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Thermodynamic uncertainty relations and molecular-scale energy conversion
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The thermodynamic uncertainty relation (TUR) is a universal constraint for nonequilibrium steady states
that requires the entropy production rate to be greater than the relative magnitude of current fluctuations. It
has potentially important implications for the thermodynamic efficiency of molecular-scale energy conversion
in both biological and artificial systems. An alternative multidimensional thermodynamic uncertainty relation
(MTUR) has also been proposed. In this paper we apply the TUR and the MTUR to a description of
molecular-scale energy conversion that explicitly contains the degrees of freedom exchanging energy via a
time-independent multidimensional periodic potential. The TUR and the MTUR are found to be universal lower
bounds on the entropy generation rate and provide upper bounds on the thermodynamic efficiency. The TUR is
found to provide only a weak bound while the MTUR provides a much tighter constraint by taking into account
correlations between degrees of freedom. The MTUR is found to provide a tight bound in the near or far from
equilibrium regimes but not in the intermediate force regime. Collectively, these results demonstrate that the
MTUR is more appropriate than the TUR for energy conversion processes, but that both diverge from the actual
entropy generation in certain regimes.
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I. INTRODUCTION

The thermodynamic uncertainty relation (TUR) is a fun-
damental relationship between the relative uncertainty in
position and entropy production in nonequilibrium steady
states [1,2]. The TUR can be interpreted to mean that “small
relative fluctuations come at the cost of more dissipation.”
The TUR has been applied to a diverse range of nonequi-
librium systems illustrating the trade-off between dissipation
and precision [3–7]. The ramifications of the TUR for the
efficiency of molecular-scale energy conversion [8–10] has
also been considered. In addition, very recently an alternative
multidimensional uncertainty relation (MTUR) has also been
derived [11]. In this paper we consider a model of energy
conversion that explicitly describes the two degrees of free-
dom exchanging energy and evaluate the TUR and the MTUR
bounds on the entropy production and efficiency in a wide
range of nonequilibrium regimes.

Molecular-scale energy conversion can be formulated in
terms of the multidimensional Smoluchowski equation de-
scribing overdamped Brownian motion on a potential surface
[12,13]:

∂P(r, t )

∂t
= LP(r, t ), (1)

L = ∇TM[∇V (r) + kBT ∇], (2)

where L is the evolution operator, kB is Boltzman’s constant,
T is the temperature, and M is a diagonal matrix of inverse
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friction coefficients Mj j = γ −1
j . The probability to find the

system in the state given by the continuous variable r is
denoted P(r, t ). We assume a time-independent potential of
the form

V (r) = V0(r) − f Tr, (3)

where V0(r) = V0(r + a) is periodic, with periodicity a and
f is a constant macroscopic force driving the system out of
thermal equilibrium. When the periodic potential is nonsep-
arable, energy can be converted between degrees of freedom
[12]. For example, mechanochemical energy conversion and
transduction processes can be described by Eq. (1) in two
dimensions, where r = (x, y) with y representing a chemical
degree of freedom (i.e., a reaction coordinate) and x a me-
chanical degree of freedom.

In the limit of deep potential wells, Eq. (1) can be ap-
proximated by a simpler discrete master equation describing
thermally activated hopping between potential wells [14]:

d pn(t )

dt
=

∑
m

[
κn,m pm(t ) − κm,n pn(t )

]
, (4)

where κn,m are hopping rates from well m to n, determined by
the underlying potential. A number of authors use Eq. (4) as a
starting point for treating molecular-scale energy conversion
and impose constraints on κn,m to ensure thermodynamic
consistency [15]. In this paper we use Eq. (4) within its regime
of validity, and use the more general formulation in Eq. (1)
to explore a range of potentials where the discrete master
equation is not valid.
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For f �= 0, Eq. (1) has a nonequilibrium steady state. Two
quantities that characterize this state are the drift and the
diffusion matrix:

v ≡ lim
t→∞

〈r(t )〉
t

, (5)

D ≡ lim
t→∞

〈
[r(t ) − 〈r(t )〉][r(t ) − 〈r(t )〉]T

〉
2t

. (6)

The diffusion matrix D is symmetric and positive semidefinite
[16]. It provides a measure of both the fluctuations and the
correlations of the degrees of freedom. A consistent thermo-
dynamics can be developed for the nonequilibrium system
described by Eq. (1) [17–19]. In particular, the steady-state
second law of thermodynamics becomes

σ = f Tv

T
� 0, (7)

where σ is the rate of entropy generation.
The thermodynamic uncertainty relation (TUR) was first

conjectured in Ref. [1] and proven for the discrete case
described by Eq. (4) in Ref. [2]. It states that the entropy
generation is bound from below by

σ �σ TUR
j ≡ kBv2

j /Dj j, (8)

for all j. Equation (8) has also been shown to hold for the
system described by Eq. (1) in one dimension [20]. The bound
(8) has important consequences for energy conversion. To see
this note that in two dimensions if y is the driving degree
of freedom then the thermodynamic efficiency of energy
conversion can be written as [19]

η = 1 − T σ

vy fy
� 1. (9)

Equation (9) demonstrates that a lower bound on the entropy
generation rate equates to an upper bound on the efficiency.
The effect of the TUR bound on efficiency has been explored
previously [9,10], but this work has not explicitly considered
the two degrees of freedom exchanging energy making the
results difficult to interpret.

