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We consider prototype configurations for quasi-one-dimensional stochastic networks that exhibit negative
mobility, meaning that current decreases or even reversed as the bias is increased. We then explore the
implications of disorder. In particular, we ask whether lower and upper bias thresholds restrict the possibility
to witness nonzero current (sliding and antisliding transitions, respectively), and whether a delocalization effect
manifests itself (crossover from over-damped to under-damped relaxation). In the latter context detailed analysis
of the relaxation spectrum as a function of the bias is provided for both on-chain and off-chain disorder.
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I. INTRODUCTION

Negative mobility, where a system respond to the bias in
an opposite way to the naive expectation, has been studied
experimentally long ago for semiconductors, diodes, and su-
perlattices that feature resonance tunneling [1–4] or carriers
with negative effective mass [5–8]. But it has been realized
that such effect can be expected also for a purely stochastic
hopping conductance in the presence of high electric field
[9]. The physics involved is that of biased diffusion in ran-
dom structures such as percolating systems above critical-
ity. The essential physics is captured by simpler quasi-one-
dimensional configurations, notably by comb or tree struc-
tures that feature random distribution of dangling branches
or waiting times [10–13] (and see further references therein).
Negative mobility can be described as “getting less from
pushing more,” and there is a possibility of observing an upper
critical bias beyond which the drift velocity vanishes. More
complicated configurations have been considered as well, for
example: the flow of particles through a narrow tube with
hooks that provide trapping mechanism [14]; inertial tracers
in steady laminar flows [15]; kinetically constrained systems
[16,17]; possibly involving several species of carriers [18]
or mixture of gases [19]. Most of the cited examples above
refer to negative differential mobility (NDM), but some also to
absolute negative mobility (ANM), notably Brownian motors
[20–22]. The latter are required to be nonequilibrium, or
active systems in some sense [23,24]. We further illuminate
the latter observation below.

A. Objective

In the present work we consider minimal stochastic mod-
els where either NDM or ANM can be expected. Those
are illustrated in Fig. 1. In both cases the configuration re-
flects the existence of more than one dimension, as opposed
to a simple one-dimensional chain with near-neighbor tran-
sitions. The NDM configuration of Fig. 1(b) is a minimal
comb structure of the type that has been studied in the
past [10–13,23]. The ANM configuration of Fig. 1(c) is

a simplified version of Ref. [23] that has been studied in
Ref. [24]. The ANM configuration is further characterized
by a nontrivial topology. Namely, it is an active stochastic
network that features loops, around which the circulation of
the stochastic field is nonzero. It can represent the dynamics
of a Janus particle [25–27] in one dimension [24,28], where
the extra degree of freedom is its orientation. Our main
interest concerns the implication of disorder on the stochastic
relaxation. We provide below some background to the relevant
literature, followed by an outline that explains our motivation
to further study the prototype configuration of Fig. 1(b), which
complements our previous studies [24,29] of relaxation for the
configurations Figs. 1(a) and 1(c), respectively.

B. Sinai model

The study of stochastic motion on a one-dimensional ran-
dom lattice with near-neighbor transitions has been introduced
by Sinai [30], a.k.a., random walk in random environment. The
model is illustrated in Fig. 1(a). Unlike Einstein’s Brownian
motion, here the rates of transition between two adjacent sites
do not have to be the same in both directions. This can be
regarded as arising from a stochastic field, due to a potential
difference that biases the transitions. If the stochastic field
is uncorrelated on different bonds, then it follows that the
potential is characterized by an activation barrier whose hight
scales as

√
L, where L is the length of the sample. It follows

that the steady-state current is I ∼ exp[−const
√

L], and not
I ∝ 1/L. In time domains it implies subdiffusion R ∼ ln2(t ),
where R is the distance that is covered by the particle during
time t . This differs completely from the usual random walk
result R ∼ t1/2.

C. Sliding transition

Adding bias in the context of Sinai model means that the
rates in one direction (say to the right) are, on the average,
larger than the rates of transition in the opposite direction.
It turns out that the system exhibits a nonzero drift velocity
v provided the bias exceeds a finite critical value. This is
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FIG. 1. Schematic drawing of the model system. (a) The standard
Sinai model, namely, one-dimensional chain where the transitions-
rates have independent random values. (b) One-dimensional chain
with dangling bonds that serves as a minimal model for a stochastic
percolating network. (c) Quasi-one-dimensional network that serves
as a minimal model for an active gas of Janus-type particles. In
panel (a) the rates are indicated by arrows. Such arrows are omitted
in panels (b, c) where we prefer to indicate the preferred direction
of transitions due to the external bias and the self-propulsion. In
the absence of disorder the model parameters in panel (a) are the
transition rate wo for unbiased transitions, and the bias field f that
encourages motion to the right. Sinai disorder means that f acquires
an uncorrelated random component. In panel (b) we have additional
dangling bonds. If those transitions rates are random, then we call
it “off chain disorder.” In panel (c) we also have propulsion φ that
encourages the motion to be in a direction that agrees with the
orientation of the particle. See text for further details, and Eqs. (2)–
(9) for precise definition of the model parameters.

known as the sliding transition [31]. For subcritical bias the
drift is R ∼ tμ, where μ ∈ [0, 1] depends on the bias. For
a comprehensive review, see Refs. [32,33]. Here we focus
on the possibility that above some second critical bias the
drift velocity becomes zero again, relating to the minimal
configuration of Fig. 1(b).

D. Delocalization transition

Somewhat related to the sliding transition is the delocal-
ization transition of the relaxation modes. Here one considers
a ring geometry: a chain segment with periodic boundary
conditions. The delocalization transition has been discussed
originally for non-Hermitian Hamiltonians [34–36] and only
later for stochastic chains [37]. In the next paragraph we
explain the term delocalization in the latter context.

