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Lévy walk dynamics in an external harmonic potential
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Lévy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat
conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living
cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs—their
response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs
equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary
distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated
superdiffusive processes. Our results generalize LWs to confining forces and settle some longstanding puzzles

around LWs.
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I. INTRODUCTION

Anomalous diffusion with mean squared displacement
(MSD) (x*(¢)) ~ t%, whose anomalous diffusion exponent
differs from the value o« = 1 of Brownian motion, is ubig-
uitously observed in a wide range of systems [1-3]. Subdif-
fusion with 0 < o < 1 occurs in amorphous semiconductors
[4], artificially crowded liquids [5], lipid bilayer membranes
[6-8], cytoplasm of biological cells [9,10], or in hydrology
[11]. Superdiffusion with o > 1 is observed in active systems
such as molecular motor transport in cells [12-14] or in
turbulence [15]. One of the central stochastic models for both
regimes of anomalous diffusion is the continuous time ran-
dom walk (CTRW), based on the two identically distributed
random variables of the waiting times t in between any two
jumps and the single jump lengths x [1,4,16,17]. In the hy-
drodynamic limit uncoupled CTRW processes in an external
potential can be conveniently described in terms of time-
and/or space-fractional Fokker-Planck equations [17-20].

Superdiffusion is often modeled by Lévy flights (LFs),
CTRWs with exponential waiting time probability density
function (PDF), and power-law jump length PDF A(x) =~
Ix|7'7# (0 < w < 2) [19]. The scale-free nature of A(x) trans-
lates into a diverging MSD, but transport can be characterized
in terms of fractional order moments (|x|<)%/* ~ ¢2/* [17].
Due to their fractal, clustering motion pattern LFs are often
used as efficient random search mechanisms, e.g., for foraging
animals [21,22]. In harmonic external potentials LFs have
a stationary state yet diverging MSD [20]. In steeper than
harmonic potentials LFs assume multimodal stationary PDFs
with finite MSD but diverging higher-order moments [23].

A physically more pleasing CTRW concept for superdif-
fusion are Lévy walks (LWs), based on a spatiotemporal
coupling of jump lengths and waiting times with a finite
propagation speed and finite MSD [24,25]. This property
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makes them ideal candidates for the description of anomalous
heat transport [26], transport in Lorentz-like gases [27], and
light propagation in disordered optical media [28]. LWs were
shown to be efficient search strategies [29,30], consistent with
their first-hitting time properties [31], and may emerge from
deterministic nonlinear systems near a critical point [32].
Indeed, LWs are observed in molecular-motor motion [33],
spreading of cancer cells [34], human hunter-gatherer forag-
ing [35], pedestrian movement [36], and in optimized robotic
search [37]. LWs underly human movement patterns [38] and
were identified in the COVID-19 pandemic propagation [39].

LWs are “ultraweakly” nonergodic, fulfill generalized
fluctuation-dissipation relations [40,41], and are related to
infinite densities [42]. For constant external drift LWs are
described by a fractional material derivative [43], and for ar-
bitrary external potentials LWs follow a generalized Kramers-
Fokker-Planck equation [44]. The latter is hard to solve for
concrete problems, as the Fourier-Laplace technique cannot
be applied due to the spatiotemporal coupling. Here we report
an explicit solution of LWs in a physically important harmonic
potential. Answering some puzzles in LW theory, we demon-
strate that the PDF relaxes exponentially to a stationary limit
with a plateau value of the MSD that is independent of the ex-
act formulation of the LW. We moreover demonstrate that the
stationary PDF is bimodal in a wide parameter range. When
the process approaches a regular random walk, a monomodal
stationary PDF is restored. The PDF is also shown to have a
horizontal asymptote in the presence of a reflecting boundary
placed at the origin.

The scenario with harmonic confinement is relevant for
molecular motors tethered to a center (e.g., an intersection
between microtubules in a cell, or a cargo that is stuck in the
cytoskeleton) by a flexible linker. Similarly, the LW could be
a motor attached to a cargo that is in the harmonic potential
of an optical tweezer. On a macroscopic scale, the harmonic
confinement models the restriction on animal and human
motion imposed by the “territory” (home range, quarantine
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restrictions, etc.). Particular relevance of our results should be
pertinent to laser cooling of atoms under confinement [45].

II. LEVY WALKS IN AN EXTERNAL
HARMONIC POTENTIAL

We first consider a random walker with mass M and
position x; at time ¢ in the harmonic potential V (x;) = Vx2
with constant y > 0. Let x, be the final position of each
step of the LW. According to [25], we consider the starting
velocity of each step to be vy (vo > 0) with probability
of 1/2 for left and right (— or +). This picture is similar
to a skater, whose initial push is always identical. As the
skater’s speed diminishes while gliding, in the course of a
step the LW’s velocity is changed by the potential. Denote
t; i=1,2,...,n) the time when the ith renewal event just
finishes and assume that the duration T =t; — f;_; between
two renewal events obeys the density ¢ (7). Then

