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Active velocity processes with suprathermal stationary distributions and long-time tails
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When a particle moves through a spatially random force field, its momentum may change at a rate which grows
with its speed. Suppose moreover that a thermal bath provides friction which gets weaker for large speeds,
enabling high-energy localization. The result is a unifying framework for the emergence of heavy tails in the
velocity distribution, relevant for understanding the power-law decay in the electron velocity distribution of
space plasma or more generally for explaining non-Maxwellian behavior of driven gases. We also find long-time
tails in the velocity autocorrelation, indicating persistence at large speeds for a wide range of parameters and
implying superdiffusion of the position variable.
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I. INTRODUCTION

A particle moving in weak contact with a thermal bath
experiences friction and noise in an equilibrated fashion as
expressed in the fluctuation-dissipation relation [1–4]. Brow-
nian motion is the standard example, obtaining a steady
fluctuating motion as described in a Langevin dynamics where
possibly other conservative forces are added. The steady-state
evolution is then said to run under the condition of detailed
balance [5]. In some physically interesting cases, however, the
particle may also be subject to an external nonconservative
force field. Such a field can be the coarse-grained result of
underlying more complicated processes, such as arising from
a turbulent environment or from the influence of biologi-
cally active matter. The force may be averaging out to zero
either in space or in time and yet has an influence on the
particle motion. There is no extra systematic force, and no
drift is added, but the environment provides extra sources of
uncompensated noise. That noise need not be Gaussian in
general and can be interpreted as excess dynamical activity
transmitted from the environment to the particle. We refer
to such environments (possibly massless) as active media.
The active velocity processes in the title are the inertial
motions of particles in such active media. We come back to
the relation with (models for bio-)active particles in Sec. III.
Conceptually, our models are for example closer to those in
Refs. [6,7] where the dynamics is studied of a tracer particle
in an active gel. The main question of the present paper is
to investigate the resulting steady velocity distribution of the
tagged particle and its relaxation properties.

To be clear about the physical situation, the tagged particle
(probe) is part of a dilute bath to which we can associate
a temperature, and the active medium is external and to
be modeled as an extra random force field. Let us discuss
these two ingredients and our assumptions about them first
separately.

*tirthankar.banerjee@kuleuven.be

The heat bath: We suppose a dilute bath of particles where
the friction is essentially determined from the two-body scat-
tering cross section. Therefore, the way the scattering depends
on the particle kinetic energy is an essential input. We assume
that the scattering gets vanishingly small at high energy, which
is a condition of (high) energy localization. That happens
in many cases of interest, e.g., in the regime of Coulomb
scattering [8]: charged particles at high (kinetic) energy tend
to keep their energy when moving fast.

The random force field: We imagine a spatial distribution
of a nonequilibrium forcing. The latter may be caused by
moving optical [9], acoustic [10], or mechanical walls or by
spacetime-dependent external force fields more generally. An
important assumption is to take the force field spatially mixing
with zero average and having a finite correlation length. Such
a condition can be called spatially chaotic. At the high speeds
that we will consider, we ignore the time dependence of the
force field.

Probes moving in such an active medium evolve under an
inertial dynamics for which the fluctuation-dissipation rela-
tion is violated, allowing net energy transfer from the medium
to the probe which may then be dissipated in the thermal bath.
Active velocity processes have appeared before in models of
velocity resetting, e.g., as first considered for Fermi accelera-
tion [11], in depot and Rayleigh-Helmholtz models [12–15],
or in models of Taylor dispersion [16] and Ulam ping pongs
[17]. We can think of tagged grains in agitated matter or of
electrons in a driven plasma. Each time the tagged particle
(probe), while itself passive, is weakly coupled to a thermal
bath in the presence of a nonequilibrium forcing.

The central result of the present work is a unifying frame-
work for suprathermal tails in the velocity distribution and
(nonequilibrium) long-time tails. The exponents follow from
the nature of the activity and from dependence of the scatter-
ing cross section on the kinetic energy. As we show, the high-
energy localization combined with the chaotic fluctuating
force field is responsible for interesting nontrivial behavior
that is seen in nature, relevant for astrophysical plasmas [18]
and in excited granular media [19–21], or in general for the
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dynamical properties of tagged particles in a thermal bath
under spatially-mixing or chaotic external driving conditions
[22].

