion does not result in a long-time tail asymptotic
behavior and cannot be described by Eq. (15).

We next calculate numerically the diffusion function us-
ing the VACF approach. Multiplying both sides of Eq. (2)
by v(0) and performing the ensemble average using the
statistical properties of the noise [〈v(0)ε(t )〉 = 0], we get
a homogeneous integro-differential equation for the VACF
Cv (t ). In addition, we define the cross-correlation function as
Cxv (t ) = 〈x(t )v(0)〉 = Cvx(t ) = 〈v(t )x(0)〉. A set of coupled
differential equations obtains

Ċxv (t ) = Cv (t ), (18)

Ċv (t ) = −�2
0Cxv (t ) −

∫ t

0
γ (t − t ′)Cv (t ′)dt ′, (19)

where Cv (0) = {v2(0)} and Cxv (0) = 0. Once the memory
function is determined, Eqs. (18) and (19) are then solved
numerically, from which all the quantities can be evaluated.

In Figs. 1 and 2 we depict the diffusion functions in
the presence of non-Ohmic memory friction modulated by
f (ω) = f1(ω) = exp(−ω/ωc) and two kinds of potential. A
comparison is made between the diffusion functions for par-
ticles in the force-free and harmonic potentials. All quan-
tities represented therein, and in the forthcoming text, are
dimensionless (i.e., kBT = 1, m = 1, and ω̃ = 1). In this
figure we still use the Monte Carlo method to calculate the
time-dependent diffusion function and compare the numerical
result with the theoretical prediction. Because colored noise
with a non-Ohmic spectrum cannot be simulated directly,
we make use of the fast Fourier transform technique [40] to
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FIG. 1. Diffusion function D(t ) and its scaled function Ds(t ) =
t1−αD(t ) in the force-free case. The solid lines and points correspond
to theoretical and Monte Carlo results, where f1(ω), ωc = 4.0, and
γα = 1.0 are used.

generate the required noise and then the estimate-corrected
stochastic algorithm is used to simulate the GLE [41]. As
expected, we observe for the harmonic potential a vanishing
of the diffusion function in the long-time limit. Moreover, the
scaled diffusion functions Ds(t ) = t1−αD(t ) for the force-free
case (Fig. 1) and Ds(t ) = t2α+1D(t ) for the harmonic potential
case (Fig. 2) are plotted in the insets; they approach different
constants at large times. This is certainly evidence that the
Monte Carlo simulation offers a quantitative verification of
the present analytical results.

As for the transport properties of the bounded system, the
diffusion function determines the rate of change in width of
the Gaussian spatial distribution for the tagged particle; hence,
D(t ) may become negative and indeed reflects a recovering-
force effect caused by the harmonic potential. Note that the

FIG. 2. Diffusion function D(t ) and its scaled function Ds(t ) =
t2α+1D(t ) in the harmonic potential case. The solid lines and points
correspond to theoretical and Monte Carlo results, where f1(ω), ωc =
4.0, �2

0 = 1.0, and γα = 1.0 are used.

FIG. 3. Ratio of the diffusion function to the velocity relaxation
time for various α in which f1(ω) is employed. The top and bottom
sets of lines correspond to �2

0 = 0.0 and �2
0 = 1.0, respectively. The

parameter settings used are γα = 1.0 and ωc = 2.0.

diffusion functions for a particle in the absence of a potential
[6] and in a harmonic potential emerge with the opposite
dependence for α over long-time intervals. With regard to
the above interesting results, we remark that there exists a
competing effect between colored noise and memory friction.
The presence of a long-time tail for the noise correlation
function (0 < α < 1) indicates that the random force varies
slowly and persists, driving the particle in the same direction.
In contrast, for larger values of α (1 < α < 2), the memory
of the particle’s motion is weaker. Nevertheless, when a
bounded potential such as a harmonic potential is present,
the relaxation kinetics is compensated, thereby decreasing
the randomness of the fluid particles. Therefore, for bounded
motion and large α, the diffusion function of a particle subject
to non-Ohmic friction decays rapidly.