Md*x v /dT? = —yx, 4o (1)

governs the dynamics between the ith and (i 4+ 1)th renewals,
for ; <t and 7’ € (0, {t;+1 At} — 1;], for initial position x;,
and velocity dx; 4. /dt’|p—0 = fvo. The solution of (1) is
Xyyr = X;, cos(wt’) £ 2 sin(wt’), where w = /y/M. Ac-
cording to the theory of LWs [25],

o0 t
q(xy, ') = / dx;_; / q(xy e, t'—1)
—00 0

X U(Xy—z, X, T(T)dt: + po(x)3(t')  (2)

determines the PDF ¢(x,, ¢’) that the renewal event finishes at
time ¢’ < ¢ and the particle arrives at position x,.. po(x) = 8(x)
is the initial PDF, and v(x,y, 1) = %B[y —xcos(wt) +

2 sin(wt)] + %B[y —xcos(wt) — Lsin(wr)].  With  the
property of the § function we rewrite (2) as
g, 1) — po(x)(t")
l/
= (1/2)/ ¢(v)dz /| cos(wr)|
x [qxf, 1" =)+ g, 1" =), 3)

where xf =[x/ cos(wt)] £ (vo/w) tan(wt). The PDF

p(x, t) to find the particle at x at time ¢ then satisfies

o0 t
p(x,t)=/ / qxi—z, t — DV X—r, X, TW(T)dTdX o,
—o0 J0

“4)
where W(t) = [~ ¢(¢))dv’. With v(x,_, x, T) we get
1 Ty
plx, 1) = ﬁ[ (=t + g, =)
o |cos(wt)|

(5)
We express p(x, t) in terms of the Hermite polynomials H,,(x)
[46]. These are orthogonal to each other over (—oo, co0) with
weight exp(—x?) [47]. We respectively take

{qCe.0). ple. 0} = Y Hu@e (T, T} (©6)

n=0

According to the derivations in Appendix A, the Laplace
transform f(s) = Z{f()}(s) = [y e f(t)dt of the eigen-

functions T;,(t) and 7,(¢) are given through the recurrence
relations

f;n(S) _ Hm(x(])

JT2mm!
L3 2- 2i—1
(m k)li!

Sl

M§

e () e e

k=0 i
x L{sin" 2 (w1) cos P (wT)p(T)} Ti—2i(s), (7)
and
. m 3] 221 o\ m—k
Tu(s) = kz(; ,Zo: m(;)
X (=114 (=1)"*)(=1Y
x L{cos* 2 (wt) sin”" *? (w1)

X W(T )} i—2i(5). ®)

Consider now xg = 0, Tm(s), f"m(s) for odd m. When m = 1
from (7) we deduce that

Ti(s) = ZL{cos(wt)(T)}Ti(5),

implying 7i(s) = 0. Analogously, 7i(s) =0 from (8). By
induction, for every odd m, T,,(t) = T,,(t) = 0. Therefore in
(6) only even terms are left, and thus ¢g(x, ¢) and p(x,t) are
even functions, reflecting the symmetry of the problem.

III. STATISTICAL PROPERTIES
AND STATIONARY DISTRIBUTION

Based on the above results for the eigenfunctions we now
derived and analyze the statistical properties of LWs in an
external harmonic potential.

A. Mean squared displacements

In this section we first consider the mth moment given
by ")) =i" dk,,, 4% 5k, 1)|y—¢» With the Fourier transform

Pk, 1) = [ e px,1)d, = 300 T (—ik)'e AT, 1),

With  Ty(s) = (Wms)~!, we have the normalization
f_oooo plx,t)dx = plk =0,1) = /7 Tp(t) = 1. The Laplace
transform of the MSD is (x?(s)) = fTo(s) + Zsz(s)
where Tz (s) can be obtained from (7) and (8) for specific ¢(1:)
2
For the exponential ¢(7) = Be™P7, we get Tz(s) ) f:; At
long ¢ (small s) the asymptotic behavior of the MSD is given
by the constant

(2 ()) ~ vy /. ©)

For uniform ¢(t) = +1j0.71(r) on [0, T] with period T =
27 /w [where 1} 7(7) is the indicator function] as well as for
the asymptotic power law ¢(t) = /(1 + I (@ > 0), we
find the same plateau (9). Thus LWs in a harmonic potential
always localize asymptotically, and the plateau value depends
only on the stiffness of the potential as well as the speed vg
and mass of the particle. The form of ¢(7) has no influence
on the plateau (9) and the sufficiently fast decay of p™(x) at
|x] = oo (see also below).
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FIG. 1. Stationary PDF of LW in harmonic potential for ¢(7) =
Be™P*, vy = w = B = 1. Stars: simulations from 10* realizations.
(a) No boundaries. Line: approximate theoretical result for N = 13
terms and simulation time ¢ = 10*. (b) Reflecting boundary con-
dition at x = 0, simulation time ¢ = 10°. Line: approximate result
lim, o Y020 e H,T,(0).