In the presence of bias (a.k.a., affinity), due to the disorder,
some (or all) eigenvalues become real, which is regarded as an
indication for the localization of the associated eigenmodes.
As the bias is increased, some of those real eigenvalues be-
come complex, which is termed delocalization transition. The
delocalization of the eigenmodes whose eigenvalues reside
in the vicinity of λ = 0 implies that the relaxation become
under-damped (with oscillations). As explained in Ref. [37],
the threshold for that is lower than the threshold for the sliding
transition (it corresponds to μ = 1/2 and not to μ = 1).

The delocalization of the relaxation modes for the active
network of Fig. 1(c) has been already studied in Ref. [24].
Here we focus on the configuration of Fig. 1(b), and distin-
guish between on-chain disorder and off-chain disorder. This
part of the study is motivated by the following question: We
know that in one dimension we always have localization; does
it mean that in a closed ring we always have a delocalization
transition?

E. Outline

We highlight the theme of negative mobility (NDM/ANM)
for minimal quasi-one-dimensional networks, with emphasis
on the distinction between on-chain and off-chain disorder.
The preliminary sections are mainly pedagogical and clarify
the dependence of the steady-state current on the bias. This
prepares the grounds to the main sections, that expand on
the relaxation spectrum and the delocalization transition. The
detailed outline is as follows: (1) In Sec. II we elaborate on the
NDM/ANM configurations of Figs. 1(b) and 1(c). The model
parameters are defined in Eqs. (2)–(9). (2) In Secs. III and IV
we derive expressions for the dependence of the current on the
bias for a nondisordered chain, and illustrate the NDM/ANM
effect. (3) In Sec. IV we consider the effect of disorder on
current-vs-bias for the network of Fig. 1(b). This section
highlights the possibility to observe an antisliding transition,
namely, suppression of the current for bias that exceeds a
threshold. (4) In Sec. V we find analytically the relaxation
spectrum for a chain that is closed into a nondisordered ring
configuration. From that we can re-derive the analytical result
for the current, and additionally we get an analytical result
for the diffusion coefficient. (5) In Sec. VI we consider the
effect of disorder. We explore the possibility to observe an
over-damped relaxation and a delocalization transition. We
distinguish between on-chain and off-chain disorder. (6) In
Sec. VII we further analyze analytically the localization of
the relaxation modes, via a reduction to the Anderson-Debye
model. The Appendices provide extra technical details. The
main results are summarized in Sec. VIII.

II. THE MODEL

The dynamics of the stochastic particle is described by a
rate equation,

d

dt
p = Wp, (1)

where p is a vector of probabilities and W is a matrix of
transition rates. The off-diagonal element wn,m of the matrix
is the transition-rate from node m to node n. The diagonal
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elements −γn are determined such that the sum over each
column is zero. Accordingly γn is the total decay-rate from
node n.

We consider a quasi-one-dimensional chains, as in Fig. 1.
Therefore, we have to labels the nodes of the network by
a composite index. Namely, the nodes are labeled by a site
index n = integer and by an additional index s =↑,↓. For
a nondisordered chain, by convention, all the forward rates
to right are wo along the chain, and all the outward rates to
the dangling sites are co. We assume bias f , and define the
backwards transition rates as woe− f and coe−α f , respectively,
where α > 0 is a proportionality constant that quantifies the
relative sensitivity of the dangling bonds to the bias. We
emphasize that without loss of generality the forward rates,
by this convention, are not affected by the bias. This helps to
maintain a numerically meaningful f → ∞ limit.

Figure 1(b) describes a one-dimensional lattice with dan-
gling bonds. The nonzero transition rates are

wn↑,n−1↑ = w+
n := wo, (2)

wn−1↑,n↑ = w−
n := woe− f , (3)

wn↓,n↑ = c+
n := co, (4)

wn↑,n↓ = c−
n := coe−α f . (5)

The last expression in each row refers to a nondisordered
sample. Note that in our convention bond n connects node n
to node n−1. The s index can represent a transverse space
coordinate, or the possibility of the particle to switch into a
nonconducting state.

Figure 1(c) describes a Janus (active) particle that can
have forward or backward orientation: in the ↑ orientation
it executes a stochastic self-propelled motion that is biased
to the right, while in the ↓ orientation it executes a stochas-
tic self-propelled motion that is biased to the left. Due to
self-propulsion there is some ratio exp(φ) > 1 between the
forward and the backward motion. By our convention only
the backward rates (relative to the propulsion) are affected,
hence the transition rates to the left in the upper edges become
woe−φ− f , and the transition rates to the right in the lower
edges become woe−φ . Summarizing, for a nondisordered mo-
tion of a Janus particle

wn↑,n−1↑ = w+
↑ = wo, (6)

wn−1↑,n↑ = w−
↑ = woe− f −φ, (7)

wn↓,n−1↓ = w+
↓ = woe−φ, (8)

wn−1↓,n↓ = w−
↓ = woe− f , (9)

while the c± are given by Eqs. (4) and (5).
Different types of disorder can be introduced as discussed

thoroughly for a simple chain [29], and for the configuration
of Fig. 1(c) [24]. In the present work, referring to Fig. 1(b), the
interesting distinction is between on-chain disorder and off-
chain disorder. On-chain disorder means that the bias field f
has uncorrelated values fn on the different bonds of the chain,
as in the standard Sinai model. Specifically we assume box

distribution with average value f that reflects the presence of
an externally applied bias, plus a random component due to
the embedding environment. Accordingly, we write

fn = f + random[−σ, σ ]. (10)

Off-chain disorder is similarly defined. Optionally we can
regard it as arising from random α. Namely, in the presence
of an external bias f , the stochastic field on the nth dangling
bond is αn f with random values for αn. Otherwise, we can
specify separately σon for the random field on the chain bonds,
and σoff for the random field on the dangling bonds. Which
convention is used is a matter of context, per the assumed
physical setup.