In Fig. 3 we verify numerically relation (12) and the
different situations are contrasted. We stress that Eq. (12) is
more generic because it is valid for anomalous diffusion and
scale (α) independence. From below Eq. (5) we know that
H (t ) is actually the relaxation time for the velocity degrees
of freedom. Indeed, the two varying functions modifying the
kinetic behavior of diffusion and relaxation harmonize in the
ratio entering the limit on the right-hand side of Eq. (12).

IV. ERGODICITY BREAKING IN
NON-MARKOVIAN DYNAMICS

A. Forced system situation

The ergodic hypothesis states that the time and ensemble
averages of phase variables exist and are equal. The strong
discrepancy between the ensemble and moving time averages
implies nonergodicity of such systems [42]. This hypothesis
is crucial for the proof of the basic theorems in statistical
physics. Explicitly, the Khinchin theorem considers station-
ary processes and gives the condition for ergodicity, which
requires the correlation function to decay to zero [43]. We
consider the GLE and following the Khinchin theorem check
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the conditions under which the process is ergodic because the
irreversibility condition is a necessary and sufficient condition
for the validity of the ergodic hypothesis in non-Markovian
dynamics [44]. The expectation then is that bound potentials
coax the particle velocity to become ergodic when the NSD
has zero weight at low frequency [45]. Let us address this
problem in terms of the present solvable model.

Using the initial-value formula of relaxation functions
h(0) = 1, H (0) = 0, and G(0) = 1, we write down the formal
expression for the VACF Cv (t ) = {〈v(t )v(0)〉} of a particle in
a harmonic potential [28],

Cv (t ) = {v2(0)}L−1

(
s

s2 + sγ̂ (s) + �2
0

)

−{x(0)v(0)}�2
0L−1

(
1

s2 + sγ̂ (s) + �2
0

)
, (20)

where L−1 denotes the inverse Laplace transform operation.
From the spectral analysis, we identify a condition that neces-
sarily leads to breaking of ergodicity for a forced system. The
Laplace transform of the memory function is determined by
the NSD ρ(ω),

γ̂ (s) = 2

π

∫ ∞

0

ρ(ω)s

s2 + ω2
dω. (21)

Suppose that the NSD is the cutoff at a high finite frequency
ωc and reads ρ(ω) = ρ0(ω) f2(ω), where ρ0(ω) is a function
of the frequency and f2(ω) = (ωc − ω) is the Heaviside
function, equaling unity when ω � ωc and vanishing when
ω > ωc. We perform an integration by parts for Eq. (21) to
render explicit the dependence of γ̂ (s) on s,

γ̂ (s) = 2

π

[
ρ0(ωc) arctan

(ωc

s

)

−
∫ ωc

0
arctan

(ω

s

)
ρ ′

0(ω)dω

]
. (22)

With arctan(ω/s) = 1
2i ln[(s + iω)/(s − iω)] on the com-

plex plane, the characteristic equation s2 + sγ̂ (s) + �2
0 = 0

may have a pair of pure complex roots s = ±ia once this term
enters ĥ(s), satisfying

−a2 + a
1

π

[
ρ0(ωc) ln

(
a + ωc

a − ωc

)

−
∫ ωc

0
ln

(
a + ω

a − ω

)
ρ ′

0(ω)dω

]
+ �2

0 = 0. (23)

The implication is that a necessarily exceeds the cutoff
frequency. Under this condition proposed here, the VACF
contains a function of cos(at ) and does not vanish in the
long-time limit. It follows that the nonstationary case obtained
here is nonergodic by the basic theorem. This behavior is
characteristic of ergodicity breaking of another type [16,31].
It is concluded that the relation (11) is always suitable for such
nonergodic process, specifically, the VACF given in Eq. (20)
does not vanish at late times.

