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We consider the statistical properties of arrival times and balls on first-passage percolation (FPP) two-
dimensional square lattices with strong disorder in the link times. A previous work showed a crossover in
the weak disorder regime, between Gaussian and Kardar-Parisi-Zhang (KPZ) universality, with the crossover
length decreasing as the noise amplitude grows. On the other hand, this work presents a very different behavior
in the strong-disorder regime. An alternative crossover length appears below which the model is described by
bond-percolation universality class. This characteristic length scale grows with the noise amplitude and diverges
at the infinite-disorder limit. We provide a thorough characterization of the bond-percolation phase, reproducing
its associated critical exponents through a careful scaling analysis of the balls, which is carried out through a
continuous mapping of the FPP passage time into the occupation probability of the bond-percolation problem.
Moreover, the crossover length can be explained merely in terms of properties of the link-time distribution. The
interplay between the characteristic length and the correlation length intrinsic to bond percolation determines the
crossover between the initial percolation-like growth and the asymptotic KPZ scaling.
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I. INTRODUCTION

Geometry on random manifolds presents both applied
and fundamental interest, with applications ranging from the
physics of polymers and membranes [1,2] to quantum gravity
[3–5]. Specifically, geodesics and isochrones on random man-
ifolds, corresponding to non-Euclidean versions of straight
lines and circumferences, present a very rich behavior [6,7]. It
was recently shown that, in the case of random surfaces which
are flat on average and with short-range correlations in the
curvature, geodesics present fractal structure, governed by ex-
ponents corresponding to the celebrated Kardar-Parisi-Zhang
(KPZ) universality class [8] describing random interfacial
growth [9–12]. Specifically, the lateral deviation of a geodesic
joining two points separated an Euclidean distance L scales
like L1/z, where z = 3/2 is the dynamical exponent of KPZ.
Moreover, the deviation of the arrival times scales like Lβ ,
with β = 1/3, and their fluctuations follow the Tracy-Widom
distribution for the lowest eigenvalues of random unitary
matrices [13–15].

When the manifold is discretized the problem is called
first-passage percolation (FPP) [16–18]. Given an undirected
lattice, e.g., Z2, a randomly chosen link time t is assigned
to each edge between neighboring nodes. Link times are
independent and identically distributed random variables with
common probability density function f (t ) and cumulative
distribution function F (t ). Notice that for the model to present
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the structure of a metric space we must assume F (0) = 0. This
problem bears a strong relation with the directed polymers in
random media (DPRM) [19–21], where we study the free-
energy fluctuations of a polymer on a random surface. FPP
results have been successfully applied to magnetism [22],
wireless communications [23], ecological competition [24],
and molecular biology [25].

The main objects of study in FPP are geodesics, i.e.,
minimal time paths joining pairs of points, and balls B(T )
given by the set of nodes which can be reached from the
origin in a time less than T . There are some rigorously proved
results, such as the Galilean invariance, z(1 + β ) = 2 [26].
A shape theorem has been proven [27–29], stating that when
the lattice structure is properly smoothed out, the ball B(T )
grows linearly with T and has an asymptotic shape B0 which is
nonrandom. Moreover, for suitable conditions on the moments
of F , B0 is a convex set with nonempty interior, and it is either
compact or equals all of Rd [29].

In a previous work [30] we showed that FPP presents
alternative features over the continuous version of the problem
in the weak disordered regime. For weakly degenerated lattice
directions (which can be found in both regular and disordered
lattices), KPZ universality appeared beyond a characteristic
length, dc ∼ (τ/s)2, where τ and s are, respectively, the mean
value and standard deviation of the link times.

Yet, for a strong noise, i.e., s � τ , the characteristic length
dc < 1 cannot play the same role. In some relevant cases, s
and τ might even be ill-defined. Indeed, in the strong-disorder
regime, link times encompass several orders of magnitude. A
limit case is given by the Bernoulli distribution, in which link
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times can be zero with probability p = F (0). If we identify
now zero-time links with open bonds in a connected lattice,
we are effectively mapping our system to a problem of bond
percolation [21,29,31]. Thus we have critical FPP defined by
condition F (0) = pc [32–36] and supercritical FPP defined
by F (0) > pc [37–39], where pc is the critical probability
in bond percolation [31]. For F (0) � pc there exists an in-
finite connected set of edges with zero crossing time so that
traveling across this infinite cluster costs no time [40]. As a
consequence, the route between two lattice nodes will always
stay within the infinite cluster except for a few edges [37].
Furthermore, it has been shown that the asymptotic shape B0

equals all of Rd if and only if F (0) � pc [41,42].
Much effort in critical FPP has been devoted to the analyt-

ical study of the time constant μ, defined as the limit of the
passage time to a site (or to some boundary) normalized by its
distance from the origin, as the distance goes to infinity. This
limit has been proven to exist for suitable conditions on the
moments of F [43], and μ = 0 if and only if F (0) � pc [29].
Indeed, the existence of large clusters with zero-time edges
leads to a passage time that grows at most logarithmically with
distance, yielding a zero-time constant [32,33,35]. Previous
work has focused on the characterization of the asymptotics
of this arrival time by conditions on the distribution func-
tion F [32–36], yielding relevant results such as a universal
expression for the time constant on two-dimensional lattices
[33], the proposition of a central limit theorem for the passage
time [35,36], or a relation between critical FPP and invasion
percolation [32].

The geometry of the minimal paths has also been a matter
of study [44]. In the early 1980s, Ritzenberg and Cohen
considered shortest paths on a percolation cluster beyond
criticality, i.e., spanning an infinite number of nodes [45],
computing their fractal dimension. Kerstein and coworkers
considered FPP with two possible link times, a slow one and
a (extremely) fast one [46–48]. They describe, as the density
of slow links increases, a crossover from chemical to contact
propagation. Chemical propagation describes geodesics that
employ only fast links, while contact propagation refers to
the use of slow links to jump from cluster to cluster. In
the first case, the conduction rate is limited by the geodesic
tortuosity, i.e., the average number of links along a typical
fast path. For contact propagation, on the other hand, the
conduction rate is limited by the ratio of slow bonds. The
crossover between both regimes takes place at the percolation
threshold. Geodesics on critical and supercritical percolation
clusters were studied by several authors [32,35,37–39,49], and
a correspondence between geodesics on critical percolation
clusters and Schramm-Loewner evolution curves has been
recently put forward [50], lending support to the idea that they
might be conformally invariant [51].

In this article, we characterize the statistical properties
of arrival times and balls on strongly disordered networks.
Our purpose is to study the behavior of the model close to
the critical case discussed so far, but keeping the condition
F (0) = 0 that is necessary for it to represent a metric space.
We propose a mapping of the passage time into the probability
p of a bond being open, which allows us to map the FPP
problem into a family of bond-percolation problems. Making
use of detailed numerical simulations, we show how the

scaling exponents of percolation theory map into those of
the geodesic behavior below a certain crossover length, above
which the geodesics attain the standard KPZ behavior. This
crossover length increases with the noise amplitude and seems
to diverge for infinite noise, which leads us to conjecture that
this limit might be related to the critical or supercritical FPP
cases, depending on the link-time distribution.

This article is organized as follows. Section II presents the
first-passage percolation model and our basic assumptions.
Next, in Sec. III we compare the statistical properties of
the arrival times in the weak and strong disorder regimes.
The mapping of the FPP problem into bond percolation is
addressed in Sec. IV, where we also present a comprehensive
scaling analysis of the FPP balls that recovers the critical
exponents of percolation. In Sec. V we propose a model
for the characteristic length that controls the extent of the
percolation domain. Large-scale behavior and the crossover
towards standard KPZ scaling is described in Sec. VI, in
which we also discuss the transition between the weak and
strong disorder regimes. Section VII is devoted to a summary
of our conclusions and our ideas regarding future work.