III. THE STEADY-STATE CURRENT FOR A
NONDISORDERED CHAIN

The nonequilibrium steady state (NESS) is determined
by the equation Wp = 0, which is formally a continuity
equation. For the prototype percolating network of Fig. 1(b),
the drift velocity along the chain sites is

v↑ = (1 − e− f )wo. (11)

Without dangling bonds the occupation probability at each site
of the chain is pchain = 1/L, where L is the length of the chain,
hence the current is I = (1/L)v↑. With added dangling bonds
the NESS equation implies p↓/p↑ = eα f , hence

p↑ = 1

L

(
1

1 + eα f

)
, (12)

and accordingly

I = p↑v↑ = wo

L

(
1 − e− f

1 + eα f

)
. (13)

For the network of Fig. 1(c) the same NESS occupation
prevails, but the current becomes

I = p↑v↑ − p↓v↓ (14)

= wo

L

(
[1 − e−φ− f ] + eα f [e−φ − e− f ]

1 + eα f

)
. (15)

For small f we get a linear relation I ≈ G f , with

G = wo

2L

[
(1+α)e−φ + (1−α)

]
. (16)

We conclude that ANM will show up if α > 1 provided the
propulsion is strong enough, namely,

φ > ln

(
α+1

α−1

)
. (17)

Several I versus f plots are displayed in Fig. 2(a). For com-
pleteness we also plot the diffusion coefficient D in Fig. 2(b).
The way to calculate D will be explained in Sec. V.

IV. THE STEADY-STATE CURRENT FOR
A DISORDERED CHAIN

We consider again the network of Fig. 1(b) but now with
Sinai disorder. This means on-chain disorder that is given by
Eq. (10) and an additional off-chain disorder (due to random
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FIG. 2. Current and diffusion versus bias. The upper panel dis-
plays the current in units of wo/L, plotted versus the bias f . The
curves are for: (a) simple chain with no dangling bonds; (b) chain
with dangling bonds (α = 1/2); (c) active chain with α = 2 and
φ = 5; (d) active chain with α = 2 and φ = 3. For the active chain
co = wo, and the red circles indicate the current reversal. The lower
panel displays, respectively, the diffusion coefficient D in units of
wo.

α) that will be specified later on. Our objective is to determine
the steady-state current I in the presence of disorder and
to see whether it diminishes if the bias is below or above
some thresholds. Recall that the NESS is determined by the
equation Wp = 0, which is formally a continuity equation.
Along the nth dangling bond it is implied that

pn,↓
pn,↑

= eαn f , (18)

because the NESS current there has to be zero. Along the nth
bond of the chain we require

w+
n pn−1,↑ − w−

n pn,↑ = I. (19)

If one drops the ↓ dangling sites, then this equation with
the normalization

∑
n pn = 1 leads to a solution pn, that is

formally identical to the solution that has been obtained by
Derrida [31] for a simple ring. Namely, the current is I =
(1/L)v, where

v =
(

1 −
〈
w−

n

w+
n

〉)〈
1

w+
n

〉−1

(20)

=
(

1 − 1

L

∑
n

e− fn

)
wo. (21)

This expression is valid if it gives a nonnegative result. It
should be realized that 〈e− fn〉 is larger than unity if the fn have
zero or small enough average. Consequently, for small bias the
above expression becomes negative, indicating that v = 0 in

FIG. 3. Sliding transition for a chain with dangling bonds. The
current in units of wo/L is plotted versus the bias f with σ = 10
and α = 1/2. (a) Analytical curve plotted by Eq. (26). (b) Numerical
results with a realization of L = 35. (c) Analytical results evaluated
by Eq. (25) with the same realization as panel (b). (d) Analytical
results evaluated by Eq. (25) with L = 25, 000. The dotted line is
fs ≈ 7.

the L → ∞ limit. The transition from zero drift velocity to
finite drift velocity as the bias exceeds a threshold is known as
the sliding transition [31–33].

If we place back the dangling sites, then the solution of
Eq. (19) will be the same up to a factor, namely,

pn,↑ = p↑ pn, (22)

where p↑ is determined by the normalization condition∑
n,s

pn,s =
∑

n

(1 + eαn f ) pn,↑ = 1. (23)

The off-chain disorder αn is assumed to be independent of
the on-chain disorder. We therefore can factorize the ensemble
average and deduce that

p↑ = 1

L

(
1

1 + 〈
eαn f

〉
)

. (24)

Consequently, for the current we get

I = p↑v = wo

L

(
1 − 〈

e− fn
〉

1 + 〈
eαn f

〉
)

. (25)

This expression still features the Derrida sliding transition, but
it can also provide an antisliding transition for large bias, if
〈eαn f 〉 becomes infinite. As in the case of the standard Sinai
model [30–33], also here both the sliding and the antisliding
transitions become sharp only in the limit of a large chain
(L → ∞).

Both the sliding transition and the antisliding transition are
demonstrated in Figs. 3 and 4. In Fig. 3 we assume that the
fn are box distributed within [ f − σ, f + σ ], and that the αn f
are similarly distributed within [α f − σ, α f + σ ], we get

I = wo

L

(
1 − [sinh(σ )/σ ]e− f

1 + [sinh(σ )/σ ]eα f

)
. (26)

Here we have only a sliding transition because the denom-
inator does not diverge for finite bias. In Fig. 4 we assume
a stretched distribution for the dangling bonds, namely, we
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FIG. 4. Antisliding transitions for a chain with stretched distribu-
tion of dangling bonds. The current in units of wo/L is plotted versus
the bias f with σ = 10 and α = 0.035. (a) Analytical curve plotted
by Eq. (29). (b) Numerical results with a realization of L = 35.
(c) Analytical results evaluated by Eq. (25) with the same realization
as panel (b). (d) Analytical results evaluated by Eq. (25) with L =
500. (e) Analytical results evaluated by Eq. (25) with L = 25 000.
The dotted lines are fs ≈ 7 (left) and fc ≈ 28.65 (right).