There exists a vast literature describing the nonexponential
behavior of the correlation functions for systems ranging
from plasmas to hydrated proteins [46–49]. The present study
disentangles a source of anomalous relaxation within the

FIG. 4. Memory function for two kinds of frequency-modulated
functions. The solid and dashed lines correspond to the results using
f1(ω) and f2(ω), respectively. The parameter settings used are γα =
1.0, ωc = 2.0, and (from top to bottom) α = 0.6 (blue),1.0 (black),
and 1.6 (red).

framework of the GLE. In Fig. 4 we plot the memory function
varying with time for various values of α using the modulating
function f (ω) = f2(ω) and comparing it with f (ω) = f1(ω).
High cutoff frequencies of signals are treated in many fields
of physics. In two instances, the memory functions decay and
vanish at long times. The decay of the sub-Ohmic memory
function (0 < α < 1) is slower than that for the super-Ohmic
case (1 < α < 2); the latter, moreover, may become negative.
If the NSD is cut off at a high finite frequency [i.e., f2(ω)
is used], γ (t ) does not stabilize but instead diminishes with
time. This plays the role of an effective decay-spring-memory
behavior in the dynamics.

Figure 5 shows the VACF of the particle in a harmonic
potential that helps us to extend the theory of ergodicity by
focusing on the asymptotic behavior of the VACF. Clearly, it
does not factorize and, for a zero-centered process, does not
vanish in the long-time limit when the NSD of the driving
noise is cut off at high finite frequencies. The expectation is
that a bounded potential promotes ergodicity [16,45]. Surpris-
ingly, we find the contrary to be true. Similar results were
found for the force-free Brownian motion driven by a gener-
alized Debye-type noise [27,47,48]. The long-time tail of the
oscillation around zero appearing in the VACF implies that
the particle tends to reverse its direction of motion frequently
relative to its initial step. This also arises because the driven
noise lacks sufficiently high frequencies. Therefore, our result
highlights the existence of different types of nonergodicity.

So far, we have discussed the mathematical origin of
ergodicity breakdown. Let us examine the physics behind it.
The situation considered is that of a tagged particle coupled
to its environment which constitutes a heat bath; the initial
particle velocities are sampled with probabilities they would
have in an equilibrium or stationary state. In this regard,
two influences of the heat bath upon the system have to be
distinguished [16,31,45,49]. An exploration of the first type
relates to infinite oscillators, followed by our measurement

062131-6



GENERALIZATION OF THE KUBO RELATION FOR … PHYSICAL REVIEW E 101, 062131 (2020)

FIG. 5. VACF in the unit of {v2(0)} of a particle in a harmonic
potential for different values of α. The solid and dashed lines
correspond to results obtained with f1(ω) and f2(ω), respectively.
The parameters used are �2

0 = 1.0, γα = 1.0, and ωc = 2.0.

appliance. The other exploration corresponds to a different
situation: a spectral distribution the lacks some frequencies
[16,31,45,49]. Whereas this second situation corresponds to a
behavior where the system oscillates with time near an equi-
librium state, the first may be close to equilibrium independent
of how far the equilibrium distribution in the system is from
the initial one.

B. Self-oscillation phenomenon

The diffusion function along with the MSD for the force-
free motion of a particle subjected to non-Ohmic memory
friction modulated by f2(ω) features the emergence of an
anomalous diffusion (see Fig. 6). Specifically, the asymptotic
MSD is a time-varying power-law function. Nevertheless, the
diffusion function still oscillates with time for the three types
of diffusion. Because the leading term in the MSD exceeds

FIG. 6. Diffusion function and MSD for the force-free motion of
a particle for various α in which f2(ω) is employed. The parameter
settings used are the same as in Fig. 4.

the oscillatory contribution, the MSD of the force-free particle
motion is proportional to some power of time (see the inset of
Fig. 6), but its time derivative still oscillates with time. Hence,
the conclusion that the standard Kubo relation holds true is
not a necessary condition for the system undergoing normal
diffusion. The reason for this is that using the time-dependent
diffusion function may give an adequate description for a
process with nonstationary increments, if we concentrate
on the dispersion behavior of spatial distribution relative to
its center.