The essential mathematics is contained in the setup of
Sec. II. We compare that setup with (bio-)active particle
models in Sec. III. Section IV introduces the key step. The
influence of the external nonconservative force field in the
high-speed regime effectively results in a weak coupling
limit with a nonequilibrium bath. The resulting noise is then
Gaussian but no friction equilibrates it. The phenomenon is
known as stochastic acceleration [23–25]: when the particle
speed is sufficiently large, the change in its momentum over
even a small time-interval fluctuates around zero following the
central limit theorem. It induces an extra diffusion in velocity
space with an amplitude ∝ 1/v decaying with the particle
speed. In the end, the result of that analysis gives a three-
dimensional Fokker-Planck description in which the effects
of stochastic acceleration are combined with (high-energy)
localization: for a dilute gas or plasma, the probability density
μ(v, t ) for the speed satisfies

∂μ

∂t
(v, t ) = 1

v2

∂

∂v

{
γ (v) v2

[
v μ(v, t ) + kBT

m

∂μ

∂v
(v, t )

]}

+ 1

v2

∂

∂v

[
v2 A2 L

2v m2

∂μ

∂v
(v, t )

]
, (1)

where m is the mass of the particle and γ (v) its friction
coefficient for moving through the bath at temperature T . The
random force field is felt by the last term, where A is its
amplitude and L its correlation length. For example and to be
detailed below starting with Sec. V, from (1) the power-law
tail in the stationary velocity distribution is easily derived
when γ (v) ∝ v−3 for large speeds v such as obtained from
the Rutherford formula for Coulomb scattering.

II. GENERAL SETUP

We consider a dilute medium of particles with mass m
where the interaction is described on the one-particle level
in terms of a friction γ and a white noise at temperature T .

We consider the velocity distribution in terms of a density
ρ(v, t ) with respect to the volume element d3v. In the absence
of any external force, assuming that the medium is spatially
homogeneous and that the initial density ρ(v, t = 0) depends
only on the speed v, ρ(v, t ) = ρ(v, t ) evolves in time t
according to the three-dimensional Fokker-Planck equation

∂ρ

∂t
(v, t ) = 1

v2

∂

∂v

{
v2 γ (v)

[
v ρ(v, t ) + kBT

m

∂ρ

∂v
(v, t )

]}
.

(2)

It is clear from (2) that because of the imposed Einstein
relation between the friction mγ (v) and the noise variance
mkBT γ (v), the stationary density for (2) is Gaussian ρ(v) ∝
exp[−mv2/2kBT ] for arbitrary γ (v) > 0. We emphasize that
this scenario is valid as well for a dilute plasma where the par-
ticles (ions, electrons, etc.) mutually interact with Coulomb
forces and the friction behaves as γ (v) ∝ v−3, v ↑ ∞ follow-
ing the Rutherford scattering formula where the cross section
γ (v)/v ∝ (v2)−2 is inversely proportional to the square of the

energy. More generally, in the present paper we take

γ (v) = γ0

[
1 +

(
v

vR

)δ
]−1

(3)

parameterized by the linear friction constant γ0 > 0 and where
vR is a reference speed beyond which the friction starts to
decrease. The important parameter giving the decay (3) with
the speed is δ. For δ > 0, the scattering cross section for
the particle in the thermal environment decreases like v1+δ

for large v. Coulomb scattering gives δ = 3, but we expect
that depending on the material and shape of the particles
in inelastic short-range scattering, values with δ < 3 become
available. At any event, when δ > 1, high-energy localization
takes place as then the strength γ (v) v of the friction force
decays as K (1−δ)/2 when the kinetic energy K ∝ v2 grows
large. Nevertheless, for every δ the stationary distribution
for (2) is Maxwellian.

To represent the active medium we add a force field
f (r, t ), r ∈ R3. The evolution is then governed by the
Langevin equation

ṙt = vt ,

mv̇t = −mγ (vt ) vt + f (rt , t )

+ kBT γ ′(vt ) et +
√

2mγ (vt )kBT ξt . (4)

In the last term lives the standard white noise ξt . The third
term on the right-hand side of (4) involving γ ′ = dγ

dv
arises

from choosing the Itô convention and et = vt/vt is the unit
vector in the direction of the velocity. That term would vanish
when writing (4) in the Stratonovich sense [26]. In that
way, when f ≡ 0 (passive case), the Fokker-Planck equation
corresponding to (4) reduces to (2).