assume that the αn f have exponential distribution with an
average α f . Accordingly,

〈
eαn f

〉 = 1

α f

∫ ∞

0
e f ′

e− f ′/(α f )df ′ (27)

=
{ 1

1−α f α f < 1
∞ α f > 1

. (28)

Here the expectation values diverges for large f , and therefore
for larger f the current vanishes. At the regime where the
current is finite we get

I = wo

L

[
1 − α f

2 − α f

](
1 − [sinh(σ )/σ ]e− f

)
. (29)

This expression gives nonzero result within the range
fs < f < fc, where

fs = ln[sinh(σ )/σ ], (30)

fc = [1/α]. (31)

Again, we emphasize that those sharp transitions appear only
in the limit L → ∞.

V. RELAXATION SPECTRUM FOR
A NONDISORDERED RING

Up to now we have focused on the NESS, which is the
λ = 0 eigenstate of W . Now we turn to discuss the whole
spectrum. From the full spectrum we can derive results not
only for the drift velocity, but also for the diffusion coefficient.
Furthermore, it is the spectrum that contains the information
on the delocalization transition, and in particular on whether
the relaxation is over-damped or under-damped. We first
address the nondisordered version of Fig. 1(b).

The relaxation modes are the right eigenvectors of W ,
and they satisfy the equation W� = −λ�. In the absence
of disorder, due to Bloch theorem, the matrix becomes block
diagonal (see Appendix A). Consequently, the eigenvalues are
labeled as λν (k), where k is the wave number (the Bloch

FIG. 5. The relaxation spectrum for a nondisordered ring with
dangling bonds. In panel (a) we display in the complex plane the
eigenvalues λν (k) for a system of length L = 100. Here and in
the next figures wo = co = 1 and α = 1/2. There are three spectra
that correspond to f = 1 (circles), f = 5 (squares), and f = 10
(diamonds). The points are color-coded by k. Panel (b) displays the
polarization of the associated eigenmodes.

phase), and ν = 0, 1 is the band index. For each k we have
to diagonalize a 2 × 2 matrix:

W (k) =
(

(e−ik−1)w+ + (eik−1)w− − c+ c−
c+ −c−

)
. (32)

The result of the diagonalization is demonstrated graphically
in Fig. 5. The NESS is the eigenstate that is associated
with λ0,0 = 0. The two bands of the spectrum form two
complex bubbles in the complex λ plane. The points are
color-coded by the Bloch phase k. The second panel in
Fig. 5 provides further information on the polarization of the
eigenmodes, which is defined as D = |�↓|2 − |�↑|2, where
the eigen-vector � �→ (�↑, �↓) of W (k) assumes standard
normalization. Note that the two bands have opposite polarity.
In particular note that the NESS is polarized “positively,”
reflecting that the bias expels the probability from the chain
and push it into the dangling sites.

The boundaries of the two bands are displayed in Fig. 6,
and are based on the expressions that can be found in Ap-
pendix B. Our interest is mainly in the ν = 0 band that is
bounded from below by λ = 0. Its complexity implies under-
damped relaxation in the long time limit. For large bias it
becomes tiny, implying a longer relaxation time.

The weighted drift velocity can be calculated from the
spectrum [38]. The result is in agreement with Eq. (13),
indicating that the math is self-consistent: Different ways lead
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FIG. 6. The band boundaries of the spectrum versus bias. The
boundaries of the two bands that are displayed in Fig. 5 are
plotted versus f : (a) λ0(π ); (b) λ1(π ) − λ1(0); (c) λ1(0) − λ0(π );
(d) max[Im(λν=1)]; (e) max[Im(λν=0)]. The ν = 0 band is responsi-
ble for the long-time under-damped relaxation. It becomes tiny for
large bias, implying a longer relaxation time.

to the same expression. Namely,

v = i
∂λ0(k)

∂k

∣∣∣∣
k=0

= wo

(
1 − e− f

1 + eα f

)
. (33)

The diffusion coefficient can be calculated as well:

D = 1

2

∂2λ0(k)

∂k2

∣∣∣∣
k=0

=
[

1 + e− f

1 + eα f

]
wo

2
+

[
(1 − e− f )2

(1 + eα f )3
e2α f

]
w2

o

co
. (34)

Figure 2 illustrates the f dependence of the above expressions
that were derived for the network of Fig. 1(b), and also the re-
sult (see Appendix B) that applies to the network of Fig. 1(c).
In a simulation we can visualize the evolving probability
distribution as a stretching cloud. The second term in Eq. (34),
that diverges in the co → 0 limit, reflects the departure of a
drifting piece along the chain, from remnants that lags in the
dangling bonds. The first term reflects the extra spreading of
the drifting piece. In the zero bias limit ( f → 0) it is only the
latter contribution that survives, leading to D → 1/2.

VI. RELAXATION SPECTRUM FOR A DISORDERED RING

In the absence of disorder the spectrum of a biased system
features a “complex bubble” that touches the origin, indicating
finite drift velocity and under-damped relaxation. Adding
disorder some of the eigenmodes become localized, and the
associated eigenvalues become real. If the “complex bubble”
is diminished near the origin, then over-damped relaxation is
implied.