II. MODEL AND DEFINITIONS

Let us consider a L × L square lattice (odd L), with nodes
xi and a central node x0 = (0, 0). We assign a link time
t (xi, x j ) to each pair of nearest-neighbor nodes, xi and x j .
Given a path � = {x0, x1, . . . , xm} joining the center to site
xm, in order to traverse that path we would need a time

T� (xm) =
m∑

i=1

t (xi−1, xi ). (1)

We define the arrival time as the minimal value over all paths
reaching arbitrary node x from x0:

T (x) ≡ min
�

{T� (x)}, (2)

and the corresponding path is the geodesic or optimal path
to that point. For a continuous distribution of link times the
geodesic will be unique. Let us remark that arrival times can
be efficiently obtained for all sites making use of Dijkstra’s
algorithm [52]. Finally, we also define the ball B(T ) as the set
of nodes which can be reached in a time smaller than a certain
value T .

We consider the case in which link times are independent
and identically distributed random variables with common
probability density function f (t ) and cumulative distribution
function F (t ), with the only constraint of positivity: F (0) = 0.
If they exist, the link-time distribution is characterized by a
mean value τ and a variance s2,

As discussed in the introduction, it has been shown that
the appearance of KPZ universality for weak disorder is ruled
by a direction-dependent crossover associated with the so-
called geodesic degeneracy, i.e., the number and structure
of the geodesics joining two points in the absence of noise
[30]. Indeed, a characteristic length dc was found both in
the square lattice and in random Delaunay triangulations,
determining a crossover between Gaussian and KPZ behav-
ior. This crossover length can be conventionally defined as
dc ≡ τ 2/(3s2) = (3CV2)−1, where the numerical factor 3 is
inserted for later convenience and CV is the coefficient of
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variation, CV = s/τ . Notice that dc decreases as the noise
increases. Arrival times to sites along the axis of a square
lattice at a distance x � dc follow Gaussian statistics and KPZ
statistics for x � dc. Indeed, in that case the geodesic will
not deviate from the straight line up to a distance ∼dc. This
behavior is expected to occur along nondegenerate directions
of regular lattices and in low degenerated random lattices such
as Delaunay triangulations. On the other hand, for disordered
distributions with τ < s (CV > 1) thus giving dc < 1 we enter
the strong disorder regime, and the statistical properties of the
arrival times change considerably.

Uniform link-time distributions have necessarily dc > 1
(note that CV < 3−1/2). Yet other distributions interpolate
smoothly between these two regimes. We require link-time
distributions to uphold the following properties: (a) the link
times must be always positive and (b) the range of disor-
der must be large, i.e., for some range of the distribution
parameters, the deviation must be larger than the average
value. We have chosen three distributions fulfilling those
requirements: Weibull, log-normal, and Pareto. They have
been chosen because their mathematical expressions allow a
simple analytic treatment. Furthermore, the strength of the
disorder can be easily tuned through a single parameter, which
is usually called the shape parameter. The mathematical
expressions for the probability density function f (t ) and the
cumulative distribution function F (t ) of those distributions
are the following:

(i) The Weibull distribution, Wei(λ, k):

f (t ) = k

λ

(
t

λ

)k−1

exp[−(t/λ)k],

F (t ) = 1 − exp[−(t/λ)k]. (3)

The results displayed in this work do not depend on the
scale parameter λ, so we have considered λ = 1 in all the
numerical simulations. As we will see, it is the so-called shape
parameter k which completely determines the strength of the
disorder.

(ii) The log-normal distribution, LogN(μ, σ ):

f (t ) = 1

t
√

2πσ 2
exp

[
− (ln t − μ)2

2σ 2

]
,

F (t ) = 1

2
+ 1

2
erf

[
ln t − μ√

2σ 2

]
. (4)

The above comment about the parameters of the Weibull dis-
tribution also applies here to parameters μ and σ , respectively.

(iii) The Pareto distribution, Par(tm, α):

f (t ) =
{

αtα
m

tα+1 if t � tm
0 if t < tm

,

F (t ) =
{

1 − ( tm
t

)α
if t � tm

0 if t < tm
,

(5)

with the above remark applying to scale tm and shape α

parameters, respectively.
We will refer as the homogenous case to the case with no

noise, i.e., when link times follow the δ distribution f (t ) =
δ(t − τ0) so they present a uniform value τ0. The homoge-
neous case is obtained at the following limits of the above

distributions:

lim
k→∞

Wei(λ, k) = δ(t − λ),

lim
σ→0

LogN(μ, σ ) = δ(t − eμ),

lim
α→∞ Par(tm, α) = δ(t − tm).

(6)

The value of dc can be expressed in a closed form for all of
them. For the Weibull distribution,

dc(k) = 1

3

�2
[
1 + 1

k

]
�

[
1 + 2

k

] − �2
[
1 + 1

k

] , (7)

and the crossover value of k for which dc = 1, denoted here
as k
, is

k
 ≡ k(dc = 1) ≈ 1.79. (8)

For the log-normal distribution we have

dc(σ ) = 1

3

1

eσ 2 − 1
with σ 
 ≈ 0.54, (9)

and for Pareto

dc(α) = 1

3
α(α − 2) with α
 = 3. (10)

Note that the last expression holds only for α > 2 since the
standard deviation s diverges when α � 2 and the mean time
τ diverges if α � 1. For α � 2 we shall assume that dc = 0.

In all three cases dc is a monotonic function of the shape
parameter: it decreases and approaches 0 as the dispersion
of the distribution increases (k → 0, σ → ∞ and α → 0)
and diverges as the distributions approach the δ distribution
(k → ∞, σ → 0 and α → ∞). In order to unify our de-
scription we introduce the concept of order factor to identify
the distribution parameter which, when increasing, makes the
strength of disorder decrease in a monotonic way. We thus
identify k, σ−1 and α as the corresponding order factors of the
above distributions. For the sake of clarity we will denote this
order factor by ω. As a result of this convention, dc is always
an increasing monotonic function of ω, and the homogeneous
case is obtained at the “infinite order” limit ω → ∞ of the
distribution [see Eq. (6)]. Accordingly, the opposite limit ω →
0 will correspond to the limit of “infinite disorder.” We also
introduce the symbol ω
 to denote the value of the order factor
yielding dc = 1: dc(ω
) = 1. In other words, ω
 determines
the crossover point between the weak (ω � ω
 and dc � 1)
and the strong (ω � ω
 and dc � 1) disorder regimes. We
will employ the term order factor and the symbol ω when we
discuss generic properties which apply to all the considered
distributions.

Before going in depth into the analysis of the model, it
is worth having a look at the different behaviors at both
sides of this divide. Figure 1(a) shows the FPP ball B(T )
obtained at T = 25 on a L = 101 lattice whose link-crossing
times are drawn from a Weibull distribution with λ = 1 and
k = 2, for which dc ≈ 1.22. The final ball appears rough, and
indeed this roughness can be shown to correspond to the well-
known KPZ universality class. Colors provide information
about the arrival time to all sites within the ball, which we
can see to behave in a reasonable smooth way. On the other
hand, Fig. 1(b) corresponds to T = 0.1 for a distribution with
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(a) (b)

FIG. 1. (a) FPP ball corresponding to T = 25 on a square lattice, for a link-time Weibull distribution Wei(1,2). Colors are associated to
different arrival times. (b) FPP ball corresponding to T = 0.1 when the link times are drawn from Wei(1,0.1). Notice that the crossover value
of the order factor is k
 ≈ 1.79.

λ = 1 and k = 0.1, for which dc ≈ 2 × 10−6. Notice that the
aspect of the ball is much less round, with abundance of
cavities. Another salient feature is the sharpness of the color
gradation. Instead of a smooth variation, we can determine
clear boundaries within the ball.