The force field f (r, t ) is fundamentally arising from New-
tonian forces, e.g., for electrons as a Lorentz force from a
time-dependent electromagnetic field or for granular particles
as collisions with a vibrating wall, but we think of it as
sufficiently chaotic to motivate its randomness. We treat it
as a quenched random field, homogeneous in spacetime and
spatially isotropic. To make it locally constant over a spatial
range L and with a persistence time ν−1

0 , the statistics of the
field f = ( fi ) is modeled with

〈f (r, t )〉 = 0,

〈 fi(r, t ) f j (r′, t ′)〉 = C

(
r − r′

L
, ν0 (t − t ′)

)
δi j (5)

for Kronecker delta δi j and with a function C showing ex-
ponential decay in space with range L, and changing in time
at rate ν0. The length L and rate ν0 indicate the space and
timescales over which its direction changes; see Fig. 1 for a
schematic representation of f (r, t ). The dynamics (4) together
with (5) specify mathematically what we mean by the active
velocity processes mentioned in the title of the paper. For
our purposes we need only the spatial decay and the intrinsic
temporal dependence can be ignored. In (5) we have only one
spatial scale L, but the arguments below hold more generally
for multiscaled fields, as long as they are sufficiently mixing to
apply the central limit theorem (next). In any event, the force
f in (4) is a second (nonthermal) source of noise in the particle
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L

FIG. 1. Discrete realization of a random force field f (r, t ) which
autodecorrelates over distances of order L. The tagged particle moves
through it and at high speeds experiences a diffusive acceleration.

dynamics. Correspondingly, there is a nonequilibrium steady
condition for the dynamics (4) with a stationary velocity
distribution ρ(v) that we investigate next for its tails at large
speed v and for its relaxational behavior in Sec. VII. We
continue its analysis in Sec. IV.

III. CONNECTION TO ACTIVE PARTICLE MODELS

The dynamics (4) is essentially different from active par-
ticle models for self-propelled motion in biology [27–29].
An important difference is that active particles in a biolog-
ical context have an overdamped dynamics. Moreover, our
analysis essentially uses the dependence of the friction γ (v)
on the speed, which in the overdamped limit would imply a
dependence of the mobility on the speed, which is certainly
not the main ingredient for, e.g., bacterial motion. In biology
the particle itself is deemed active because of a persistent
speed where the direction of the velocity is subject to a colored
or discrete noise.

We use run-and-tumble models as an inspiration and ex-
ample for a random force field in Sec. VI. Tumbling and run-
and-tumble models [30,31] have been considered before to
model active particles such as via self-propulsion in bacteria
or in nanomotors. In the present paper we have no internal
nonequilibrium degrees of freedom coupled to translation,
but we use tumbling as one way to model the activity of
the external medium: the run-and-tumble in Sec. VI concerns
the incurred force. It is exciting to find tumbling forces
relevant to understanding physical phenomena beyond the
usually studied biological applications. Apart from inspira-
tion, there is also significance of our work to active matter
when we think of the random force field as created by the
presence of bio-active particles or active tissue in which we
immerse a passive (underdamped) probe. We already men-
tioned the examples of motion in an active gel [6,7]. Then the
emergence of suprathermal distributions and long-time tails
gives new signatures of activity.

IV. STOCHASTIC ACCELERATION

To investigate the consequences of the force field (5), we
zoom in on the effect of f on the change in momentum of a
moving particle. Because of f , the tagged particle following
(4) will, at time t, incur a (or an additional) change of
momentum

�ε (t ) =
∫ t+ε

t
f (rt + vt s, s) ds (6)

over each small enough time interval ε (so that the velocity
of the particle is not changing considerably). We fix that
arbitrarily small ε for the rest of the argument. As the random
field is homogeneous and isotropic, the distribution of the
change �ε (t ) is independent of rt , and, with unit vector et

in the direction of the velocity, we have∫ t+ε

t
f (rt + vt s, s) ds

D= 1

vt

∫ vt ε

0
f (x et , x/vt ) dx (7)

with the equality meant in the sense of probability distribu-
tion. Hence, by taking vt large compared to L/ε, (6) integrates
to zero with a correction following the central limit theorem.
From (7), that means that (6) is of order

√
ε for large enough

vt with, from (5), a finite variance which is proportional to
L/vt . As a conclusion, from the assumed chaoticity (5) of the
external medium we infer that for large speeds vt there is a
constant A �= 0 depending on the function C and possibly on
the dimension, such that for (6),

�ε (t )
D= A

√
εL

vt
Z, (8)

where Z is a three-dimensional standard normal random
variable. Since that argument can be repeated for arbitrarily
small ε, we have obtained what is needed for the velocity
process to become indistinguishable from a Markov diffusion
when running at sufficiently high speeds. It replaces the force
f in (4) by a white noise. The equality (8) is meant in
the sense of distributions and is derived in Sec. VI for a
precise realization of forcing. Mathematically rigorous work
for the more general case can be found in Refs. [23–25]. The
main physical mechanism goes back to the phenomenon of
Taylor dispersion [16,32–34], from which the general concept
of stochastic or turbulent acceleration arises [35–38].