In the model of Fig. 1(b) the forward and backward transi-
tion rates w±

n are along the nth bond that connects the n and
n − 1 sites, while the c±

n are for the forward and backward
rates along the dangling bonds. Namely,

w+
n = wo, (35)

w−
n = woe− fn , (36)

c+
n = co, (37)

c−
n = coe−gn . (38)

We assume that the fn contain random box-distributed on-
chain disorder due to environmental irregularities, as de-
fined in Eq. (10), while the gn = α f + random[−σ, σ ] re-
flect off-chain disorder with the same distribution. We
use α = 1/2 in the subsequent numerics. Representative
results for the spectrum are presented in Fig. 7. Each
point is color-coded by the participation number (PN),
namely, the number of units cells that are occupied by
the associated eigenmode. With standard normalization the
definition is

PN =
(∑

n

Q2
n

)−1

, Qn = |ψn↑|2 + |ψn↓|2. (39)

We see clearly that large PN is correlated with complexity.
This is expected from the general phenomenology of the
delocalization transition [36], namely, a localized eigenstate
is effectively living on a disconnected ring, for which the
asymmetry of the transition can be gauged-away (the technical
aspect will become clear in the next section, where we discuss
the secular equation for the eigenvalues). We note that the
average polarization of the eigenmodes (numerical results not
displayed) is similar to that of a nondisordered case [see
Fig. 5(b)].

Figure 8 displays the fraction of complex eigenvalues.
The fraction is calculated separately for each band. If the
bands are not separated by a gap, then we use median for
their practical definition. Namely, 50% of the eigenvalues
that have the lowest Re[λ] are defined as the ν = 0 band,
bounded from above by a vertical dotted line in Fig. 7(a).
For on-chain disorder the delocalization transition is clearly
resolved if the disorder is strong enough. Namely, up to some
critical value of f the complex bubble that touches the origin
disappears, and the eigenvalues there become real. Complex
eigenvalues with large Re[λ] may exist: They represent a tran-
sient under-damped relaxation. For long times the predomi-
nant dynamical behavior is over-damped if the bias is below
the delocalization threshold. We see that such delocalization
transition does not appear if we have only off-chain disorder.
In the latter case a small complex bubble that touches the
origin survives even if the disorder is large, irrespective of
the bias. For strong bias the ν = 0 band exhibits complexity
saturation, meaning that a finite fraction of real eigenvalues
survives. This complexity saturation will be explained by
reduction to the standard case (see next section). In contrast
the ν = 1 band becomes 100% complex irrespective of the
disorder type.

VII. THE LOCALIZATION OF THE EIGENMODES

To analyze the delocalization that we observe in Fig. 8
for the model of Fig. 1(b), we show that its characteristic
equation, det(λ + W ) = 0, can be reduced to that of an
effective Sinai model [Fig. 1(a)]. Then we can follow the
same strategy as in Refs. [29,34–36] that relates the (possibly
complex) spectrum of the non-Hermitian matrix W to the real
spectrum of an associated Hermitian matrix H . We note that
a localized eigenmode is effectively living on a disconnected
ring. For a disconnected ring the spectrum of W is identical
to the spectrum of −H and therefore has to be real. This is
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FIG. 7. The relaxation spectrum for a disordered ring with dan-
gling bonds. We display in the complex plane the eigenvalues for
a system of length L = 150. The other parameters are the same
as for the ring of Fig. 5, with added off-chain disorder of strength
σ=5. Panels (a), (b), and (c) are for f = 1, 5, 10, respectively. The
points are color-coded by the participation number (PN), namely,
the number of units cells that are occupied by the eigenmodes. The
vertical dotted line in panel (a) is a median that divides the spectrum
into two equal groups. The spectrum separates into two bands in
panels (b, c). Panel (d) is related to the analysis in Sec. VII. The
inverse localization length is defined by Eq. (48), and calculated from
the W of panels (a), (b), and (c). Complex roots are expected if
κ (λ) < κ (0).

the reason for associating the term “delocalization” with the
complexity of the spectrum.

FIG. 8. Delocalization of the eigenstates. The fraction of com-
plex eigenvalues (indicating delocalized eigenstates) is calculated
separately for each band (thicker lines for ν = 0). If the bands are
not separated, then we use median for their practical definition.
The upper and lower panels are for disorder of strength σ = 1, 5,

respectively. Both off-chain (blue) and on-chain (red) disorder are
considered. For on-chain disorder the delocalization transition is
clearly resolved for σ = 5, while for off-chain disorder the ν = 0
band always feature a complex bubble. For strong bias the ν = 0
band exhibits complexity saturation, while the ν = 1 band becomes
100% complex irrespective of the disorder type.

A. The Reduction

The equation Wψ = −λψ for the eigenmodes of a chain
with dangling bonds is

w+
n ψn−1 + w−

n+1ψn+1 + c−
n ψn,↓ − γnψn = −λψn,

c+
n ψn − c−

n ψn,↓ = −λψn,↓,

where γn = w+
n+1 + w−

n + c+
n , and we have used the sim-

plified notation ψn ≡ ψn,↑. Eliminating the dangling bonds
from the set of coupled equations we get the single-channel
tight binding equation

w+
n ψn−1 + w−

n+1ψn+1 − un(λ)ψn = −λψn, (40)

with

un(λ) ≡ [w+
n+1 + w−

n + c+
n ] − c+

n c−
n

c−
n − λ

(41)

≈ (1 + e− fn )wo − λ egn . (42)

The second line above is a small λ expansion. We see that
off-chain disorder (random gn) introduces diagonal disorder
of intensity that is proportional to λ2, while on-chain disorder
(random fn) does not vanish in this limit. This already explains
qualitatively why the λ spectrum is hardly affected by off-
chain disorder in the vicinity of the origin.
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B. The Spectral determinant

We proceed with a quantitative treatment of the char-
acteristic equation det(λ + W ) = 0. After the reduction to
a single-channel tight binding model it takes the form
det(λ + W ) = 0. The N × N matrix W (note the different
font), with N = L, is associated with the reduced equation,
namely, Eq. (40). For the calculation of the determinant it
is convenient to write the forward and backward rates as
wn exp(± fn/2), where

wn ≡ √
w+

n w−
n = wo exp(− fn/2). (43)