B. Discussions of stationary distribution

The stationary PDF follows from the final value theorem
of the Laplace transform,

PM(x) = lim p(x,t) = lim sp(x, 5)
t—>00 s—0

o0
lim > Ha, (0)e ™' sT:
lim > wm(x)e™ sT3,(s),
n=

and T,(s) is given by Egs. (7) and (8). For explicit calcu-
lations we truncate the series after N terms to obtain the
approximate stationary PDF for sufficiently large N. We
choose ¢(t) = e~ * and vy/w = 1. For N = 13 we find the
approximate stationary PDF in Appendix D, as shown in
Fig. 1(a). Despite the potential minimum at the origin, p*(x)
is distinctly bimodal with maximum at |x| & vy/w. Physically,
the peaks emerge due to the fact that each jump starting at
the origin actually points away from x = 0. We would thus
expect that for sufficiently large vy and appropriate systems
parameters the bimodality occurs. Note that similar effects
are indeed known from LFs: an LF in a harmonic potential is
stationary and monomodal [20], yet in steeper than harmonic
potentials, LFs are bimodal [23]. However, the dependence on
the exact model parameters appears more delicate for the LW
case discussed here. We now further explore p™(x).

As shown in Fig. 2, for exponential ¢(7) the bimodality of
the stationary PDF p*(x) indeed depends on the exact model
parameters B, vg, and w. Once vy is small or 8 becomes

FIG. 2. Stationary PDF for ¢(z) = Be#* with 8 = 1 and vary-
ing vg, and vy = 1 and changing B with vo/w = 1 fixed. The approx-
imate form of p™(x) is obtained from lim,_, Z:’Z:O e”‘zH,,(x)fn (1),
where T,(z) are given by relations (7) and (8). In both cases a
monomodal-to-bimodal crossover occurs.

FIG. 3. Stationary PDFs from numerical simulations. For (a) and
(b) the asymptotic power-law waiting time PDF ¢(t) = /(1 +
7)1+ was used with vy = w. For (a) @ = 1.5 and in (b) vy = 0.1.
For (c) and (d), the uniform waiting time PDF ¢(7) = 10 27r/a) (T)
was used with vg = w. In (¢) vy = 1, and for (d) vy = @ = r, so that
the ¢(7) are always same.

large, i.e., when the LW approaches the limit of a regular
random walk, monomodality is restored. For the asymptotic
power-law form ¢(t) = a/(1 + 7)'**, Figs. 3(a) and 3(b)
show the effects of different speeds vy at the beginning of each
jump and of different powers «. As we can see, when vy and @
are sufficiently large, a bimodal stationary state emerges. Sim-
ilarly, when « is below the value 2 and thus the density ¢(7)
abides to sufficiently long tails, bimodality is observed. Note
that the numerical accuracy we can achieve is not sufficient to
numerically pin down the crossover to monomodal behavior at
exactly ¢ = 2, but from the mathematical nature of power-law
distributions this assumption appears consequent. Second, we
consider the uniform density ¢(7) = 1j0,2+/0](7) in Figs. 3(c)
and 3(d) for different interval lengths r and w. When each of
the two parameters becomes sufficiently small, monomodality
is restored. Note the delicate variation of the shapes with the
second digit of these parameters.

The tails of the stationary PDF are characterized by the
kurtosis K = (x*(t))/(x*(¢))?. When ¢(z) = Be?*, Egs. (7)
and (8) lead to

(3*(s)) = 3wl /4 + 63/nTh + 24T
= [24(B + 9)vg(B® + 3B%s + 5° + 4sw® + 3B(s”
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FIG. 4. Stationary value of the kurtosis K for three ¢(t) for vy =
o = 1, averaged over 5 x 10* trajectories and simulation time ¢ =
10*: (a) ¢(tr) = Be™#" as a function of B; (b) #(t) = i 2rr/a) (T) VS
r;(€) ¢(t) = a/(1 + t)'** vs . The lines in (a) and (b) are obtained
from numerical inverse Laplace transform of results (10) and (B2),
respectively. Values of the kurtosis below 3 indicate that the PDF is
platykurtic.

+20%)]/[5(B%s + 57 + 45w’ + 2B(° + w*))
x (B +5° + 205w + 64sw* + 4% (s* + 0*)
+ B2(65° + 2850%) + 4B(s* + 115%0” + 100*))]
~ [Bug(B” + 60)]/[s0” (B* + 1007)],  (10)
that is,
K ~ [3(B% + 60)]/(B* + 100°). (11)

This form is verified by simulations in Fig. 4(a). We note that,
in contrast to the MSD, the kurtosis depends on the shape
of ¢(7). For small inverse timescales 8, the K values show
that the PDF is platykurtic and converges to the Gaussian
value K = 3 for large B. In this limit we expect the LW to
converge to a normal random walk, for which the PDF is
Gaussian in a harmonic potential. From Egs. (7), (8), and Ap-
pendix B, the analogous behavior is found for uniform ¢(7r) =
10,27r/0](T), see Fig. 4(b). For small interval r, a Gaussian
emerges as

K ~3—2.47%7"

For an asymptotic power-law form ¢ (1) = /(1 + 7)™ sim-
ulations show that K assumes platykurtic values even for
o > 2 [Fig. 4(c)].