III. FLUCTUATIONS OF THE ARRIVAL TIMES: FROM
WEAK TO STRONG DISORDER

Let us explore numerically the statistical properties of
the arrival times using a L × L = 2001 × 2001 lattice and
link times drawn from the distributions presented above with
different values of the order factor, in order to interpolate
smoothly from the weak to the strong-disorder regimes. More-
over, we will always average over Ns = 104 samples, unless
otherwise stated. As in Fig. 1, most of the results displayed
hereafter will be obtained from the Weibull distribution, for
which the crossover value of the order factor is ω
 = k
 =
1.79. The simulations performed using the other distributions
show that they behave in a similar manner. The very few
cases where significant differences appear with respect to
the Weibull distribution will be discussed. In addition, when
necessary, results will be appropriately rescaled by statistical
measures of the link-time distribution such as τ or s, so they
will be independent of parameter λ, which will always be
taken as 1.

Let us consider the average arrival time in units of the
average link time, 〈T 〉/τ , for sites on the axis as a function
of their Euclidean distance to the center, x = ‖x‖. In the weak
disorder regime [30] this magnitude grows linearly with the
distance for x � dc, and the slope continuously decreases as
the order factor decreases. This slope represents the inverse of
the normalized velocity of growth and is closely related to the
time constant μ discussed in the introduction. It is bounded
from above by the trivial value obtained in the homogeneous
case (ω → ∞): 1 in the axis and

√
2 for the diagonal, leading

to balls with diamond shapes. As the order factor decreases,
the slopes found in all lattice directions decrease (velocity

increases), and when ω approaches the crossover value ω


(dc → 1), they become equal, thus explaining the circular
shape of the balls in average [see, e.g., the ball shown in
Fig. 1(a)].

Figure 2(a) shows 〈T 〉/τ as a function of the distance
x along the axis, when the link times follow the Weibull
distribution with k = 0.2. The arrival time seems to approach
a linear growth with distance, with a slope much smaller than
one. For reasons that will become apparent soon, we have
employed two different sample sizes: Ns = 103 (solid squares)
and Ns = 104 (red open circles), which coincide perfectly.
Figure 2(b) shows the values of 〈T 〉/τ as a function of the
distance x when the link times are drawn from a link-time
distribution with a much lower value of the order factor
k = 0.03, i.e., deep in the strong-disorder regime (k � k
).
In this case, the times of arrival appear scattered, without
a clear dependence on the distance. Moreover, the data for
Ns = 103 (solid squares) and Ns = 104 (red open circles) are
statistically different. This fact suggests that the arrival times
in this regime are very difficult to sample, pointing to an
extremely broad distribution.

To understand this behavior we have displayed in Fig. 3
the distribution of the arrival times to a given node x, denoted
by gx(T ). In Fig. 3(a) we have considered a fixed position
along the axis, x = 500, and link-time distributions of the
form Wei(1,k) for different values of k. Figure 3(b) displays
the results for the strongly disordered case with k = 0.03 at
different points along the axis.

In the weak-disorder regime, the distribution of arrival
times at distance x � dc has been shown to follow the
Tracy-Widom distribution for the Gaussian unitary ensemble
(GUE) [13–15,30], which appears in Fig. 3(a) (case k =
2) in the form of a small and sharp peak (notice the log
scale). However, as the disorder strength increases the distri-
bution becomes right-skewed with the arrival time spanning
an increasing range of orders of magnitude. The distribu-
tion still presents a well-defined mode that moves towards
smaller values and that is followed by a increasingly longer
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FIG. 2. Average passage time, rescaled to the mean link time τ ,
to nodes at a distance x along the axis for the Weibull distribution
with k = 0.2 (a) and k = 0.03 (b). Results from two ensembles with
Ns = 1000 and Ns = 10 000 samples have been represented in both
cases with black squares and red open circles, respectively.

tail displaying a power-law scaling ∼T −1 as k → 0. As as
consequence, for extreme disorder the mean arrival time is
not well defined, and its average value is dominated by
the largest value: 〈T 〉(x) = 1

N

∑N
i Ti(x)  1

N Tmax N (x), where
Tmax N (x) = maxi{Ti(x)}, which certainly depends on the sam-
ple size, thereby explaining the results displayed in Fig. 2(b).

Let us now focus on the dependence of the passage-time
distribution on the distance for highly disperse distributions
[case k = 0.03, Fig. 3(b)]. We observe that the right tails of
the skewed distributions merge into a single decay regardless
of the position of the target point. This result, together with
the max principle stated above, explains the independence of
the average time 〈T 〉 with distance displayed in Fig. 2(b).
Furthermore, as we move away from the center node, the dis-
tributions seem to approach a limit function, which suggests
that the minimum arrival time required to reach any lattice site
is independent of its position. The existence of such minimal
arrival time is evidence of criticality in the model.

Another physical quantity of immediate interest in the
study of the FPP model is the standard deviation of the arrival
times. In the KPZ regime (ω � ω
 and for x � dc) it scales as

FIG. 3. Histogram of passage times T to (a) site at distance x =
500 along the axis for different values of k and (b) different sites
along the axis for the same value of k = 0.03. The dotted line in
panel (a) indicates the scaling ∼T −1.

σT ∼ xβ , with β = 1/3, following the Family-Vicsek ansatz.
This standard deviation also corresponds to the roughness of
the balls [6] and is analogous to the free energy fluctuations in
directed polymers in random media (DPRM) [21].

In Fig. 4 we have plotted the standard deviation of the
arrival time σT , in units of the deviation of the link-time
distribution, s, to nodes on the axis as a function of their
distance x to the center. In all cases we are employing the
Weibull distribution Wei(1,k) for different values of k which
have been indicated along with the corresponding dc. For k >

k
 (k = 2 up to k = 30) we observe the well-known crossover
from Gaussian towards KPZ scaling, with a behavior σT ∼
x1/2 for d � dc and σT ∼ x1/3 for d � dc [30]. Moreover,
for x = 1 we have σT /s ≈ 1 because the geodesic from a site
to its neighbor usually consists of traversing the link joining
them. On the other hand, for k < k
 we observe that σT /s at
x = 1 is always below 1, and it decreases very fast as k → 0
implying that the geodesic between a site and its neighbor
is certainly nontrivial. This fact suggests that geodesics in
the strong-disorder regime can take long excursions in order
to cover short distances on the lattice. Indeed, the geometric
constraints imposed by the lattice are removed by the disorder,
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FIG. 4. Standard deviation σT of the arrival time to nodes at
distance x in the axis of the square lattice with link times following
a Wei(1,k) distribution, normalized to the standard deviation of the
link-time distribution s. The corresponding values of dc are calcu-
lated from Eq. (7). Dotted lines represent Gaussian preasymptotic
growth (β = 1/2), and dashed lines denote KPZ scaling (β = 1/3).
Vertical segments in curves with dc < 1 (k < k
) indicate the value
of length �k (Tc ) obtained from the chain model presented in Sec. V.
Gray rectangles represent the interval [�k (T (p = 0.99)), �k (T (p =
0.999))], as discussed in Sec. VI.

and the geodesics are never constrained to follow the axis
(such as in the Gaussian regime for k > k
 and x � dc) and
explore the space freely in any direction.

Moreover, Fig. 4 shows that below k
 there appears an in-
creasingly long different pre-asymptotic regime along which
fluctuations do not increase with distance. As indicated in the
figure with the dashed lines, the KPZ regime σT ∼ x1/3 is
always recovered for sufficiently large distances. Clearly the
crossover point between both regimes increases as the order
factor decreases. In the figure we have indicated with vertical
segments and shadowed intervals theoretical estimates for the
location of this crossover length according to the calculations
that we present later. See Sec. VI for an explanation and
discussion of these estimates.

A thorough explanation of the results presented in this
section will be given in the following sections.