As a result, for large speeds vt we effectively have two
white noises, the thermal noise from (4) and the stochastic
acceleration from (8). The corresponding differential equation
for the probability density [denoted by μ(v, t ) to make a dif-
ference with the dynamics (4)] exactly becomes (1). Note that
the calculation (6)–(8) of the stochastic acceleration followed
the Itô sense, estimating vt+ε − vt , and hence we have no
additional correction to the drift.

The stationary density μ(v) for (1) can be solved exactly:

μ(v) ∝ exp

{
−m

∫ v

0
du

u

kBT + A2 L/[2γ (u) u]

}
. (9)

The argument above can be concluded by the statement that
for large v, the stationary distribution ρ(v) for the (original)
dynamics (4) equals the one from (1)–(9), i.e., ρ(v) � μ(v).
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V. SUPRATHERMAL TAILS

To understand the asymptotic behavior of the stationary
distribution ρ(v) we use the explicit form (9) along with
the friction γ (v) in (3). It turns out that the behavior is
qualitatively different for δ = 3 and δ < 3, while for δ > 3
no stationary distribution exists for (1).

Algebraic decay clearly appears from (9) when δ = 3.

More specifically, when δ = 3 in (3), then

ρ(v) ∼ v−2κ , κ = m
γ0 v3

R

LA2
(10)

for v � vR and mv2/2 � κ kBT . As a reminder, ρ(v) must be
multiplied with 4πv2 (from d3v = 4πv2dv), to get the nor-
malized speed distribution. To have a finite variance (some-
times referred to as kinetic temperature) we thus need that
κ > 5/2, which is consistent with Refs. [18,39]. Observe also
that the κ in (10) is a ratio of friction parameters over activity
parameters: larger friction increases κ while larger activity
and persistence reduce κ . In solar plasma, the reported values
for κ are around 5, while the onset of the power law happens
at energies � 0.1 keV [40]. The term in the numerator γ0v

3
R is

essentially known from the Rutherford formula (or the mean-
free length in dilute collisionless plasma of density about
106 m−3) to be about 0.14×10−19 kg/s. Therefore our formula
(10) will be useful to estimate nonequilibrium aspects. From
the previously mentioned numerical values we get LA2 �
1.8×10−49 kg2/s, characterizing the effective driving force
field in solar plasmas.

Suprathermal velocity distributions, where the high-energy
tail is overpopulated with respect to the corresponding
Maxwellian, have been observed in space plasmas [18,41,42]
and there go under the name of κ distributions [8,39,43,44].
The fact that an effective diffusivity that depends inversely
on the speed can produce suprathermal velocity distribution
functions was already discussed, e.g., in Refs. [8,38], in the
context of highly-energetic space plasmas. A general formu-
lation based on a Fokker-Planck equation was, e.g., already
given in Ref. [41] but without obtaining the κ distribution
(10).

Continuing with (9), we predict a pure exponential decay
for δ = 2, compressed exponential for 1 < δ < 2, stretched
exponential for 2 < δ < 3, and Gaussian for δ � 1. In gen-
eral, when 1 < δ < 3 in (3), then

ρ(v) ∼ exp

[
−κ

b

(
v

vR

)2b
]
, b = 3 − δ

2
(11)

again for large v. When δ = 1 we recover the Maxwellian
(Gaussian) behavior of (15) for large v but with effective tem-
perature T + m v2

R/(2kBκ ). The literature is vast, and various
modeling schemes and approximations have been offered. As
an example we refer to the experimental results [19–21] in
excited granular media.

From the standpoint of statistical physics, the emergence of
suprathermal tails due to a chaotic external force field is new
and unifies various phenomena. We will next take an explicit
example to illustrate the above scenario and to discuss long-
time tails caused by emerging persistence of high speeds.