In practice, the NSD corresponding to f2(ω) causes ergod-
icity breaking, being rooted in the vanishing weight at high
frequencies. Driven by such noise, the present model is treated
as a generalized Debye Brownian oscillator. Moreover, in the
limit ω → ∞, any realistic spectral density of noise decays
because physical quantities seemingly should not diverge.
Both of these conditions imply that noise is colored with a
limiting high-filtration behavior at high frequencies. Noise of
this kind induces nonstationary behavior.

V. SUMMARY

The notion of a diffusion function has provided a charac-
teristic associated with the statistical properties of the time
evolution of many systems in fluids arising from the ex-
perimental setup. As demonstrated in the present study, it
depends on memory features. This quantity is based on a
definition that allows the effects of long-tail and decay-spring
memory for the dynamics to be extracted. The standard Kubo
relation was found not to be a necessary condition for normal
diffusion because diffusive motion exists that is accompanied
by local oscillations. We have shown that when thermal
fluctuations combine with decay-spring-memory effects, the
time-dependent diffusion function for the harmonic potential
begins at zero, increases with time, then decays, and may
become negative in value, assuming that it vanishes in the
asymptotic limit.

The second objective was to ascertain whether ergodicity is
broken for forced Brownian motion subject to colored noise
with a high finite-frequency cutoff. This leads to a time-
oscillating VACF for the particle; therefore, a time-dependent
reduced term needs to be added that modifies the generalized
Kubo relation. We believe that the present study provides use-
ful information regarding the Brownian motion of a particle
in a viscoelastic bounded fluid including aftereffects. This
conclusion suggests applications in the analysis of complex
systems or self-oscillatory particle transport.
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APPENDIX A: RELAXATION FUNCTIONS WITH
LONG-TIME TAIL BEHAVIOR

Applying the residue theorem to the Laplace inversion of
Eq. (5) [50], we write the solution in two parts as h(t ) =
he(t ) + hp(t ), in which he(t ) denotes the exponent-dependent
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fast decaying part and hp(t ) is the power-law term. We now
find the leading long-time behavior of h(t ) by first observing
that the integral term, which arises from the branch point at
the origin, is

hp(t ) = − 1

2π i

(∫
L1

+
∫

L2

)
ĥ(s) exp(st )ds

= 1

2π i

∫ ∞

0
re−rt

[
1

r2 − rγ̂ (reπ i ) + �2
0

− 1

r2 − rγ̂ (re−π i ) + �2
0

]
dr

= ω2−α
α

π
sin[(α − 1)π ]

∫ ∞

0

rα+1

�(r)
e−rt dr, (A1)

where L1 and L2 denote the integral paths along the
positive and negative directions of the negative real
axis, respectively, and �(r) = r4 + r2α + 2r2�2

0 − 2(rα+2 +
rα�2

0) cos[(α − 1)π ] + �4
0.

Indeed, when t → ∞, the principal contribution of the
integral at long times comes from r around zero. Therefore,
we have approximately

hp(t ) ≈ ω2−α
α

π�4
0

sin[(α − 1)π ]
∫ ∞

0
rα+1 exp(−rt )dr

= ω2−α
α

π�4
0

sin[(α − 1)π ]�(2 + α)t−α−2 (A2)

as t → ∞. Likewise, from the Laplace inverse of Ĥ (s), we
find that

Hp(t ) = 1

2π i

∫ ∞

0

(
− 1

r2 − rγ̂ (reπ i) + �2
0

+ 1

r2 − rγ̂ (re−π i ) + �2
0

)
exp(−rt )dt

∼ ω2−α
α

π�4
0

sin[(1 − α)π ]
∫ ∞

0
rα exp(−rt )dr

= ω2−α
α

π�4
0

sin[(1 − α)π ]�(α + 1)t−α−1. (A3)