IV. MAPPING OF FPP UNDER EXTREME DISORDER
INTO BOND PERCOLATION

Strongly disordered link-time distributions lead to an in-
teresting phenomenon: the arrival time, which is by definition
the sum of all link times along the geodesic path, is dominated
by its largest term. Then we can assert that

T (x) = min
�

m∑
i=1

t (xi−1, xi ) ≈ min
�

{
max

i
{t (xi−1, xi )}

}
, (11)

i.e., arrival times follow a min-max principle, for which we
provide evidence in the Appendix. If this principle holds
exactly, the set of points which can be reached in time T
corresponds to the set of points for which there is a path which
never crosses a link with crossing time larger than (or equal to)

T . Moreover, the perimeter of the ball will be surrounded by
links with crossing time t � T . Thus, a clear connection with
percolation can be established: the FPP ball obtained at time
T , B(T ), corresponds to the cluster obtained in an equivalent
bond percolation problem in which open bonds correspond to
those FPP links with crossing times lower than T , whereas
closed bonds are given by the FPP links with crossing time
above T . To establish this equivalence we need to define the
probability p of a bond being open (1 − p of being closed).
Under the assumption made in Eq. (11) this probability is
given by the cumulative distribution function of the link times
evaluated at time T :

p = F (T ) =
∫ T

0
f (t ) dt . (12)

This section is devoted to providing strong evidence that
under extreme disorder conditions the FPP problem can be
mapped into a bond-percolation problem through relation
(12), which is the cornerstone of this work. Clearly the inverse
transformation is given by T = F−1(p). For example, for the
Weibull distribution we obtain

p(T ) = 1 − exp[−(T/λ)k],

T (p) = λ[− ln (1 − p)]1/k . (13)

Notice that p(T ) increases continuously with T , with p(0) =
0 and p → 1 as T → ∞. Also, the passage time corre-
sponding to a given probability decreases monotonically as
k decreases, approaching 0 as k → 0.

We will show that FPP balls with arrival time T are equiva-
lent to bond-percolation clusters obtained at bond probability
p = F (T ). The mapping given in Eq. (12) will allow us to
obtain some of the most relevant critical exponents of the
associated percolation problem from the scaling analysis of
the FPP geodesic balls. In the analysis we will use the standard
notation of percolation theory [31]. Since we are interested
in the strong disorder regime we have to consider very low
values of the order factor ω � ω
. In the case of the Weibull
distribution we shall focus on three values: k = 0.03, 0.01,
and 0.005, because they are sufficiently low to display the
transition to the percolation phase at a reasonable computa-
tional cost (we recall that k
 ≈ 1.79).

A. Ball size distribution

Percolation theory [31] deals primarily with the statistical
properties of clusters of neighboring sites that are occupied
(site percolation) or connected by open bonds (bond perco-
lation), when each site (or bond) is occupied (open) with a
probability p. The critical point or percolation threshold pc

is defined as the minimal probability p for which an infinite
percolation cluster is formed in an infinite lattice. Near the
critical point the system is characterized by a set of critical
exponents that are independent of the type of percolation or
the lattice geometry, and they depend only on the dimension
D of the lattice. On the other hand, the percolation threshold
varies with all these factors. For bond percolation in a D = 2
square lattice it is pc = 1/2.

Let ns(p) be the number of clusters of size s (i.e., with
s sites), divided by the total number of lattice sites. This
observable is known to present the following scaling relation
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FIG. 5. Ball size distribution, derived from the probability Ws of
obtaining a FPP ball with size s, using Eq. (16), for crossing times
following a distribution Wei(1,k) with k = 0.03, 0.01, and 0.05, and
for the arrival time T , which corresponds to p = pc = 1/2 according
to Eq. (13). These arrival times are, respectively, T = 4.95 × 10−6,
T = 1.21 × 10−16, and T = 1.46 × 10−32. The broken line indicates
the scaling given in Eq. (15).

near criticality (p → pc) and for large clusters (s → ∞):

ns(p) = s−τ g[(p − pc)sσ ], (14)

where g(z) is a scaling function that approaches a constant
value for |z| � 1 and decays exponentially for |z| � 1. This
scaling relation introduces a crossover size sξ , which scales as
sξ ∼ |p − pc|−1/σ , such that

ns(p) ∼ s−τ for s � sξ . (15)

Beyond sξ , the power-law behavior fails, and the number of
clusters decays fast. In two dimensions we have τ = 187/91
and σ = 36/91.

In an FPP framework we do not have access to this number
of clusters. Yet, given a fixed arrival time T , we can estimate
the probability that the FPP ball contains exactly s sites,
denoted here by Ws(T ). Since the center node always belongs
to the FPP ball, this value can be mapped, in the percolation
language, to the probability that a randomly chosen cluster
site will be part of a cluster of size s. Let ws(p) be the
probability (in the percolation problem) that the cluster to
which a randomly chosen occupied site belongs has size
s. It is easy to show that ns(p) = pws(p)/s. We can now
relate Ws(T ) and ws(p) through the mapping between arrival
times and occupation probabilities given in Eq. (12), so we
have ws(p(T )) = Ws(T ). Thus, for a given arrival time T , we
propose that our FPP ball distribution is given by

ns(p(T )) = p(T )Ws(T )

s
. (16)

Our analysis of the statistics of the FPP balls begins in
Fig. 5, in which we show the ball size distribution calculated
from Eq. (16) for the three Weibull distributions of reference
and for arrival times corresponding to the critical probability
pc = 1/2. We first observe a perfect collapse of the three
curves into the scaling law given in Eq. (15) along several

orders of magnitude. In bond percolation, the cutoff size sξ

diverges at pc, so we should expect a continuous power-law
decay. However, the plot shows that distributions deviate from
the naively predicted scaling after a given point, showing first
an increase with respect to the expected values and then they
decay very fast. Let us denote this cutoff size by sk (p), where
we have assumed that, beyond its dependence on the order
factor k, it also depends on the probability p. It it clear that
this crossover size increases as the disorder becomes stronger,
which leads us to conjecture that it diverges as k → 0 for any
p.

The crossover size sk appears as a consequence of the
breakdown of our main assumption: the max principle given
in Eq. (11). Let us associate a length scale to sk , given, for
example, by the average radius of the balls of size sk , and
denote it by ξk . For length scales of the order of ξk the
geodesic paths are long enough to include links with crossing
times that, while smaller than the largest term, do significantly
contribute to the arrival time. This means that, for a given
arrival time T , not all the links with a crossing time lower
than T are allowed, which leads to the breakdown of the max
principle. As a result, the clusters with sizes larger than sk

predicted by percolation theory are trimmed into FPP balls
with smaller sizes, a fact that leads to the increase of ns for
s > sk displayed in the figure. We will refer to this process as
the round-off effect. For larger length scales and thus longer
geodesics (s � sk), the round-off effect limits the size of the
distributed balls at a given arrival time T and the distribution
drops steeply.

To see clearly this effect we can consider the critical point
in bond percolation, where an infinite percolation cluster
appears. Let us define the arrival time corresponding to the
percolation threshold as the critical arrival time Tc: Tc ≡
T (pc). For the Weibull distribution we obtain Tc = λ(ln 2)1/k .
An infinite ball B(Tc) would necessarily imply infinitely long
geodesics with an infinite number of links. Since link times are
positive we cannot observe an infinite ball for a finite arrival
time. Only for distributions with F (0) = pc (critical FPP) or
F (0) > pc (supercritical FPP) we can observe infinite balls.

We can thus identify ξk as the length scale characterizing
the crossover observed in the model: for length scales much
smaller than ξk the behavior is the same as in bond percolation
with p = F (T ).

At length scales of the order of ξk , we may postulate the
existence of an equivalent bond-percolation problem charac-
terized by an effective probability smaller than p = F (T ),
because not all links with times below T are allowed. The
upper limit of the integral given in Eq. (12) can no longer be
given by T , but by T − εT with some εT > 0. We conjecture
that this results in an effective critical probability pc,eff which
is slightly larger than the theoretical percolation threshold
pc = 1/2. A rough argument for this is as follows. Let us
consider the inverse problem and fix the occupation proba-
bility p in the bond-percolation problem. Following the above
reasoning we should expect that the effective arrival time Teff

of the equivalent FPP problem should be of the form Teff(p) =
T (p) + εT (p), with T (p) = F−1(p) and some εT (p) > 0.
At the critical point pc we can then write Tc,eff(pc) =
T (pc) + εT (pc) = Tc + εT (pc). We can now define the effec-
tive critical probability pc,eff as the probability that satisfies
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FIG. 6. Average cluster size of the FPP balls calculated from
Eq. (18) as a function of pc,eff(k) − p(T ) for the three reference
distributions. Corresponding pc,eff(k) are shown in the legend. The
straight broken line corresponds to the theoretical scaling given in
Eq. (17).