VI. TUMBLING FORCES

So far we have considered general active velocity processes
where the incurred force on a tagged particle changes at a rate
proportional to its speed. We can imagine that along its tra-
jectory there is a time-dependent force with local persistence
time L/vt when the speed gets big. In the rest of the paper we
simplify that idea even further by taking a class of dynamics
where the external force is randomly “tumbling.” Such pro-
cesses with tumbling forces provide an interesting illustration
of the general setup and conclusions of the previous section.
With the greater simplicity of telegraphic noise [45,46] a
more detailed analysis becomes available while preserving the
main physical idea. In particular we predict a strong steady
temporal autocorrelation, thus realizing long-time tails in a
nonequilibrium environment.

To start and for simplicity of notation we restrict ourselves
to one spatial dimension. The tumbling-force model in one
dimension for a particle of mass m = 1 with velocity vt ∈ R
at time t is given by the Langevin equation (from now on,
kB = 1):

ẋt = vt ,

v̇t = −γ (vt ) vt + A σt + T γ ′(vt ) +
√

2γ (vt )T ξt , (12)

where ξt is standard white noise in the Itô convention. The
external force has amplitude A � 0, and the tumbler σt = ±1
is taken to flip at a rate

α(v) = ν0 + L−1 |v|. (13)

The flipping rate or the frequency that the incurred force
changes direction is thus linearly increasing with its speed,
consistent with the physical scenario of Sec. II As before,
the particle undergoes energy and momentum exchanges with
a thermal bath at temperature T � 0 and nonlinear friction
coefficient γ (v) = γ (|v|) > 0 given in (3).

Mathematically, the dynamics (12) defines a Markov pro-
cess (vt , σt ) in velocity and tumble variables. The joint prob-
ability on velocity vt ∈ R and force σt = ±1 has a density
ρ±(v, t ) for time t . The corresponding differential equation
for the probability density is

∂ρ±
∂t

(v, t ) = ∂

∂v
[(γ (v) v ∓ A − γ ′(v) T )ρ±(v, t )]

+α(v) [ρ∓(v, t ) − ρ±(v, t )]

+ T
∂2

∂v2
[γ (v)ρ±(v, t )], v ∈ R. (14)

Observe that for A = 0 (passive case) the Maxwellian

ρA=0
± (v) ∝ exp[−v2/2T ] (15)

is the stationary (equilibrium) density, independent of the
friction γ (v). For A �= 0 there is a higher-order equation for
ρ(v, t ) = ρ+(v, t ) + ρ−(v, t ) that determines the stationary
velocity distribution ρ(v) [= ρ(v, t → ∞)]. We want to un-
derstand its behavior as |v| → ∞ when A �= 0, and how it
depends on the friction γ (v). The physical input that deter-
mines the interesting choices for α(v), γ (v) is in (3) and (13).
In what follows we often choose ν0 = 1 in (13) setting a
timescale.

062130-4



ACTIVE VELOCITY PROCESSES WITH SUPRATHERMAL … PHYSICAL REVIEW E 101, 062130 (2020)

10
-1

10
0

10
1

10
2v

10
-6

10
-4

10
-2

10
0

ρ(v) δ=1.0
δ=1.5
δ=2.0
δ=2.5
δ=3.0

(a)

1 10v

10
-4

10
-2

10
0

P(v)

γ0=0.75
γ0=1.5

1 10v

10
-4

10
-2

10
0

P(v)

γ0=1.0
γ0=2.0

(b) (c)

v-4

v-8

v-3/2

v-3

FIG. 2. (a) Plot of ρ(v) vs v with fixed γ0 = 1 = L = A = T = ν0 for different values of δ; see (13). Note the transition from a Maxwellian
(for δ = 1.0) to power-law decay (δ = 3.0) via compressed (δ = 1.5), simple (δ = 2.0), and stretched (δ = 2.5) exponential regimes for
increasing δ. Symbols represent data obtained from Monte Carlo simulations, and solid black lines correspond to the μ(v) obtained from
evaluating (9) numerically. (b) and (c) Plot of ρ(v) vs v for δ = 3, A = 1 = T = ν0. The power-law decay in the stationary velocity distributions
is shown for (b) L = 1 and (c) L = 1/2. Various values of γ0 following (13) are plotted. The symbols correspond to the data obtained from
numerical simulations, and the red dashed lines indicate the theoretically predicted algebraic decay.