The affinity is defined as
∑

n fn = N f , where f is what
we called “bias.” Then it is possible to define an associated
Hermitian matrix −H that has the same diagonal elements,
while the off-diagonal couplings are wn. A linear-algebra
formula [39] (optionally see Appendix C of Ref. [37]) leads
to the identity

det(λ + W ) = det(λ − H )

−[
eN f /2 + e−N f /2 − 2

] ∏
n

(−wn). (44)

C. Finding the eigenvalues

It is convenient to define the average coupling as

wavg =
[

N∏
n=0

wn

]1/N

. (45)

Then the characteristic equation takes the form

N∏
k=0

(
λ − εk (λ; f )

−wavg

)
= 2

[
cosh

(
N f

2

)
− 1

]
, (46)

where εk are the real eigenvalues of the Hermitian H matrix. A
numerical demonstration of this (exact) equation is provided
in Fig. 9. Its left-hand side, up to factor, is the spectral deter-
minant Z (λ) = det(λ − H ). The right-hand side is a constant
Z0 that is represented by a dashed horizontal line. Note that the
dashed line intersects the spectral determinant at λ = 0, which
corresponds to the NESS, hence Z0 = Z (0). The nontrivial
real eigenvalues of W are determined by the intersection of
Z (λ) with the dashed line.

In the absence of dangling bonds Z (λ) is a polynomial with
roots εk that do not depend on λ. In such case it oscillates
around zero with some envelope. Taking the log of this
envelope we define a function κ (λ) such that

|Z (λ)| � wN
avg eNκ (λ). (47)

In Fig. 9(b), up to λ ∼ 2.6 the envelope of Z (λ) is well below
the dashed line, and consequently all the eigenvalues in this
region are complex. More generally there might be regions
where the envelope is above the dashed line, and then we get
real eigenvalues, as demonstrated in Fig. 7.

Due to the elimination of the dangling bonds the εk acquire
λ dependence: For each λ we have to calculate again the
εk (λ; f ) spectrum. The most conspicuous implication is the
appearance of singular spikes at λ = c−

n . For large enough
f those spikes invade the lower band of the spectrum, as
demonstrated in Fig. 9(b). Extra real eigenvalues that coexist

FIG. 9. Spectral determinant for off-chain disorder. We consider
an L = 150 system with off-chain disorder σ = 5 and f = 2. Panel
(a) displays a the relaxation spectrum, focusing in the λ ∼ 0 region
where complex and real eigenvalues coexist. Panel (b) displays the
spectral determinant det(λ − H ) along the real axis. Each intersec-
tion with the dashed line implies a real eigenvalue of W (see text for
further details). The upper bars indicate the values λ = c−

n at which
the determinant diverges. Panel (c) provides a vertical zoom.

with the complex bubble are implied. Those real eigenvalues
corresponds to over-damped relaxation modes that are local-
ized on the dangling sites.

D. The Thouless relation

Following Ref. [36] we point out that the log of the left-
hand side in Eq. (46), after dividing by N , is the Thouless
formula [40,41] for the inverse localization length κ in the
Hermitian problem. Substitution of the definition of wn leads
to

κ (λ) = f

2
+ 1

N

N∑
k=0

ln

∣∣∣∣λ − εk (λ; f )

wo

∣∣∣∣. (48)

A few words are in order regarding the use of this formula. It
is implicit that we refer here to the envelope of the spectral
determinant. Furthermore, the identification of κ (λ) as the

062129-8



NEGATIVE MOBILITY, SLIDING, AND DELOCALIZATION … PHYSICAL REVIEW E 101, 062129 (2020)

FIG. 10. The inverse localization length for on-chain disorder.
We consider an L = 300 chain with both off-chain and on-chain
disorder σ = 5. The inverse localization length κ (λ) of Eq. (48) is
calculated in the λ range of the ν = 0 band. The bias f = 0.5, 1, 2 is
indicted in the legend. In the lower panel we display the spectrum for
f = 2. The spectrum is complex in the range where κ (λ) < κ (0).

inverse localization length is meaningful only in the λ range
where the (real) spectrum stretches, otherwise it is a merely a
formal continued expression.

Traditionally κ is determined using a transfer matrix
method. There are also some analytical approximations that
can be used (see next paragraph). But for our purpose a
direct numerical calculation using the Thouless formula is
most convenient. The reduction of the W-problem to the
H-problem assumes real λ, hence Eq. (46) provides real roots
if κ (λ) > κ (0); otherwise, complex spectrum should appear
(which cannot be extracted directly by inspection). This ex-
pectation is confirmed numerically by Figs. 10 and 11, where
we contrast the delocalization scenario for on-chain disorder
with the scenario that is observed for off-chain disorder. In the
latter case there is always a small range near the origin where
κ (λ) < κ (0), leading to the appearance of a complex bubble
that implies under-damped relaxation.

E. The inverse localization length

As mentioned above, there are some analytical approx-
imations that can be used to evaluate κ . Exact results are
available in the continuum limit, which is not useful here. We
are therefore satisfied with a standard Born approximation that
is based on a Fermi-Golden-Rule picture:

κ (λ) = σ 2
‖

8w̄2k2
λ

+ σ 2
⊥

8w̄2
k2
λ. (49)

Those are Eqs. (14) and (15) of Ref. [42], where further
refinements are discussed, and additional references therein.
This equation requires a careful explanation. It is expressed

FIG. 11. Inverse localization length for off-chain disorder. The
same as for Fig. 10, but with only off-chain disorder. Here the
spectrum has a complex fraction for any f .

in terms of the wave number that is determined by the disper-
sion relation λ = 2w̄[1 − cos(k)], where w̄ is the harmonic
average over the bond couplings Eq. (43). The approxima-
tion λ ≈ wok2 can be used for weak disorder in the small
wavelength regime. The two terms in Eq. (49) correspond
to on-diagonal and off-diagonal disorder, respectively. We
discuss the two terms separately below.