T (pc,eff ) = Tc,eff(pc). We then have pc,eff = F (Tc,eff(pc)) =∫ Tc,eff (pc )
0 f (t ) dt = ∫ Tc+εT (pc )

0 f (t ) dt = pc + εp, where εp =∫ Tc+εT (pc )
Tc

f (t ) dt > 0.
It is expected that pc,eff will depend on the order factor.

To obtain the effective critical probability for each k we
have represented the ball size distribution ns(p) obtained at
different values of p(T ), and we have identified the value of
p at which the cutoff value sk (p) where the ball distribution
departs from the theoretical scaling law takes its maximum
value (i.e., pc,eff yields the largest value of s for which ns still
lies on the straight line). For case k = 0.03 we have observed
that the maximum cutoff value is obtained at p ≈ 0.505, so we
have pc,eff(0.03) ≈ 0.505. Repeating the procedure for cases
k = 0.01 and k = 0.005 we obtain pc,eff(0.01) ≈ 0.502 and
pc,eff(0.005) ≈ 0.501. Although the process is not rigorous
and these values are far from being accurate, their validity can
be checked in the collapses shown in the following discussion
(Figs. 6, 7, and 8). It is very common in percolation studies to
consider an effective critical probability different from the the-
oretical value in order to take into account finite-size effects.
In our model these finite size effects appear as a consequence
of the fact that the max principle given in Eq. (11) does not
hold strictly. We expect that pc,eff(k) → pc as k → 0.

B. Average cluster size

In percolation theory the average cluster size 〈s(p)〉 is
usually defined [31] as the first moment of the size distribu-
tion obtained from the random selection of some cluster site
[defined above as ws(p)]. We then have 〈s(p)〉 = ∑

s s ws(p).
As we approach criticality from below (p → p−

c ) the average
cluster size diverges according to the following scaling law:

〈s(p)〉 ∼ |pc − p|−γ , (17)

with the critical exponent γ = 43/18 for D = 2. This relation
also holds when we approach the critical point from above

FIG. 7. Correlation length of the FPP balls calculated from
Eq. (23) as a function of pc,eff(k) − p(T ) for the three reference
distributions. Corresponding pc,eff(k) values are shown in the key.
Straight broken line corresponds to the theoretical scaling given
in Eq. (21). Continuous curves correspond to the length �k (T (p))
obtained for each k from the chain model presented in Sec. V.

(p → p+
c ) provided that we exclude the single infinite cluster

in the sum over all cluster sizes.
We can then calculate the average FPP-ball size in a similar

way:

〈s(p(T ))〉 =
∑

s

sWs(T ). (18)

Numerical evidence that the balls of the FPP model also obey
the above scaling is shown in Fig. 6, where we have used the
effective critical probabilities discussed above. For values of
p much smaller than the critical value we observe an excellent
collapse of the three curves into the expected power law.
When p is close to the critical point the main contribution to
the sum comes from large values of s. In percolation theory
the size of these clusters is sξ , which diverges at the critical
point. In our model we have found another crossover size,
sk , above which the round-off prevents balls with larger sizes.
The interplay between both characteristic sizes can explain the
behavior obtained in our simulations. For probabilities such
that sξ (p) � sk (p) the round-off does not affect the dominat-
ing size sξ (p) and FPP balls scale as percolation clusters. As p
approaches the critical point, sξ diverges becoming larger than
sk , which now turns into the size that dominates the moments
of the mass distribution. This yields smaller average sizes and
thus a deviation with respect to the theoretical scaling. The
crossover probability p


k (crossover arrival time T 

k ) at which

it occurs is thus obtained when sξ (p

k ) is of the same order as

sk (p

k ). In the previous section we obtained that sk increases as

the disorder becomes stronger, so p

k should also increase as

k decreases, in agreement with the behavior displayed in the
figure. We can thus expect that p


k → pc as k → 0.

C. Correlation length

Critical behavior in percolation theory is completely domi-
nated by a single characteristic length, the correlation length ξ
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FIG. 8. Strength of the infinite cluster. (a) Probability that a node
at position x in the axis will belong to the ball with passage time T , as
a function of p = F (T ) for k = 0.005 and different distances: x = 1,
10, 100, and 500. (b) Gx(T ) p(T ) product as a function of p(T ) −
pc,eff(k) for a node at x = 500 and the three reference distributions.
The straight broken line represents the scaling behavior deduced in
Eq. (26).

[31], which stands for the crossover length scale below which
the behavior is indistinguishable from that at pc.

Given a single percolation cluster, its radius of gyration is
defined by the average squared distance between two cluster
sites:

R2
s ≡ 1

2

∑
i, j

|ri − r j |2
s2

, (19)

where ri stands for the position vector of the ith site of the
cluster and the subscript s stands for the cluster size. We
can average this radius over all clusters of size s to obtain
R2

s . Finally, the average of R2
s over all cluster sizes s in the

following way provides a standard definition of the squared
correlation length [31]:

ξ 2(p) ≡ 2

∑
s R2

s s2ns(p)∑
s s2ns(p)

, (20)

which is known to diverge as we approach the critical point
(p → pc) as

ξ (p) ∼ |pc − p|−ν, (21)

with ν = 4/3 for D = 2. Again, if we approach from above
we have to exclude in the sum the contribution of the infinite
cluster.

The correlation length is the radius of those clusters which
mainly contribute to the second moment of the cluster size
distribution. Near the percolation threshold this contribution
comes from the clusters of size of the order of sξ , so we find

sξ ∼ ξD f , (22)

where D f is the fractal dimension of the infinite percolation
cluster, D f = 91/48 for D = 2.

If we turn now to our FPP problem and apply the equiv-
alence discussed so far to Eq. (20), we deduce the following
expression for the correlation length of the FPP balls:

ξ 2[p(T )] = 2

∑
s R2

s sWs(T )∑
s sWs(T )

. (23)

Results regarding the correlation length are displayed in Fig. 7
following the same scheme as in Fig. 6 for the average size.
The similarity between both plots is not surprising since they
correspond to moments of the same cluster size distribution.
According to percolation theory, sξ is exactly the cluster
size that dominates the moments of the mass distribution,
including the average cluster size 〈s〉 and the correlation
length ξ . As a consequence, ξ represents the radius of the
clusters of size sξ . On the other hand, the radius ξk of balls
of size sk gives the crossover length scale below which the
balls behave as percolation clusters. We can thus use here the
explanation given for the average cluster size by considering
the correlation length ξ instead of sξ , and the cutoff radius
ξk instead of sk . For probabilities such that ξ (p) � ξk (p), the
round-off effect is negligible since it affects only sizes much
larger than the dominant size sξ . Thus, the correlation length
of the FPP balls behaves as in the percolation problem. As
we approach the critical point, ξ diverges, becoming much
larger than ξk . Due to the round-off effect, size sk becomes
the dominant term, yielding a deviation with respect to the
scaling law. The crossover probability p


k is the same as for
the average cluster size and is obtained when ξ (p


k ) is of the
same order as ξk (p


k ).