The main idea to get a theoretical prediction for large |v|
is to follow Sec. IV and to exploit that α(v) grows with |v|.
When |v| � Lν0, we may expect (extra) diffusive behavior
induced by the activity. Consider therefore the contribution of
the tumbling force only, as in the updating

vt+ε = vt + A
∫ t+ε

t
ds σs (16)

for fixed small ε. Note that the tumbling correlations are
given by 〈σuσs〉 = e−2α|u−s| where we were allowed to take
α = α(vt ) constant for 0 � u, s � ε as ε is taken very small.
Therefore we have the variance 〈(vt+ε − vt )2〉 = A2 ε/α.

Moreover, in distribution,∫ t+ε

t
ds σs

D= 1

α

∫ αε

0
du σ̃u

=
√

ε

α

1√
αε

∫ αε

0
du σ̃u, (17)

where the process σ̃u runs with flip rate equal to one. Hence,
whenever α(vt ) ε � 1 we can apply the central limit theorem
to 1√

αε

∫ αε

0 du σ̃u and continue from (16) to get

vt+ε � vt + A

√
ε

α(vt )
Z, (18)

where Z is a standard normal random variable. That is the
stochastic acceleration (8) as α(v) ∼ L−1|v| for large |v|.
Thus for large flipping rate α, the tumble force can effec-
tively be modeled by a white noise of strength A2/α; see
also Ref. [45]. In the large-speed regime, the dynamics (12)
appears thus replaceable by a passive Langevin dynamics vt

(in the Itô sense),

v̇t = −γ (vt ) vt + T γ ′(vt )

+
√

2γ (vt )T ξ
(1)
t +

√
A2

α(vt )
ξ

(2)
t (19)

with two independent white noises ξ
(1)
t and ξ

(2)
t of zero mean

and unit variance. We repeat that the approximation [(19)
instead of (12)] requires large |v| [as we assume in (13) that
α(v) grows with |v|] and gets better for high enough T to

exclude the zero-T cutoff |v̇| � γ0|v| + A; see for a discussion
related to the low-speed behavior at the end of the present
section and also Fig. 4.

In order to verify these predictions we have simulated the
dynamics (12) using the Euler-discretization scheme,

vt+ε = vt − ε[γ (vt )vt − Aσt − T γ ′(vt )] +
√

2εT γ (vt ) Z, (20)

where Z is a random number drawn from the standard normal
distribution. We use ε = 0.001 for the time step. In all the
simulations following (20), v is in units of vR, which we put
equal to 1. We have also set m = 1 = kB. The distributions
are then obtained by averaging over at least 109 samples in
the steady state.

In Fig. 2(a) we plot ρ(v) versus v for varying δ and
compare the simulation results with a numerical evaluation
of Eq. (9). Figures 2(b) and 2(c) show plots of ρ(v) versus v

for varying κ (fixed δ = 3). Note the excellent match between
our analytical predictions and the corresponding simulation
results.

Next we consider some generalizations of this simple
model. First, we can look at dimensions d = 2, 3. The dynam-
ics is given by (4) in the form

v̇t = −γ (vt ) vt + A f̂ (t ) + T γ ′(vt ) et +
√

2γ (vt )T ξt ,

where f̂ (t ) is a Markov process taking values in the space of
unit vectors (points on the circle in d = 2, or points on the unit
sphere for d = 3). Uniformly at rate R = 2α(vt )/d , a random
unit vector is chosen. Then, similar to (5), 〈 f̂i(u) f̂ j (s)〉 =
1
d exp(−R |u − s|) δi j, d = 2, 3. As before in (8), and in (18)

we have 〈(vt+ε − vt )2〉 = A2ε
α

and the κ of (10) is un-
changed. The comparison with numerical results is presented
in Fig. 3(a) for d = 2 and in Fig. 3(b) for d = 3.

A second generalization from the case (12) is to allow more
than two values for σt . We skip the detailed calculations, but
clearly all arguments are robust with respect to such changes.
The suprathermal nature of the stationary velocity distribution
is not affected, and we again get an algebraic decay of the
velocity distribution ρ(v) (not shown here).

We conclude that tumbling forces model the dynamics of
particles in random force fields to produce heavy velocity
tails. The flipping of the direction of the external force is easily
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FIG. 3. Plot of ρ(v) vs v for varying γ0 with δ = 3, A = 1 = T :
(a) for d = 2 and ν0 = 1 = L, (b) for d = 3 with ν0 = 3/2 and L =
2/3. Symbols show the data from numerical simulations, and the red
dashed lines indicate corresponding analytical predictions.

imagined for Fermi-Ulam ping pong [11,17] or even in the
case of granular gases under nonequilibrium driving.