C. Relaxation dynamics

We now discuss the relaxation of the LW particle in the
harmonic potential with initial position xy # 0, i.e., po(x) =
8(x — xo) for different forms of the waiting time ¢(t). The
mean position is obtained as (x(¢)) = /7 Ty (t), where T, (¢) is
given through

x0-Z{cos(wt)¥(T)}
V(1 — ZL{cos(wt)p(1)})

With Z{cos(wt)f (1)} = 2 f(s + iw) + f(s — iw)] we get

Ti(s) = (12)

1—¢(s—iw) + 1—¢(s+iw)
S—iw s+iw (13)

Xo
VT 2= (s — iw) — $(s + iw)

f](S) =

(b) % =0 5Umform Distribution

FIG. 5. Simulation results of the relaxation dynamics of the
first moment (x(¢)) from 10* realizations each for vy = w = xy =
1. (a) Exponential waiting time PDF ¢(7) = Be™® with 8 =0.5
(circles) and B =2 (squares). The full, dashed, and dotted (with
B =4) lines represent the theoretical results. (b) Power-law and
uniform densities on [0, 277]. The lines are from numerical Laplace
inversion. Note the oscillatory behavior.

Xo(s+8) -
s2+w?+Bs’ LeE.,

(x(2)) = xoexp(—[B + v B* — 4?1t /2)
x L[V —1)//1 - 4o/ B2
+ (VI L) (14)

see Fig. 5(a). Thus the relaxation of the initial position is
exponential to leading order. For uniform ¢(7) on [0, 7] with
the Laplace transform ¢(s) = (1 — e~ 7%)/(T's),

R(s)) = [T (=s* + T + 0* + sTw?) + (s* — v?)
x cos(wT) — 2sw sin(wT)]/[(s* + w?)
x [T (—=s + s°T + Tw?) + scos(wT)
—wsin(wT)]], (15)

which we analyze numerically in Fig. 5(b). The case of a
power-law form for ¢»(7) can only be solved numerically after
plugging the asymptotic form ¢(s) ~ 1 — s into (13). The
resulting behavior is shown in Fig. 5(b).

In Fig. 5 we note the difference in the initial decay rate
and the final approach to zero. Curves with higher initial
decay appear to converge more slowly due to the apparent
oscillations. Their existence reminds one of inertia effects
known from classical oscillators. In the present model they
are likely due to the initial nonequilibrated speed v, for each
jump. However, the exact value of vy has no influence on the
average displacement, as seen from (13).

For an exponential ¢(7) we find (£(s)) =

IV. REFLECTING BOUNDARY CONDITIONS
AT THE ORIGIN

We now consider LWs in a harmonic potential with a re-
flecting boundary at x = 0. On the random-walk level, the ith
step begins at time #;_; at position |x;,_,| and it then moves to
x,, which may be negative. Then for the (i 4 1)th step we take
the absolute value of the end displacement of step i, |x,|, to
be the starting position of step i + 1. For the last step (n, such
thatz, + t > t), we also need the absolute value |x; | as the end
point of the walk. In order to solve this problem, we first con-
struct an auxiliary process whose last step is x; instead of |x;|.

To construct the auxiliary function we proceed as follows.
Changing the initial condition of Eq. (1) from x; to |x;|,
we have x, = Acos(ot’ + ¢y,), where A = Vx; + vj/w?

062127-4



LEVY WALK DYNAMICS IN AN EXTERNAL ...

PHYSICAL REVIEW E 101, 062127 (2020)

and @4y, = arctan(ﬁ) Denoting the auxiliary process as
Gaux (Xs, 1), changing Ve10c1ty direction at position x; at time
t, and taking p,x(x,?) as the PDF of finding the auxiliary

process staying at x at time ¢, we have

Gaux (X;, 1) — po(x)8(2)
=/ / Gaux (X—¢, 1 — T)
—00 J0
X V(Xy, Xp—r, T)P(T)dTdX— 1, (16)

J

1 , v v
— [ Xi—r + —5 cos | T + arctan
2 w WX;_¢

VX, X, T) = 6| X

Consider the property of the § function,

NEENED

= 0, and the sum in (18) extends over all roots. In order to utilize (18) to simplify v(x, t), we need

where x; is the root of g(x)
to solve the following equations first:

xt

T

From Eq. (19), there exists

o +v0

X = cos(wT) ——

which can be equivalently written as

J— _X[
cos(wt)

X _ v
__ ) cos(wr) w tan(a)r),
Xt—r =

)
2 tan(wt),

—v
— cos a)r -+ arctan
WXt ¢

Vo
X2+ — 5 €08 wr + arctan
WXy ¢

)X |

[ w2
xt T+v0

where v(x;, x;_;, T) = 18[(xt Acos(wt + ¢y,)] + 18[x,
Acos(@T + ¢@_y,)], Py, = arctan(ﬂ) for x;_; # 0, and
¢4y, = F5 Whenx,_, = 0. Accordmg to probability theory,
if we choose the initial distribution as py(x) = §(x), that is,
Xx;—r = 0 whent — v = 0, and the probability distribution at a
given point r = t is zero, then the probability of x,_; = 0 is
also zero when t — t # 0. Thus, without loss of generality, in
the following we only need to consider x;_, # 0. Moreover, it
can be verified that

1 v% Vo
+ =8| x — {/x*, + — cos | wT + arctan
2 w? WX

a7

8(x —x;)

; 18
g (xi) 1o

=0, (19)
=0. (20)
Vo X —¢ |

+ sin(wt)

9
Xi—oy 02X+ V]

ifx,_; > 0; )1
ifx,_; <O. @D

Moreover, it can be obtained that |g'(x,_.)| = | cos(wt)|, where here

U(2) —Vo
8() = x — |y + —5 cos | wt +arctan | — ) |.
w wy

Therefore we have

Ox,_
8 — A cos(@T + gay)] = (x—”)a(x _

| cos(wt)| cos(wt)

where ®(x) = 1 when x > 0, otherwise ®(x) = 0.