D. Percolation probability

The order parameter of the second-order phase transition
observed in percolation is given by the percolation probability
P , or strength of the infinite cluster, defined as the probability
that a randomly chosen site belongs to the infinite cluster. For
p � pc we have P = 0, and it goes to zero as a power law as
we approach the critical point from above (p → p+

c ):

P (p) ∼ (p − pc)βp, (24)

where βp = 5/36 for D = 2 is yet another critical exponent
[31]. Our purpose is to recover this exponent from the analysis
of the FPP balls.
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Let us define Gx(T ) as the probability that site x belongs
to the FPP ball at passage time T ,

Gx(T ) = Prob{x ∈ B(T )}. (25)

Gx(T ) is also the probability that the arrival time needed to
reach site x is less than T, i.e., the cumulative distribution
of the arrival time to node x at time T . Note that Gx(T ) is
related to the probability density function gx(T ) addressed in
previous section and displayed in Fig. 3, through gx(T ) =
dGx(T )/dT . The behavior of Gx(T ) as a function of p =
F (T ) for different sites along the axis for k = 0.005 is shown
in Fig. 8(a).

As we move away from the center node the curves become
sharper around p = 1/2 and, for large x, Gx(T ) tends to a limit
function. That limit function is qualitatively very similar to the
plot of the order parameter P as a function of p. For distant
positions there is a minimum arrival time, which approaches
very fast the critical passage time Tc as x → ∞. This result
is consistent with the criticality of the percolation problem:
at p = pc an infinite cluster that percolates through the lattice
appears for the first time.

From these results and Eq. (25) we deduce that for x � 1,
Gx(T ) is the probability that both the initial and the final
points belong to the infinite cluster. In percolation theory this
probability is given, for very long distances (and thus uncorre-
lated sites), by P2. Besides, this probability is conditioned on
the known fact that the initial point (the center node) belongs
to the cluster, so we have to divide the above expression by p.
Our reasoning allows us to conjecture that for x � 1,

Gx(T ) ≈ P2(p)

p
→ (p − pc)2βp

p
as p → pc, (26)

using always p = F (T ). Numerical evidence for Eq. (26)
is shown in Fig. 8(b). The plot displays the values of the
product p Gx(T ), obtained from Fig. 8(a), as a function of
p − pc,eff(k), for the three levels of disorder. As in previous
figures we obtain an excellent collapse of the curves into the
expected power law as p → pc,eff(k), while deviations take
place at the same crossover probabilities p


k obtained before
for the mean cluster size and the correlation length.

E. Fractal dimension of FPP balls

The infinite cluster at the critical point is a fractal, so its
mass M scales with the linear size � as M ∼ �D f , where D f

is the fractal dimension (D f = 91/48 for two dimensions).
However, fractal behavior is also observed away from the
critical point at length scales much smaller than the correlation
length, so we have M ∼ �D f for � � ξ , and M ∼ �D′

for
� � ξ , with dimension D′ depending on whether we are above
or below the critical point (for p > pc we have D′ = D, the
Euclidean dimension). Clusters look fractal on scales smaller
than ξ , and this also applies to the relation between their mass
s and their linear size Rs: for Rs � ξ or equivalently s � sξ

we find s ∼ R
D f
s , from which we can deduce Eq. (22).

In Fig. 9 we have shown the mass of FPP balls within cir-
cles of increasing radius r centered at the origin, for extreme
disorder k = 0.005. To perform the analysis we have selected
among all the FPP balls grown at critical passage time Tc those
with sizes contained in small intervals around three different

FIG. 9. Mass of the FPP ball B(Tc ) within a circle of radius r
centered at the origin for case k = 0.005. Results are the average
over balls with sizes within the following intervals: (green) s ∈
(1, 1.1) × 104, (red) s ∈ (1, 1.1) × 105, and (blue) s ∈ (1, 1.1) ×
106. The straight line corresponds to the power law M ∼ r91/48.

sizes s. Results were averaged over all the balls within the
same interval.

The plots show a constant slope which coincides with the
fractal dimension for critical percolation (broken line). The
final plateaus are due to the fact that clusters are finite with
linear size Rs, so after r ≈ Rs the mass becomes constant.
It is interesting to note that sizes s = 105 and s = 106 are
larger than the corresponding cutoff size sk (above 104; see
Fig. 5), i.e., these clusters are influenced by the round-off.
However, this effect does not seem to significantly change the
internal structure of the balls, which is still fractal, so the main
consequence of the round-off is the trimming of the branched
edges.

V. CROSSOVER LENGTH FOR PERCOLATION
IN THE FPP MODEL

Let us elaborate on the validity of the max principle that
allows the mapping of the FPP into the percolation problem.
Our purpose is to find an estimate for the cutoff values ξk (p)
and sk (p). The same discussion can be extended to the other
distributions in Sec. II, making use of the suitable order
factor ω (k, σ−1 or α respectively for Weibull, log-normal,
or Pareto).

A different way to characterize the max principle is pre-
sented in the following experiment, which we call the chain
model. Let us consider a linear array of � sites and let us
choose a time T . Then we fill the chain with the values of
t obtained by sampling the link-time distribution, but keeping
only those values which are smaller than T , i.e., if t � T we
disregard the value. These chains represent idealized versions
of the minimal paths since they cannot include crossing times
larger than the passage time T . We define P as the probability
for the sum of the link times to be smaller than T :

Pk (�, T ) = Prob

{
�∑

i=1

ti < T | ti < T

}
. (27)
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FIG. 10. Probability P calculated from Eq. (27) over an ensemble
of 106 chains as a function of the chain length � for (a) k = 0.005
and different passage times represented by p(T ) and (b) p = 0.5
and different k. Points correspond to results from simulations, and
continuous lines represent the corresponding fits to function in
Eq. (29).

Pk (�, T ) can be seen as the probability that the max principle
holds at a length scale � and passage time T . Our claim is the
following: if there exists a cutoff length �k (T ) such that

Pk (�, T ) ≈
{

1 for � � �k (T ),
fast decay for � � �k (T ), (28)

then ξk (p) should behave as �k (T ), always with p = F (T ). It
is important to stress that the dependency on k of �k (T ) and
Pk (�, T ) is actually a functional dependency. The numerical
evidence that follows will support our claim.

Figure 10 shows two sets of results for Pk (�, T ). In
Fig. 10(a) we display the dependence of P on � for different
arrival times T [expressed as p(T )] and for fixed k = 0.005. In
Fig. 10(b) the arrival time has been fixed to Tc, and the curves
correspond to different strengths of the disorder (different
values of k).

FIG. 11. Fitted values of the cutoff length �k (T ) (a) and the
stretch exponent φk (T ) (b) as a function of probability p(T ) for
different order factors.

The first remarkable result is that Pk (�, T ) shows an excel-
lent agreement with the stretched exponential function:

Pk (�, T ) ≈ exp

{
−

[
� − 1

�k (T )

]φk (T )
}

. (29)

The corresponding fits have been indicated with colored con-
tinuous lines. As shown, the dependence of P on � follows the
behavior conjectured in Eq. (28) with �k (T ) thus playing the
role of a cutoff length. It is important to stress that we have ob-
tained the same behavior for the other link-time distributions
investigated in this work (log-normal and Pareto).

We address now the behavior of the fitting parameters, the
cutoff length �k (T ) and the stretch exponent φk (T ), displayed
in Figs. 11(a) and 11(b), respectively, as a function of the
probability p(T ) for different values of the order factor k.

With regard to �k (T ), our results support all the assump-
tions made in the previous section about ξk . For a given arrival
time it increases monotonously with the disorder, and for a
given disorder it is a continuously increasing function of the
arrival time. We expect �k (T ) to diverge for any arrival time as
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k → 0. Interestingly, although �k (T ) is not defined at T = 0
it shows a well-defined positive limit. The same was found for
the log-normal distribution while for Pareto the limit is 0.