As a final remark, it is also interesting to inspect where
the tumbling fingerprint lies for small |v| in the stationary
distribution ρ(v) of (12). For low enough T , bimodality
appears in the steady-state distribution of v; see Fig. 4(a).
Note that at T = 0, the particle resembles in velocity space
a run-and-tumble particle in a harmonic trap which shows bi-
modality in its stationary behavior [29,45]. For small enough
T �= 0, this feature survives. For a fixed low T , however, ρ(v)
undergoes a shape transition from being highly localized near
v = 0 to a delocalized distribution as γ0 is decreased from
very large to small values. A large friction in effect makes
the particle immobile. As T is increased the thermal noise
takes over, and the diffusive behavior leads to a broadening
of the peaks, which eventually disappear for large enough
temperatures. Similarly, when the tumbling variable takes
three values 0, 1,−1, we obtain a trimodal distribution for
small v at sufficiently small T for varying γ0; see Fig. 4(b).
These features resemble well the results found in Refs. [6,7].

VII. STEADY TIME AUTOCORRELATION

One may wonder whether the heavy tails in the velocity
distribution are accompanied by long-time tails in the steady
velocity autocorrelation,

c(t ) = 〈v0 vt 〉 − 〈vt 〉〈v0〉. (21)
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FIG. 4. Behavior of ρ(v) for small v. (a) The bimodal stationary
density appears at low temperature (here T = 0.01) for different
values of γ0 with A = 1 = L and δ = 3. (b) Plot of ρ(v) vs |v| for
the three-state run-and-tumble process with a flipping rate α(v)/2
between any two states. Trimodality appears for small T (here
T = 0.001), with A = 1 = L, δ = 3.
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FIG. 5. Time evolution of the velocity vt along a typical trajec-
tory of (12) in the steady state for A = 1 = L = ν0, δ = 3, γ0 = 2.
The light gray disks and the dark green squares correspond to
σ = −1 and 1, respectively. Switching between the two symbols
represents tumblings of the active force.

We continue in one dimension. We consider the averaging
being carried out in the steady state, so that 〈vt 〉 = 0 = 〈v0〉.
To estimate the time dependence of (21) we imagine drawing
an initial velocity v0 from ρ(v)(� μ(v) under |v| � Lν0) in
(9), and the question is to see at what time vt decorrelates
wth v0. If |v0| � vR (small initial speed), the friction induces
a timescale γ −1

0 with exponentially fast decorrelation. On the
other hand, for large speeds |v0|, the friction is mostly absent
and decorrelation happens after another timescale. For the
heuristics we refer to Fig. 5 to observe a persistence in (large)
speed. We get a quantitative prediction by reconsidering (12)
for cases when friction and thermal effects are negligible and
where the updating is given by (16). Clearly, for no matter
what v0 > 0, when at time t ,∫ t

0
ds σs ∈

[
−

A
v0 ,



A
v0

]
, (22)

then v0vt � (1 ± ) v2
0 . where  � 1/2 is a dimensionless

tolerance. Invoking the central limit theorem as in (18),

we are thus asked to estimate the probability that
√

t
α

Z ∈
[− v0

2 A , v0
2 A ], which amounts to evaluating the error function at

a value proportional to
√

α/t v0/A = t−1/2 v
3/2
0 /(

√
LA). We

conclude that the event (22) occurs with high probability if
t � v3

0/(L A2). Therefore, we predict that the time autocorre-
lation behaves as

c(t ) �
∫ ∞

a (LA2 t )1/3
dv ρ(v) v2 (23)

for some a > 0, when ρ(v) v2 < 1/v decays sufficiently fast.
All other contributions decay faster in time.

In the case where δ = 3 we substitute (10) for the station-
ary distribution ρ(v) and therefore, asymptotically in time t ,

c(t ) ∼ t1−2κ/3 (24)
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FIG. 6. (a) Plot of c(t ) vs t obtained from numerical simulations
for δ = 3 and varying γ0 with L = 1 = A = T . The red dashed lines
indicate the analytical prediction (24). (b) c(t ) vs t for two other
values of δ; the red dashed lines indicate the best fit according to the
prediction (25) where k̄ has been used as a fitting parameter. Here
L = 1 = T and γ0 = 2 = A. The lowest curve corresponds to the
equilibrium case A = 0 for δ = 3 with L = 1 = T = ν0 and γ0 = 2.