Vo
+ — tan(wr)) +
w

®(_-xtr)8<x . Xt

| cos(wT)| cos(wt)

Vo
+ — tan(wt)) ,
w
(22)

Combining the definition of v(x;, x,_,, T) and expression (22), we can rewrite Eq. (16) as

Qaux(xta t)

1 [ 1 < X Vo ) ( X Vo )
f — —tan(wt),t — 7 |® — —tan(w7) |¢(T)dt
0 |cos(a)r)| cos(wt) w cos(wt) o

+1/" 1 &y — e Y W, J
2 1, o (aiam o =)o (G + o Joc
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1 (! 1 X X
+ 5/0 | cos(wr) 7" (cos(wr) + -, an(n). 1 - T)O<cos(a)t) +— tan(wr))¢>(f)d1
1 4 1 ( Xt ) ( Xt Vo )
+ _/ qaux + - tan(wf) r—1 @ _ — tan(wt) ¢)(T)df +p0(x)5(t)
2 Jo |cos(wt)| cos(wt) cos(wt)

Again, we assume

{qaux (X, ), paux (X, 1)} =

(23)

Y Hy e (L), Tu(0)),

n=0

where H,(x) are Hermite polynomials and 7;,(¢), T,(t) are functions to be determined. Through the derivations in Appendix C,

we obtain for even integer m,

m 2
VA2"m! T, (s) — (=2)2 (m — D! = ZZ l"(;/i_zj])' <2v0>${[smm Hwt) + (= sin(wr))" ]
] 0 i=0
x cos*(wt)( — sin® (1)) ¢ (1)} Ti—2i(s) (24)
and
ﬁzmm!fm(s) ]ZOIZO:YZ'(Z__Z;)‘ (22()).,?{[5111'" Hwt) + (= sin(wt))"™™ k]
x cos* 2 (w1)( — sin®(w1)) W(T)} Tj_2i(s). (25)
For odd m we obtain the relations o f” " (s) and T, (s),
. S A TR =20 2wk i — o md] (2w
2"m\ T, (s) =2 2 [ —
V) ;, ,Zl'<21+1—21>'(m 2j - DIT(3 +i—j—n)22<'—f‘">< w > (26)

x L{sin ¥ N wr) cosP T (wr)( —

Note that for the reflected process the PDF pu(|x]|, 1)
can be given through py, (x|, 1) = paux(|x], 1) + paux(—|x], 7).
Similarly, we can obtain the approximate form of the station-
ary distribution pi . (x) by Egs. (24), (25), and (26). Some
results for approximate forms of lim,_, . 7;,(t) are given in
Appendix D. Figure 1(b) shows the reflected stationary PDF.

The MSD is [~ x2pw(x, )dx = [0 X% pax(x, )dx,
which indicates that the reflected and auxiliary processes
have the same MSD, as expected from the applicable method
of images. Consequently, the asymptotic value of the MSD
is given by (9). We note that the horizontal shape of the
PDF next to the reflecting boundary is a consequence of
the renewal character of the CTRW process. For positively
(negatively) correlated stochastic processes an accretion or
depletion of probability occurs at the boundary [48].

V. CONCLUSIONS

We considered LWs in a generic external harmonic po-
tential. Apart from being experimentally relevant, our results
answer the conceptual question whether and how LWs equili-
brate in soft confinement. Our analysis shows that LWs under
harmonic confinement equilibrate to a stationary PDF, that,
surprisingly, may be bimodal with peak locations x = Fvy/w.
However, the bimodality delicately depends on the model

sin(w1)) W(T)} T (s).

(

parameters. When the LW approaches a regular random walk,
monomodality is restored. For exponential and uniform ¢(t)
we also demonstrated that the stationary PDF in these limits
becomes Gaussian. While the stationary value of the MSD
is independent of the chosen form of ¢(7r) and thus in all
cases the tails of the stationary PDF always decay sufficiently
fast, higher-order moments depend on ¢ (7). This was dis-
cussed for the fourth-order moment entering the kurtosis K.
Our results for K show that the stationary PDF is always
platykurtic.

The bimodality of LWs in a harmonic external potential are
similar to the known results for spatiotemporally decoupled
LFs. While LFs are monomodal in a harmonic potential and
have diverging MSD, in steeper-than-harmonic potentials LFs
assume bimodal stationary PDFs. The main difference is that
the stationary PDF of LFs always have a power-law asymptote
and thus the kurtosis is either undefined or has a leptokurtic
value.