Another remarkable result is the change of behavior near
the crossover point between weak and strong disorder (k
 =
1.79). For k < k
 we obtain �k (T ) > 1 for all T , consistent
with our assumption that under strong disorder conditions
there is always a length scale below which the FPP model
behaves as a percolation lattice. However, if k > k
 (see, e.g.,
case k = 3) the fitted values of �k (T ) are smaller than 1 for
p < 1. Indeed, as k increases above k
 the decay of Pk (�, T )
after � = 1 becomes sharper and the expression given in
Eq. (28) approaches the step function: Pk (�, T ) = 1 if � = 1
and Pk (�, T ) = 0 if � > 1. As a consequence, the fitted values
of �k (T ) approach 0 as k increases for finite T (or p < 1). We
can then expect that actual function �k (p) − 1 approaches the
δ function δ(1 − p) as k → ∞. We will return to this issue
later when we address the homogeneous case. Nevertheless,
the change of behavior of �k (T ) near the crossover point k


points to it as a reliable estimate for the crossover length ξk .
With regard to the stretch exponent φk (T ), displayed in

Fig. 11(b), we observe that for a given p it increases with
disorder and seems to approach a constant value above 1.7
under strong disorder conditions. We also notice that, in this
regime, it roughly remains constant with p. Only for large k do
we observe a smooth increase with passage time that sharpens
as we approach p = 1.

In order to check the relation between the cutoff length �k

obtained from our chain model and the crossover length ξk ,
which was postulated as the length scale under which the FPP
model behaves as bond percolation, we have represented the
corresponding curves of �k in the plot of the correlation length
ξ of the FPP balls in Fig. 7. The comparison between both
magnitudes provides numerical evidence of our claims. For
probabilities p such as ξ � �k , the correlation length of the
balls follows the scaling behavior predicted from percolation
theory. As p increases and ξ approaches �k , the effect of the
round-off makes ξ depart from the percolation prediction.
As discussed, this deviation takes place at p


k , where both
quantities become of the same order. A crossover towards an
alternative behavior that its controlled by �k takes place, in
which we expect that ξ will grow as �k for p � p


k .
We can provide further numerical evidence of the relia-

bility of �k as an estimator for the crossover length ξk . For
example, we can conjecture that �k is the radius of the balls
with cutoff-size sk , so we can expect

sk ∼ �D
k . (30)

Then, according to Eq. (15), the number of clusters of size sk ,
nsk , must behave as

nsk ∼ s−τ
k ∼ �−τD

k . (31)

For probabilities close to the percolation threshold so that
sk � sξ , the size distributions obtained from different k
should collapse into a single universal curve if we rescale
the size s by sk , and ns by nsk . That rescaling applied to
the distributions displayed in Fig. 5 is shown in Fig. 12,
and a quite satisfactory collapse of the three distributions is
obtained.

FIG. 12. Rescaling of the size distributions displayed in Fig. 5.
For each curve, ball size s has been rescaled by �D

k (D = 2) with val-
ues �0.03(p = 0.5) = 65.83, �0.01(p = 0.5) = 199.34, and �0.005(p =
0.5) = 399.72, obtained from the simulations of the chain model. ns

has been rescaled by �−τD
k according to Eq. (31).

VI. DISCUSSION: CROSSOVER BETWEEN
PERCOLATION AND KPZ SCALING

For the sake of generality, we will use the generic order
factor ω in the following discussion, which stands for the
suitable parameter from the aforementioned distributions, i.e.,
k (Weibull), σ−1 (log-normal), or α (Pareto).

A. Strong disorder regime ω � ω�

The growth of FPP balls is controlled by two characteristic
lengths: the crossover length ξω which determines the length
scale below which the FPP model is essentially a bond-
percolation lattice with p = F (T ), and the correlation length
ξ intrinsic to the percolation problem. Whereas the behavior
of ξ is well known from percolation theory—at least close to
the critical point—we can assume that the crossover length
ξω is related to the cutoff length �ω of the chain model. This
is a strong assumption because the link times traversed by
actual geodesics are correlated to each other by means of the
minimal time principle, in contrast to the uncorrelated link
times assumed in our model.

For distributions such as Weibull or log-normal, �ω(T ) has
a well-defined positive limit when T → 0, so we can expect
the same for ξω. Since ξ is initially 0, we conclude that FPP
balls will display initial percolation-like growth provided this
limit value is larger than 1. This seems to be guaranteed in the
strong disorder regime ω � ω
. For the Pareto distribution we
find �ω(T ) → 0 as T → 0. However, the increase of �ω(T )
with passage time T is faster than the increase of ξ (p) with
probability p(T ), hence allowing the initial percolation phase.

Percolation-like growth will take place whenever ξ is
much smaller than ξω. We recall that both quantities increase
monotonically with passage time. In this regime, the growth
of the FPP balls with T can be mapped into the growth of
the percolation clusters at increasing occupation probability
p = F (T ). That regime continues until ξ becomes of the
same order as ξω, which takes place at a certain arrival time
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T 

ω . Since ξ diverges at the critical point pc = F (Tc), this

crossover time is upper bounded by the critical passage time:
T 


ω < Tc. Under extreme disorder conditions, i.e., for small
but positive values of the order factor ω, ξω is large, T 


ω is
close to Tc, and we can observe the fractal clusters obtained
in percolation. We expect that T 


ω → Tc as ω → 0, i.e., for
infinite disorder.

Once the crossover arrival time T 

ω has been reached,

we enter into a transient regime that evolves towards KPZ
scaling. Above T 


ω two different types of growth at two
different length scales take place simultaneously. At scales
below ξω, percolation-like growth still continues. The increase
of p above pc fills the inner holes and cavities and smooths
the irregularities of the outer perimeter. However, the cutoff
length ξω prevents the incipient infinite percolation cluster
from spreading along the lattice. At larger scales the growth
of the ball is controlled by the growth of ξω, which simply
reflects the fact that minimal paths are limited by their length.
FPP balls becomes compact with a regular shape, a process
that finally leads to KPZ scaling.

This transient regime would last until the effects of per-
colation vanish, i.e., when p = 1, which corresponds to an
infinite arrival time. We can speculate, however. For example,
in Fig. 4 we showed the fluctuations of the arrival time
to points along the axis for different levels of disorder. At
this point we already know that k = 0.5, 0.3, or 0.2 are not
small enough to display the criticality of percolation, but
the disorder is in fact strong enough to reveal percolation
effects in the behavior of the arrival-time fluctuations. In
each curve of the figure with k < k
 we have marked three
representative lengths obtained from the chain model. As an
approximation of ξk we have considered �k (Tc), indicated
with the vertical segments. In order to estimate the range
of the percolation effects, and hence the crossover towards
KPZ scaling, we have represented in each curve with a gray
rectangle the interval [�k (T (p = 0.99)), �k (T (p = 0.999))].
Despite the approximations and the simplicity of our model,
the crossover points are in a reasonably good agreement with
the behavior displayed by the fluctuations.

Both the crossover length ξω and the associated cutoff size
sω increase with disorder, and we expect them to diverge as
ω → 0. The kinetics of the approach towards infinite disorder
depends on the specific distribution. For example, for the
Weibull distribution we obtain the following limit of Eq. (13),
valid for p ∈ [0, 1):

lim
k→0

T (p) =
⎧⎨
⎩

0 if p < p0

λ if p = p0

∞ if p > p0

, (32)

where p0 = 1 − e−1 = 0.63. After an infinitesimal arrival
time the balls take the form of the percolation clusters ob-
tained at p = p0. This is followed by an infinitely slow
growth. At the limit we have B(T ) = B(0) for T > 0, where
B(0) is the percolation cluster obtained at p = p0.

For the log-normal distribution we have

T (p) = eμ exp (
√

2σ 2erf−1[2p − 1]), (33)

where erf−1(x) is the inverse error function, and the approach
to the critical point is similar:

lim
σ→∞ T (p) =

⎧⎨
⎩

0 if p < p0

eμ if p = p0

∞ if p > p0

, (34)

but now we have p0 = 1/2, i.e., the critical ball is just the
critical percolation cluster obtained at the critical probability.

Finally, for the Pareto distribution we have

T (p) = tm

(
1

1 − p

)1/α

, (35)

and we obtain

lim
α→0

T (p) = ∞ for 0 < p < 1, (36)

which means that we must resort to increasingly large arrival
times in order to observe the growth.