The Laplace transform of G(t ) is given by

Ĝ(s) = 1

s
− �2

0
1

s

1

s2 + sγ̂ (s) + �2
0

= s + γ̂ (s)

s2 + sγ̂ (s) + �2
0

. (A4)

The power-law part of its inverse Laplace transform yields

Gp(t ) = 1

2π i

∫ ∞

0

(
− −r + γ̂ (reπ i )

r2 − rγ̂ (reπ i ) + �2
0

+ −r + γ̂ (re−π i )

r2 − rγ̂ (re−π i ) + �2
0

)
exp(−rt )dr

∼ ω2−α
α

π�2
0

sin[(1 − α)π ]
∫ ∞

0
rα−1 exp(−rt )dr

= ω2−α
α

π�2
0

sin[(1 − α)π ]�(α)t−α. (A5)

In the absence of a potential, we obtain straightforwardly the
power-law term from Eq. (A1) by setting �2

0 = 0; e.g., the
velocity relaxation function is given by

hp(t ) = 1

2π i

∫ ∞

0

[
exp(−rt )

r − γ̂ (reπ i )
− exp(−rt )

r − γ̂ (re−π i )

]
dr

= ω2−α
α

π

∫ ∞

0

sin[(α − 1)π ]rα−1e−rt dr

r2 + r2(α−1) − 2rα cos(α − 1)π

∼ ω2−α
α

π
sin[(α − 1)π ]

∫ ∞

0
r−α+1 exp(−rt )dr

= ω2−α
α

π
sin[(α − 1)π ]�(2 − α)tα−2. (A6)

We can test that Eq. (A6) is in agreement with the known
result.

APPENDIX B: DIFFERENCE BETWEEN TWO
DEFINITIONS OF THE DIFFUSION FUNCTION

The MSD for force-free motion of a particle can be also
found from Eq. (9) by setting �2

0 to zero, for which

lim
�2

0→0

1 − G2(t )

�2
0

= lim
�2

0→0

1 − (
1 − �2

0

∫ t
0 H (t ′)dt ′)2

�2
0

= 2
∫ t

0
H (t ′)dt ′. (B1)

The average position of the particle is {〈x(t )〉} = {x(0)} +
{v(0)}H (t ). The MSD of the force-free particle is expressed
in the general form

{〈x2(t )〉} = {〈x(t )〉2} + {〈�x2(t )〉}
= {x2(0)} + 2{x(0)v(0)}H (t ) + {v2(0)}H2(t )

− kBT

m
H2(t ) + 2kBT

m

∫ t

0
H (t ′)dt ′. (B2)

The sum of the first three terms represents the square of
the average position and the sum of the latter two terms
is the position variance. Note that the position variance is
independent of the initial preparation of particle.

The original Kubo relation is associated with free Brown-
ian motion. For anomalous diffusion, the previous treatment
to a large degree requires that the diffusion constant D be
replaced by D(t ) defined by D(t ) = ∫ t

0 Cv (τ )dτ ; however, it
may not be simply accepted. We have found that the time-
dependent diffusion functions, calculated by taking the time
derivative of the position variance and the MSD, are different.
If the particle is confined initially at the origin x(0) = 0 and
its velocity obeys the Maxwell equilibrium distribution with
{v2(0)} = kBT/m rather than rest, using Eq. (B2) and H (t ) =∫ t

0 h(t ′)dt ′ = kBT
m

∫ t
0 C̃v (t ′)dt ′, the MSD is expressed as

{〈x2(t )〉} = 2kBT

m

∫ t

0
dt ′

∫ t ′

0
dτ C̃v (τ ). (B3)

Therefore, the diffusion function obtained by differentiating
Eq. (B3) yields D(t ) = ∫ t

0 Cv (τ )dτ with Cv (t ) = kBT
m C̃v (t ).

This is specifically an expression of the time-dependent Kubo
relation encountered in the literature [6,26].
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Evidently, from (B2), this makes no difference if the
particle starts statically from the origin [i.e., x(0) = 0 and
v(0) = 0]. However, the resulting generalized Kubo relation
differs from the previous form [1,3]. Note that for an arbitrary
initial velocity preparation, the position variance is given by