The relaxation dynamics, as discussed for the mean par-
ticle position, was studied by analytics and numerics for
the three scenarios of the waiting time density ¢(t). In
particular, we observe characteristic, pseudoinertial oscilla-
tions reflecting the “skater” formulation of the LW process
adopted here, namely, that each step starts with a fixed initial
speed vg. The results are analogous for the case of a reflect-
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ing boundary at the origin, for which we showed that the
PDF is horizontal at the boundary, in contrast to correlated
processes.

Following recent results for the onset of superdif-
fusion in LWs and their behavior in finite domains
[49], our work fills another gap in the description
of these widely used spatiotemporally coupled random
walks.

It will be interesting to obtain the first-passage and first-
arrival statistic from this model for LWs in an external
harmonic potential, generalizing recent results for unbiased
LWs [22]. These results may be relevant for the model-
ing of animal movement and search when confinement be-
comes relevant, for instance, due to home ranges. On a more

J

molecular basis LWs with a restoring, Hookean-type force
may be used to model arrival times of molecular motors or
their cargo in cellular environments when, for instance, the
cargo is held in an optical tweezer or when a displacement-
dependent effective force is being effected by a heterogeneous
environment.
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APPENDIX A: AUXILIARY CALCULATIONS FOR THE EIGENFUNCTION EXPRESSION
OF THE PROBABILITY DENSITY FUNCTION

Starting with expression (6), we now define (f(ax + b), g(cx 4+ d))

= ffooo f(ax + b)g(cx + d)e(“”b)zdx, which does not

satisfy linearity, and moreover, (f(ax + b), gcx + d)) # (g(cx + d), f(ax + b)). In the following, we first derive the recurrence

relations for 7,,(t),n =0, 1, . ..

oo

D (Hu(x), Hy GV T, (8) = Hyn(x0)8(2)

n=0

under the condition py(x) = §(x — x¢), which can also lead to the expression of g(x, t) according
to Eq. (6). By inserting (6) into (3) and multiplying by H,,(x),m =0, 1, ...,

integrating x over (—oo, 00) on both sides yields

_ly % xw $OT(t — 1)
_2Zf d’[< (cos(m)+ ta“("”)) H’”(x)>+<H”<cos<wr> wtan(“”)>’H’”(x)>] [cos(@o)

n=0

_ % Z/Ot dt[(Hn(y), H, (cos(a)r)y — % sin(a)t))> n <Hn(y), H, (cos(a)r)y n % sin(a)t))>]¢(t)Tn(t —1).  (AD
n=0

We involve the properties of the Hermite polynomials [47,50],

(Hpn(x), Hy(x))

with the Kronecker é function §,, ,,, and

n

= ﬁznn ksn,m , (A2)

Hyx+y) =Y. (nk)Hk<x><2y>"-k, (A3)

k=0

H,(yx)

5]
— Z J/11—21'()/2 -1
i=0

: 2i!
Y (Z-) ST H). (A4)

where | 7] is the biggest integer smaller than 3. Laplace transforming yields

o1

m L3l —2i—1

Hm (XO)
Jr2mm!

Similarly, we obtain the corresponding relation:

f;n (S) -

k=0 i=

m LJ 221 1

m—k . . . . N
Z i k),l,(”‘)) (=) + (=112 {sin" 4 @) cos (@)} Tri(s). (AS)

2 m—k . . : A
=33 o (5) 0+ D D Z e on s W) T, (A6

k=0 i=0

APPENDIX B: CALCULATION OF (x*(¢)) FOR LWs IN HARMONIC POTENTIAL
WITH UNIFORM WAITING TIME DISTRIBUTION

Here we calculate the fourth-order moment and the kurtosis of an LW in a harmonic potential and without boundaries for the
case of uniformly distributed waiting time density ¢ (t) defined on [0, 277 /w], r > 0. For this case, considering (7) and (8), the
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following results can be obtained:

lim To() = =2 lim Ty(t) = —=: lim 75(r) = 26— = 0=
Jlim o( = p, Jim o()—ﬁ, im 2( = d e A 2(t) = NN

247'rr(12v6‘ — ZOv%w2 + 5w4) — 8(4113 — 121130)2 + 3a)4) sin(4wr) + ( — 201)3 + 121)8602 — 30)4) sin(Snr).
9673/2rw3[40mr — 8sin(4nr) — sin(877)] ’

lim 74(t) = [247rvg + 115277 vf — 19207° Pvje® + 480m° P w* — 327 rvg cos(4mr) + 8 rug cos(87r) + Svg sin(4rr)
1—00

lim Tu(t) =
=00

— 1927272 vo sin(4wr) + 384w r2v(2)cu2 sin(4rwrr) — 9672’ w sm(4rrr) — 4v0 sin(8xrr) — 48722 v0 sin(8mr)
+ 487 r*vjo” sin(87r) — 127 r*w sin(87r) + vy sin(1277)] /[3847°/*r*w* (407 r — 8 sin(4rr) — sin(87r))].