B. Weak disorder regime ω � ω�

It is interesting to finish this work by considering the
opposite limit ω → ∞ of infinite order, which is given by the
homogeneous case in which all links have the same crossing
time τ0. As discussed in Sec. II, this case corresponds to the
limit ω → ∞ of the link-time distributions, even though the
specific value of τ0 depends on the distribution function [see
Eq. (6)]: τ0 = λ, eμ, tm for Weibull, log-normal, and Pareto,
respectively.

For the homogeneous case the chain model gives exactly
�ω(T ) = T/τ0. Now we can use the following result, which
applies to all distributions:

lim
ω→∞ T (p) = τ0 for p < 1, (37)

to obtain

lim
ω→∞ �ω(p) = 1 for p < 1. (38)

It is important to note that this limit strictly holds for probabil-
ities smaller than 1. At the limit p → 1 we obtain �ω → ∞.

This result confirms the assumption made in the previous
section,

lim
ω→∞ �ω(p) − 1 = δ(1 − p), (39)

and shows that for a weak enough disorder we cannot observe
the percolation phase because it extends to only a few sites.

As a numerical example, let us consider the distribution
Wei(1,3) where value k = 3 is above the crossover value k
 ≈
1.79. From the chain model we obtain �3(p = 0.99999) ≈
1.86, which roughly means that percolation effects up to a
probability of p = 0.99999 are limited to a length scale of less
than two lattice units. On the other hand, the arrival time corre-
sponding to that probability is T (p = 0.99999) ≈ 2.26. Now
we can use the value of the mean time for that distribution,
τ ≈ 0.89 (close to τ0 = λ = 1), to obtain T/τ ≈ 2.53, i.e.,
around two lattice units, which provides a reasonable estimate
of �3(p = 0.99999). This result shows that we cannot observe
percolation effects even at disorders close to the crossover
value ω
.
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VII. CONCLUSIONS AND FURTHER WORK

In this work we have characterized the dynamics of first-
passage percolation (FPP) square lattices under extreme dis-
order, as opposed to the weak-disorder regime, which is dom-
inated by KPZ universality. Several link-time distributions
were considered which allow for a continuous variation of
the disorder strength through the so-called order factor ω. A
crossover value ω
 (for which dc = 1) was proposed as the
crossover point between the two regimes.

Our study has revealed that, given a certain level of disor-
der, there exists a characteristic length scale ξω below which
the FPP model behaves essentially as a bond-percolation lat-
tice. Arrival times at length scales smaller that ξω follow a max
principle which allows us to establish a continuous mapping
of FPP passage time T into the probability p of a bond being
open in bond percolation. The basic assumption is that the
sum of link times along the geodesic can be approximated
by their maximum value. As a result the mapping has the
form p = F (T ), where F denotes the cumulative distribution
function for the link times.

At length scales below ξω the FPP model displays the
same criticality found in the second-order phase transition
associated to bond percolation. The average value of the
arrival time to different sites becomes ill-defined, and the
geodesic between neighboring points of the lattice can be-
come arbitrarily large, instead of using a single link as in
the weak-disorder regime. Through a comprehensive scaling
analysis of the FPP balls we have been able to observe the
critical exponents characterizing the scaling of the percolation
clusters near the critical point, including their fractal structure,
instead of the reasonably rough circular balls within the KPZ
universality class.

The dynamics of the FPP growth under strong disorder
conditions is the result of the interplay between this crossover
length ξω and the correlation length ξ characteristic of bond
percolation, both evolving dynamically with passage time T .
When ξ � ξω the growth of the FPP balls with passage time
T can be mapped into the growth of the percolation clus-
ters with increasing probability p = F (t ), which resembles
a sort of invasion percolation. At a certain passage time T 


ω

(which is upper bounded by the critical arrival time Tc), ξ

becomes of the same order of ξω. Further growth leads to
the failure of the maximality assumption: the sum of the link
times along a geodesic may become significantly different
from the maximal value found along it. Thus balls must
start a rounding-off process that yields a crossover towards
KPZ scaling. Therefore, for long enough distances we always
recover the KPZ regime.

The crossover length ξω, as well as other related magni-
tudes defined as a function of the order factor ω, increases
as the disorder becomes stronger and seems to diverge when
the order factor approaches zero, which we call the infinite-
disorder limit. The infinite-disorder limit of these models
presents very intriguing features which might be related to
critical or supercritical FPP cases and which we intend to
ascertain in future work. We have provided very preliminary
evidence pointing to that idea. Note, for example, that limit
when ω → 0 of the Weibull and log-normal distribution func-
tions given in Eqs. (3) and (4) are, for nonzero t , F (t ) =

FIG. 13. Value of R calculated from Eq. (A2) and averaged over
104 realizations, as a function of length n for (a) a list of n inde-
pendent values of t randomly sampled from the Weibull distribution
with λ = 1 and different values of the order factor k and (b) actual
geodesics of length n obtained in the FPP model with link times
distributed in the same way. The theoretical behavior n−1 predicted
from the exact fulfillment of the max principle has been indicated in
both panels with the dotted line.

1 − e−1 = 0.63 and F (t ) = 1/2, respectively. They have the
form of the Bernoulli distribution (except for t = 0) in which
link times can be zero (open bonds) with probability p0 and
infinite (closed bonds) with probability 1 − p0, with p0 given
by the above values. For the Weibull distribution we have
p0 > pc, and its infinite-disorder limit might be related to
supercritical FPP, whereas for the log-normal we have p0 =
pc and thus the critical case. Since length ξω determines the
crossover length scale between percolation and KPZ phases,
and it diverges at the infinite-disorder limit, certainly it would
be very interesting to study the criticality near this limit.

Another direction of future work is to elaborate more on
the estimate for ξω derived from the chain model. Although
the numerical evidence presented here supports its validity,
there are still many open questions that deserve additional
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work, including a theoretical justification of Eq. (29) and the
generalization of the observed behaviors to other link-time
distributions.
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APPENDIX: ON THE VALIDITY OF THE MAX PRINCIPLE

In Sec. IV we put forward a max principle that allowed
us to propose a theoretical framework to characterize the
percolation phase in the FPP model under strong disorder
conditions. Equation (11) provides the statement for the afore-
mentioned max principle. In order to check its validity we
have considered the following ratio, defined for every link i
traversed by a given geodesic:

Ri = t (xi−1, xi )

maxi{t (xi−1, xi )} , (A1)

with i = 1, . . . , n and where n is the length of the min-
imal path. The arrival time along that geodesic will be

T = ∑n
i=1 t (xi−1, xi ), and if the max principle holds T ≈

maxi{t (xi−1, xi )}. Let us define now R as the average of Ri

over all links belonging to that minimal path, so we have

R(n) = 1

n

n∑
i=1

Ri = 1

n

T

maxi{t (xi−1, xi )} . (A2)

If the max principle holds, we then obtain

R(n) ≈ n−1, (A3)

which allows us to statistically check the validity of the
principle.

We first show that the applicability of the max principle is
an intrinsic property of the link-time distribution. Figure 13(a)
shows the value of R as a function of n, obtained from lists of
n independent random times drawn from Weibull distributions
with λ = 1 and different values of the order factor k. Each
value has been averaged over an ensemble of 104 lists. It
can be clearly seen that for low values of k, i.e., for strong
levels of noise, the results follow the trivial relation given
in Eq. (A3) (indicated in the figure with the dotted line).
Actual geodesics, on the other hand, provide lists of random
times which are correlated through the min principle stated in
Eq. (2). Results for the geodesics obtained in the FPP model
with the same link-time distributions have been displayed in
Fig. 13(b). The qualitative behavior is the same, but if we
focus on the strongest disorders (lowest values of the order
factor k), we observe that the range of validity of the max
principle decreases with respect to the case with independent
times. The reason is that under strong disorder conditions,
the min principle mainly affects to the term maxi{t (xi−1, xi )},
as stated in Eq. (11), which is therefore minimized. This
effect becomes more pronounced on longer geodesics, hence
explaining the differences between both sets of results.
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