(assuming κ > 3/2). This rough calculation indeed provides
a fairly reasonable estimate when κ > 2, as can be seen in
Fig. 6(a) for a comparison of (24) with Monte Carlo results.
That is consistent with the discussion in Sec. V. The long-time
tails are entirely due to the active medium and the low friction
at high speeds. Referring again to space plasmas, measuring
the time evolution of a specific space plasma parcel is prac-
tically very difficult given that the observer (satellite) does
not move with the solar wind expansion. Our estimate (24)
offers a specific prediction, however. Long-time tails have
been reported for driven granular fluids in, e.g., Ref. [47]. As
another consequence, by time integration of c(t ), the position
is seen to be superdiffusive for κ < 3 with 〈(xt − x0)2〉 ∼
t1+ f with f = 2 − 2κ/3 > 0. Such behavior is not unseen for
tracer particles in bio-active media; see, e.g., Ref. [48].

For 1 < δ < 3 when we substitute in (23) the expression
(11) for ρ(v): for large times t , we get

c(t ) ∼ exp[−k̄ (γ0 t )
3−δ

3 ] (25)

with k̄ ∝ κδ/3/(3 − δ). We see that prediction compared with
the simulation in Fig. 6(b) for two values of δ = 2, 2.5; c(t )
for lower values of δ are more difficult to evaluate. In the
passive case, A = 0 as for (15), we have exponential decay in
time, reflecting the dilute nature of the thermal bath. The same
happens for A �= 0 (active case) when δ = 0 where friction
remains prominent (and constant) even at large speeds.

Along similar lines, we also provide an estimate for the
first passage time probability P(τ ) for the particle to remain
in a velocity window [v∗ − w , v∗ + w] up to a time τ. For
a purely diffusive particle, the first passage time probability
in a bounded region decays exponentially with a decay rate
proportional to the diffusion constant [49]. Using Eqs. (16)–
(18), i.e., the effective diffusion picture at low T and large v∗,
and translating the result of Ref. [49] to our case, we expect

P(τ ) ∼ exp[−λτ ], with λ ∝ A2 L/(w2 v∗) (26)

for large v∗. The average first passage time λ−1 increases
linearly with v∗ which is a signature of the trapping in the
velocity space discussed before. Note that in that regime the
rate λ is independent of the linear friction coefficient γ0. We
measure the first passage time probability using numerical
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FIG. 7. (a) Plot of P(τ ) vs τ in semilog scale for different
values of v∗ with γ0 = 2 and a fixed width w = 1. (b) Plot of the
corresponding rate λ vs v∗ for two different values of γ0. The dashed
line indicates the expected 1/v∗ behavior. The other parameters are
T = 1 = L = A = ν0 here.

simulations to verify this prediction; Fig. 7(a) shows plots of
P(τ ) versus τ for different values of v∗ which clearly shows
the exponential decay. The corresponding λ are plotted as a
function of v∗ in Fig. 7(b); the expected 1/v∗ behavior is seen
as v∗ increases.

VIII. CONCLUSIONS

The main result of the paper is that active forces produce
suprathermal stationary velocity distributions and long-time
tails in the autocorrelation. The activity of the environment
can be so simple as modeled by a tumbling force with a fixed
magnitude with a tumbling rate that depends on the speed.
The suprathermal distributions range from power laws over
exponentials to Maxwellians, and the time autocorrelation
ranges from algebraic to exponential. The result on long-time
tails indicates a persistence in the velocity (or the emergence
of extra inertia ∼κ−1 at high speeds), which in fact makes
contact with an aspect of self-propelled particles. At the same
time it widens the scope of standard activity modeling as for
active biological media, extending to and including astrophys-
ical and possibly cosmological processes. Suprathermal be-
havior and long-time tails carry clear signatures of activity and
correspondingly vanish in the absence of the nonconservative
force field.

On a more speculative note, apart from space plasmas the
importance for equilibration times in cosmological plasmas
may be even bigger. In light of the derived long-time tails it
indeed cannot be excluded that the usual short-time thermal
relaxation assumptions in the derivation of the Kompaneets
equation (where photons are treated in contact with electrons
having a Maxwellian velocity distribution) cannot be with-
held; cf. also Ref. [50].
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