Therefore,

3./ - - .
lim (1)) = 2 lim To(r) + 67 lim To(r) + 247 lim To(r)
t—00 4 t—o00 t—00 t—00

vg[24mr + 115271 — 327 r cos(4mr) + 8mr cos(8r) + Ssin(dmr) — 19272 % sin(4mr) — 4 sin(87r)
— 487 %r? sin(8rr) + sin(127 )] /[167°r*w* (407 r — 8 sin(4r) — sin(87r))], (B1)

and
llim K =[24nr + 1152737 — 3277 cos(4mr) + 8mrcos(8xr) + Ssin(4nr) — 1927272 sin(4rr) — 4sin(8xr)

— 487212 sin(87r) + sin(1277)]/[1672r* (40 r — 8 sin(4rr) — sin(87r))]. (B2)

The series expansion of the kurtosis for small interval sizes r then becomes

12 88
K~3— —p224 20 244y
Snr +1057rr +

APPENDIX C: DERIVATION OF THE RECURSIVE RELATIONS OF [f‘,, (s)} AND {75‘,, (s)} FOR THE AUXILIARY PROCESS
From (23) and gux(x, t) = Zzio H, ()c)e’)‘2 T, (1), there exists

ZH X)e ™™ T,(t) = / o ZH,,(x*)e*“')zTn(t — 1O )P(t)dT
0 n=0

e | cos(wT)|

+ % / e > Hy(—xH)e” L (0 — 1O )g(1)dT

o |cos(wt)| =

O T
+2/0 |COS(a)‘L')|nX:(;H"(x Je T,(t — 1)OM)¢(t)dt

+1/ ;ZW —x e Tt — 1)U )P(T)AT + pox)S (1), (C1)
0

| cos(wt)|

where x* = =% + % tan(wt ). Multiplying by H,,(x), m = 0, 1, ... on both sides of Eq. (C1), integrating over (—o0, co) with

cos(wt) . : )
respect to x, and changing variables yields

2 / " H OB (00 T )
/ / ZH (")H,, cos(a)t)y—l— —sm(wr)) VTt — 1)d(T)dT

/ / ZH (y)H — cos(wT)y — % sin(m))e*yz Tyt — T)p(z)dT
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/ / ZHn(y)H cos(wt)y — — sm(a)t)) > 2 —)o(t)dT

n=0
/ / ZH (y)H — cos(wt)y + % sin(wr))e*szn(t — D))t + Hn(0)5(2). (C2)

First we consider even m. For Hermite polynomials the symmetry relation H,,(x) = H,,(—x) holds for even m, and thus the
right-hand side of Eq. (C2) can be rewritten as

/ / ZH H,, cos(a)r)y + — sm(cm:)) - T,t — T)p(t)dT

/ / ZHn(y)H cos(wt)y — — sm(wr)) (= T)$()dT + Ha(0)5(1).

With the properties of the Hermite polynomials shown in Eqgs. (A3) and (A4), we find
2" m! T, (t) — (—=2)3 (m — DHNS(1)

m L3l 2i
= %ZXO:/ r:lv'(;/z_—zjj)v <2U0)[smm H(1) 4+ (= sin(w1))" ] cos* " H(wr)( — sin*(w1)) Ti_ai(t — T)p(T)dT.
Taking the Laplace transform with respect to 7, we finally obtain
2"\ T, (s) — (=2)2 (m — 1)
m % 2i
= %Z miyr2 (zvo)z{[smm (1) + (= sin(r))" ¥ cos* 2 (wr)( — sin® (7)) ¢()} T _a(s). (C3)

/! _ |
L it = )

Similarly, we assume that p,ux(x, ) = Z;O:O H,,(x)e‘)C2 T,.(1), and it then follows that
ﬁzmm!fm(s)
| — AN ) , .
= ZZ e ( vO)i”{[sm’" @) + (= sin(@0)"H cos 2 (r)( = sin* (@O WO i2(s), (C4)
il(m— j
j=0

where W(7) = froo ¢(t')dt’ is the survival probability.
For odd m, the Hermite polynomials satisfy the antisymmetric relation H,,(x) = —H,,(—x); therefore the right-hand side of
Eq. (C2) can be rewritten as

1 3 ! 200 mej o . o ,
Z Z Z/ T 21n)1'(m T |:<— sm(a)t)) cos’ Z(wr)(— s1n2(wt))‘/0 H;_»(y)H,(y)e ™ dy

0 j=0 i=0

:

21)0 . nJ i—2i .2 i 0 —y?
+ (—7 sm(wt)> (= cos(wt)) ™ (= sin“(wT)) / H;_»(y)H,(y)e™ dy

+

m—j o0
<_@ sin(wt)) cos’ 2 (wr)(— sinz(a)r))i/ Hj—2:(»)H, (y)e™ dy
w

2y " 2 -
+<—sm(wf)) (— cos(wt)) % (—sin (wf))’/ i—2i(VH(y)e Ydy | (0T, (¢ — 7)d, (C5)
w

which indicates that when m is odd, j in Eq. (C5) must be odd as well; otherwise expression Eq. (C5) equals zero. Therefore
Eq. (C5) can be further rewritten as