The Hermitian real matrix H is formally identical to that
of the Anderson-Debye model; see Appendix C. The off-
diagonal disorder, a.k.a., resistor network disorder, is the
same type of disorder that appears, e.g., in the Debye model
(balls connected by springs). The strength of this disorder is
defined as follows:

σ 2
⊥ ≡ w̄4Var

[
1

wn

]
≈ 1

4
w2

oe− f Var[ fn]. (50)

This definition assumes that the bonds are uncorrelated. The
approximation is based on first order treatment of the disorder
in Eq. (43). Looking at Eq. (49) we see that its effect is sig-
nificant for the short-wavelength modes, and can be neglected
in the vicinity of λ = 0. It is the same as in the Debye model
where it is argued that the long-wavelength modes tend to be
extended.

The on-diagonal disorder is more subtle. In the standard
Anderson model all bonds are identical and it is common to
consider white on-site disorder. Here it is not the case, hence
the definition for the strength of the disorder becomes more
subtle:

σ 2
‖ ≡ Varλ

[
un − wn − wn+1

]
. (51)

If H were a stochastic kernel that preserve probability, then
we would get from this expression σ‖ = 0 and would be left
with Debye-type localization only. We have extra diagonal
disorder analogous to pinning of the balls to the ground in
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the Debye model. This extra disorder leads to Anderson-
type localization at the vicinity of λ = 0. The second issue
to notice is the subscript in Varλ. This subscript reminds
us that the diagonal elements are not independent random
variables. Consequently, we do not have “white disorder”
and the variance has to be calculated at the “energy” of
interest. Namely, the Born approximation Eq. (49) is based on
evaluation of matrix elements 〈−k|U (x)|k〉 for backscattering.
Here we use for clarity continuous space notations (x instead
of n). Averaging the squared matrix elements over realizations
of the potential U (x) one deduces that

Varλ[U (x)] =
∑

r

eikrC(r), (52)

where C(r) is the correlation function of the disorder. Here
we are back with discrete notions, accordingly the distance
r between sites is an integer number. For “white” disorder
C(r) = Var(Un)δr,0. But the potential Un in the square brackets
of Eq. (51) is correlated. For presentation purpose we assume
also f � 1, which corresponds to the continuum limit, while
the more general case is addressed in Appendix D. The
disorder in leading order comes out

Un = −wo

2
( fn − fn−1) − λgn + const. (53)

Consequently, we obtain

σ 2
‖ ≈ wo

4
λVar[ fn] + λ2Var[gn]. (54)

Substitution into Eq. (49) we see, as anticipated, that off-chain
disorder provides a contribution proportional to λ that always
vanishes in the vicinity of λ = 0, while on-chain disorder does
not vanish.

The bottom line is very simple, and we summarize it in
simple words: the inverse localization length is determined by
the effective diagonal disorder. The strength of this disorder
is proportional to λ2 for off-chain disorder, and therefore we
always get a complex bubble at the vicinity of the origin,
indicating under-damped relaxation. For on-chain disorder
the inverse localization length approaches a finite value at
the limit λ → 0. Therefore, the complexity depends on the
slope κ ′(0) at the origin. This slope becomes negative for large
enough f , hence we get a delocalization transition. The details
in the latter case are the same as in the “standard model”; see
Ref. [29] where also the complexity saturation is explained.

VIII. SUMMARY

Stochastic networks are of general interest in many fields
of Physics, as well as in Chemistry and Engineering. Key
questions in the study of such networks are how they respond
to bias, and what are their relaxation modes. In the traditional
studies of tight binding models the main observations have to
do with the sliding and the delocalization transitions. Once we
allow more complex quasi-one-dimensional configurations,
some new issues emerge.

The delocalization of the relaxation modes for the ANM
configuration of Fig. 1(c) has been already studied in
Ref. [24]. In the present work we have focused on the NDM

configuration of Fig. 1(b), which is the simplest version of a
comb-type model [10–13].

In the preliminary pedagogical sections we used the con-
ventional NESS perspective to derive the dependence of the
steady-state current on the bias (see, e.g., Figs. 2, 3, and 4).
Then we clarified that results for v and D can be regraded as
spectral properties that characterize the relaxation spectrum.
From this point on our interest has been focused on the
study of this spectrum, and specifically in the delocalization
transition of the eigenmodes.

The study was partially motivated by the following ques-
tion: We know that in one dimension we always have local-
ization; does it mean that in a closed ring we always have
a delocalization transition? It was essential in this context to
distinguish between on-chain disorder and off-chain disorder.
In particular, we found that off chain disorder leads to lo-
calization that is not strong enough to induce over-damped
relaxation, hence delocalization transition is absent. It is im-
plied that for off-chain disorder also sliding transition does not
take-place. In fact the absence of sliding transition is much
easier for understanding using a NESS-perspective because
for off-chain disorder activation barriers are not formed.

On the formal side we have explained how the analysis of
the relaxation spectrum can be carried out using a reduced
tight binding model. Thus, the relaxation spectrum (eigen-
values of W) can be related to the real spectrum of a real
Hermitian matrix H that describes an effective Anderson-
Debye model. To figure out the delocalization transition, the
λ dependence of the inverse localization length is required.
This dependence is very different for on-chain and off-chain
disorder.
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APPENDIX A: THE BLOCH MATRIX

For a one-dimensional chain with dangling bonds, in the
absence of disorder, the matrix W can be written using
momentum and spin operators. For symmetric transitions,

W = co[σx − 1] +
∑
±

σ↑wo[e±iP − 1], (A1)

where the momentum operator is defined such that
e∓P|n〉 = |n±1〉, and σ↑ = 1

2 [1 + σz] is a projector on the
chain sites, while the Pauli operator σx induce transitions
between ↑ and ↓ sites. The momentum with eigenvalue k is a
constant of motion, and therefore the matrix decomposed into
blocks:

W (k) =
(−c+ + (e−ik−1)w+ + (eik−1)w− c−

c+ −c−

)
. (A2)

In the latter expression we have assumed that transitions do
not have the same rates in the forward and in the backward
directions, and therefore replaced co by c±, leading to an
asymmetric non-Hermitian matrix that describes Fig. 1(b). For
the quasi-one-dimensional network of Fig. 1(c) we add the
transitions along the ↓ sites and get
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FIG. 12. The perturbative estimate of the PN. Left panel: The dependence of w̄ (upper, blue) and σ⊥ (lower, red) on σoff. We use harmonic
average for the former, and Eq. (50) for the latter. Right panel: The PN is numerically determined for a ring of L=400 sites, based on 500
realizations of the disorder. Plots (a) and (c) are for off-diagonal disorder σoff = 1 and for on-diagonal disorder σon = 0.05, respectively. Plot
(e) is what we get if we have both. Plot (g) corresponds to κoff + κon, based on plots (a) and (c). Curves (b), (d), and (f) are the analytical
estimates based on Eq. (49) with no fitting parameters.

W (k) =
(−c+ + (e−ik−1)w+

↑ + (eik−1)w−
↑ c−

c+ −c− + (e−ik−1)w+
↓ + (eik−1)w−

↓

)
. (A3)

The diagonaliation of W (k) provides the λν (k) spectrum, from
which analytical expressions for the drift velocity and the
diffusion coefficient are derived.

APPENDIX B: BAND BOUNDARIES

The expressions for the band boundaries, assuming wo =
co = 1 are

λ0(π ) = 1

2
e−(1+α) f

[
e f + 2eα f + 3e(1+α) f +

√
e2 f + 4e2α f + 9e2(1+α) f − 2e(2+α) f − 4e(1+α) f + 12e(1+2α) f

]
, (B1)

λ1(0) = 1 + e−α f , (B2)

λ1(π ) = 1

2

[
3 + 2e− f + e−α f − e(1+α) f

√
e2 f + 4e2α f + 9e2(1+α) f − 2e(2+α) f − 4e(1+α) f + 12e(1+2α) f

]
. (B3)

The full expression for λ0(k) is not too illuminating and therefore is not displayed. Its second derivative at k = 0 gives the
diffusion coefficient D of Eq. (34) which is plotted in Fig. 2(b). For completeness we write also what is result for the diffusion
coefficient for the active network:

D =
[

(1 + eα f − f ) + e−φ (e− f + eα f )

1 + eα f

]
wo

2
+

[
e2α f (1 + e− f )2(1 − e−φ )2

(1 + eα f )3

]
w2

o

co
. (B4)

APPENDIX C: THE ANDERSON-DEBYE MODEL

What we call Anderson-Debye model refers here to a
system whose dynamics is dictated by a real symmetric matrix
H that describes a one-dimensional tight binding chain with
both diagonal disorder and off-diagonal disorder, namely,

H =
∑

n

|n〉un〈n| +
∑

n

[|n〉wn〈n−1| + |n−1〉wn〈n|]. (C1)

The Anderson model arises in the context of electronic con-
duction: A particle hops with frequency wn between sites that
do not have the same potential un. The Debye model refers to
balls that are connected by springs that have spring-constants
wn, and that are possibly grounded to the floor with extra
springs (a.k.a., pinning). If the disorder is weak, then we
define

σ 2
⊥ ≡ Var[wn], (C2)

σ 2
‖ ≡ Var

[
un − wn − wn+1

]
. (C3)

In the absence of pinning (σ‖ = 0) Debye has correctly
conjectured that the low lying excitations (λ → 0) are ex-
tended free waves. Otherwise, the eigenstates are localized,
as argued by Anderson. Leading order perturbation theory
(the Fermi-golden-rule, a.k.a., in this context the Born ap-
proximation) leads to Eq. (49) for the inverse localization
length.

A slightly improved version of Eq. (49), see Ref. [42],
involves the harmonic average w̄ for the mean coupling,
and Eq. (50) for its dispersion. The rational of looking
on the statistic of 1/wn is based on the formal anal-
ogy with a resistor-network (bonds added in series), where
rigorously 1/w̄ is the resistivity of the bond-disordered
chain.
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The limitations of the perturbative expression Eq. (49) have
been pointed out in the main text. For demonstration purpose
we test its usefulness in Fig. 12. We consider a chain of length
L with

wn = e−random[0,σoff], (C4)

un = wn + wn+1 + random[−σon, σon]. (C5)

For a nondisordered sample we have PN0 = L, while for a
disordered ring we expect PN−1 = PN−1

0 + κ; see Ref. [43].
We test both the additivity of κ which is implied by Eq. (49),
and also the formula as it is, with no fitting parameters. We
conclude that it works reasonably well in the λ range of
interest.

APPENDIX D: THE ON-DIAGONAL DISORDER

We write the bias for a chain bonds fn = f + f̃n, and for a
dangling bonds gn = α f + g̃n. Accordingly we have for weak
disorder, after dropping a constant,

Un ≈ −wo

2
e− f /2

[
(2e− f /2 − 1) f̃n − f̃n−1

] − λeα f g̃n

≡ A f̃n + B f̃n−1 + Cg̃n. (D1)

Consequently, we get for the effective strength of the disorder,

σ 2
‖ ≈ [A2 + B2 + 2AB cos(k)]Var[ fn] + C2Var[gn]. (D2)

In the main text we have highlighted the continuum limit
( f � 1) for which A ≈ −B, and cos(k) ≈ 1 − (1/2)k2, and
therefore the first term is proportional to λ. In general, we
might have a term that does not vanish in the limit λ → 0.
Then one has to use a formula that goes beyond the diverging
approximation of Eq. (49).
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