〈x2(t )〉 − 〈x(t )〉2 = 2kBT

m

∫ t

0
H (t ′) dt ′ − kBT

m
H2(t ). (B4)

Taking the time derivative on both sides of Eq. (B4), we
obtain the diffusion function as Eq. (10), letting �2

0 = 0 for
the generalized free Brownian motion. This implies that the
previous time-dependent Kubo relation was presented under a
special assumption, specifically that the initial velocity has a
Maxwellian distribution.

In addition, from the identity ẋ = v(t ), we have x(t ) =
x(0) + ∫ t

0 v(t ′)dt ′. Then the second moment of the position
of a diffusing particle has the alternative form

〈x2(t )〉 = x2(0) +
∫ t

0

∫ t

0
〈v(t1)v(t2)〉dt1dt2

= x2(0) + 2
∫ t

0
dt1

∫ t1

0
〈v(t1)v(t ′)〉dt ′. (B5)

We note that Eq. (B5) cannot obviously reveal the initial
velocity dependence. Nevertheless, one can formally define
the time-dependent diffusion function to match the behav-
ior of 〈x2(t )〉 in Eq. (B5) by taking D(t ) = 1

2
d
dt 〈x2(t )〉 =∫ t

0 〈v(t )v(t ′)〉dt ′. This evaluated diffusion function is quite
restricted.

During the transitive state or the late oscillating process,
the VACF at any two times may be different from the velocity
at time t correlated with v(0). Specifically, the translation
invariance of time for the VACF does not hold in general, i.e.,∫ t

0
〈v(t ′)v(0)〉dt ′ �=

∫ t

0
〈v(t )v(t ′)〉dt ′. (B6)

Therefore, the diffusion function determined from the MSD
[Eq. (B2)] yields a different result in comparison with that
of the time derivative of Eq. (B4) despite the initial velocity
preparation.

To clearly distinguish the difference between the diffusion
functions determined by the time derivative with respect to the
position variance and the MSD, we consider the simplest case,
specifically, the normal diffusion described by the Markovian
Langevin equation. This is essentially not a realistic physical
model but a fitting means, which must be taken with care
because it is often used. The equation of motion of a particle
is mẍ + mγ0ẋ = ξ (t ), where ξ (t ) denotes Gaussian white
noise obeying 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = 2mγ0kBT δ(t −
t ′), where γ0 describes the friction strength. The MSD of the
diffusing particle was obtained previously,

〈x2(t )〉 = 〈x(t )〉2 + 2kBT

mγ0

(
t − 2

γ0
[1 − exp(−γ0t )]

+ 1

2γ0
[1 − exp(−2γ0t )]

)
, (B7)

where the average particle’s position yields 〈x(t )〉 = x(0) +
v(0)
γ0

[1 − exp(−γ0t )].
We now express Eq. (B7) as a Taylor series for short times

(t < γ −1
0 ),

〈x2(t )〉 = v2(0)t2 + 2kBT

mγ0

(
t − 2t + γ0t2 + t − γ0t2

+ 1

3
γ 2

0 t3 + · · ·
)

. (B8)

Performing the time derivative of the MSD, the leading term
of the diffusion function at the initial time yields

D(t ) = 1

2

d

dt
〈x2(t )〉 ∼ v2(0)t . (B9)

In contrast, using the present definition [Eq. (1)], we establish
a superballistic behavior [51] at the initial time,

D(t ) = 1

2

d

dt
〈�x2(t )〉 ∼ kBT

m
γ 2

0 t2. (B10)

The expressions (B9) and (B10) tell us that, during the
initial time periods, the diffusion of a force-free particle
induced by thermal fluctuations is slower than that arising
from its initial velocity. Therefore, in this sense, the diffusion
within the GLE should be of thermal type.
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