mj
oo L3l

' m—2j—1
Z Z / m! <2v0 Sln(a)f)) s 12 (or)( — sin®(wD))
n=0 j=0 i=0 Y0 H2j+1-20)(m—-2j—1)!
= 0
* |:/ Haj1-2i () Hy()e™ dy — / H2j+1—2i(Y)Hn(y)e‘«‘"dy} T,(t — T)¢(t)dr, (C6)
0 —00
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which indicates that when 7 is odd, Hyj41—2;(y)H, (y)e‘v"2 is an even function, and furthermore, fooo Hyj1-0i(y)H, (y)e‘yzdy —
fi) o H2 j+1_2,~(y)Hn(y)e’>'2dy =0, i.e., Eq. (C6) is zero. Therefore, odd terms of 7,,(¢) disappear and there exists

oo LF] m—2j—1
m! t (2 / 5 il ai ) .
om 'T =2 Jj+1-2i _ 2 i
2" m! T, (1) ,? . jE . ;0 1 T 1= 20m —2j =) / (— sm(a)t)) cos (07)( — sin“(w7))
x / Haj1—2i(0)Han(0)e ™ dyTa (t — T)p(z)d . (€7
0

We now use the following property of the Hermite polynomials [51]:

VI F (2 + 1 2i), —2n;1 — 2220 1]
217(2j+172i)72n1'“(1 _ 2j+21 2 I’l)

’

o0
2
/ Hyjr1-0:(0)Hon(y)e ™ dy =
0
where ,F(a, b; c; d) is the hypergeometric function, defined as

o (@)n(D), 7"
2Fi(a, bye;d) = —_
nZ:; ), n!

Here (d), represents the Pochhammer symbol,

@, = |\ ifn =0;
"Z1dd+1)---d+n—1), ifn>0.

After taking the Laplace transform with respect to ¢ of Eq. (C7) we have

o L3l '«/_ . . ! m—2j—1
m SR[-Qj+1-20), 2mi+i—j—mi] [2u
2"m!T, 2 =
VAT =23 3 ~

S i@+ 1= 20 m—2j — DT (3 l—]—n)22(’ ) (C8)
x L{sin" " N (wr) cos® T2 (wr)( — sin®(w1)) ¢(1)} T (s).
Similarly, for odd m we obtain the relations of f ».(s) and Ta,(s),
x W R [—Q2j+1—20), —2n;4 +i— ;4 209\ " H!
ST m\ T (s) = 2222 i i~ 2] ). ~2m g +i—j—nig] (ﬂ)
0 =0 7 il2j+ 1 —2)(m — 2]—1)'1"( +t—]—n)22(l I=m\ w (C9)

x L{sin™ 2 w1) cos® T (wr)( — sin®(w1)) W(1)} Tan(s).

APPENDIX D: APPROXIMATE STATIONARY DISTRIBUTION FOR LEVY WALKS IN HARMONIC POTENTIAL
WITH FREE AND REFLECTING BOUNDARY CONDITIONS

In this section we mainly provide the approximate results for the stationary PDF for LWs in a harmonic potential when the
duration of individual walk steps 7 follows the exponential density e~*. For simplicity of calculations we take vo = w = 1. First
we provide results for free boundary conditions and py(x) = 8(x), and in this case the odd terms of {7,,(¢)} and {T,(t)} vanish.
Therefore it is sufficient to consider the even terms, which can be represented as the recurrence formulas as (7) and (8). The
behaviors of Ty(t), To(t), . .., Ti2(t) for t — oo are then

o ' . 5
tlgglo To(t) = «/_; tlgglo Tr(t) = m tlggo T4(t) = —m,
b Ty = By 146606719
e T 028 e 8 T 5558830238720/
L. 39362159928909
lim Tio(t) = — 5

t—00 30088502786329292800./7

198428708025937940281
4895922461868213486986035200./7

lim T,(¢) =
—>00
The approximate stationary distribution

it ~ . = 2
O Z(;JLI& Ton(1)Han (x)e ™

is shown in Fig. 1.
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For the case of a reflecting boundary, the behaviors of Ty(¢), T>(t), . . ., Tj2(¢) are obtained from Egs. (24) and (25) as follows:

- 1 - 1 . 5
tlgloloTo(f)——n, IlggloTz(f)— Wea tlggon(t)——%zﬁ,
. . 112707
lim T5(0) = == lim Ty(0) = o
M 150 = = ooz A0 = 35007728
s 151918210141 L. 154859416018475893
lim Tyo(t) = — ;0 lim Tip(t) = .
t—00 118676969381273600./r -0 3862161199753787756052480./7
For the odd terms, due to the involved terms we only use Ty(t), T>(?), . . ., T3(¢) for their approximate calculations, then utilizing
Eq. (26) leads us to the following results:
L 2124385847 L 6463601801 L~ 18361300219
Iim 1) ————; lIim G~ ———; lim T5(¢) ~ — ;
1—00 2740686080 = t—oo 164441164800 = t—oo 3420376227840x
L 687695174759 L - 70824923727473
lim 77(t) ~ — ;0 lim To(t) = ;
1—>00 3990438932480000r = 1—oe 706786543720857600007
1483140637545367

lim Tll(l) ~ — .
=00 17245591666788925440000

Finally, p (x) ~ 2'112:0 lim, _, o T, (¢ )H,l(x)e”‘z, showing good convergence for the involved number of terms. The stationary
PDF for the case of a reflecting boundary is then pj (x) = pi, (x) + p5(—x) forx > 0.
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