A multidimensional thermodynamic uncertainty relation
(MTUR) has been derived using the Crámer-Rao bound from
information theory for systems described by Eq. (1) [11]. The
MTUR takes the form

σ � σ MTUR ≡ kBvTD−1v, (10)

and incorporates the full diffusion matrix. In this paper we
aim to compare the MTUR to the TUR focusing in particular
on the case of molecular-scale energy conversion. This is
interesting because energy conversion is intrinsically multi-
dimensional and gives rise to correlations between degrees of
freedom due to the nonseparable potential [21]. In addition,
as Eq. (1) has a wider regime of validity than Eq. (4), it can
be used to explore entropy generation for a wider range of
parameters. In particular, it describes the critical point where
| f Ta| is large enough that potential barriers between adjacent
wells vanish and the far from equilibrium case where | f Ta| is
much larger than the barriers in V0(r). In both these regimes
the description in terms of the master equation becomes
invalid [20]. In one dimension it has been shown that the

TUR bound diverges from the entropy generation rate close to
the critical point [20]. The current paper aims to explore the
MTUR and TUR bounds in two dimensions across all force
regimes.

This paper is ordered as follows. Starting from Eq. (1), we
briefly summarize a multidimensional formulation of energy
conversion (Sec. II). We then provide an interpretation of the
MTUR as a coarse-grained entropy production rate (Sec. III).
Next we show that the MTUR is always a tighter bound on the
entropy generation than the TUR (Sec. IV). We then evaluate
the deep well case when the system Eq. (1) can be described
by Eq. (4) and an analytical solution for the drift and diffusion
matrix exists (Sec. V). Finally, we show numerical results
for potentials beyond the deep well regime where analytical
solutions do not exist (Sec. VI). These last two sections will
compare the actual entropy generation, σ , with the MTUR
(σ MTUR) and TUR (σ TUR

j ) bounds and the implied bounds on
efficiency.

II. BACKGROUND

We take as our starting point the multidimensional Smolu-
chowski equation (1) describing overdamped Brownian mo-
tion on a potential surface. We define a probability current
as J(r, t ) = −M[∇V (r) + kBT ∇]P(r, t ). In the steady state
when f = 0, Jss(r) = 0 everywhere and Pss(r) ∝ e−V (r)/kBT

takes the usual Boltzmann form. When f �= 0, the system is
in a nonequilibrium steady state and we have ∇TJss(r) = 0
which, for general potentials, only yields analytical solutions
in one dimension [20,22].

Defining the internal energy and the Shannon entropy by

U (t ) ≡
∫

dr P(r, t )V (r), (11)

S(t ) ≡ −kB

∫
dr P(r, t ) ln P(r, t ), (12)

respectively, we can derive a consistent thermodynamics for
the system [17–19]. In the steady state, the first law of
thermodynamics becomes

f Tv = −
∫
A

dr [Jss(r)]T∇V (r), (13)

where the integral is over one period, represented by A. The
terms on the left-hand side of Eq. (13) can be recognized as
the rate of work input to the system and the terms of the right-
hand side the rate of heat output from the system. The second
law of thermodynamics in the steady state is given by Eq. (7)
where the entropy generation rate is defined by

σ ≡
∫
A

dr
[Jss(r)]TM−1Jss(r)

T Pss(r)
� 0. (14)

Recognizing f jv j as the rates of work into the system, if
fyvy > 0 and y is the driving degree of freedom (e.g., the
chemical degree of freedom), then energy conversion requires
fxvx < 0, where x is the driven degree of freedom (e.g.,
the mechanical degree of freedom) in two dimensions. The
thermodynamic efficiency of energy conversion between two
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degrees of freedom when fx, fy �= 0 is given by

η ≡ −vx fx

vy fy
. (15)

Equation (9) is derived from Eq. (15) using Eq. (7). In
contrast, the Stokes efficiency [23]

ε ≡ γxv
2
x

fyvy
(16)

represents a measure of the motion induced in the x coordinate
when fx = 0 by a force in y. The Stoke’s efficiency ε can also
be written in terms of the entropy generation rate (with fx =
0) as

ε ≡ γxv
2
x

T σ
, (17)

such that a lower bound on σ will again lead to an upper bound
on ε.

Similar to an electron in a periodic potential [24], the
periodicity of ∇V (r), means that a formal solution to Eq. (1)
can be written as

P(r, t ) =
∑

α

∫
B

dk ck,αφk,α (r)e−λk,αt , (18)

where the integral is over the first Brillouin zone B, k is the
wave number defined on −π/a j � k j � π/a j , and α is the
band index. The eigenfunctions φk,α (r) satisfy

Lφk,α (r) = −λk,αφk,α (r) (19)

and have the Bloch form

φk,α (r) = eikTruk,α (r), (20)

where uk,α (r) = uk,α (r + a). The (complex-valued) eigenval-
ues λk,α have the structure Re{λk,0} < Re{λk,1} < Re{λk,2} <

· · · . This Bloch state description will be used in Sec. III to
provide a physical interpretation of the MTUR.

In the case of deep wells, the Bloch state description in
Eq. (18) can be used to transform the continuous description
given by Eq. (1) to a simplified discrete description [14]. In the
limit of deep wells, there is a large band gap between α = 0
and α > 0 states representing a time-scale separation in the
dynamics. This enables the bands with α > 0 to be adiabat-
ically eliminated and we can write P(r, t ) ≈ ∑

pn(t )ωn(r),
where ωn(r) is a state localized at the nth well and pn(t )
is the probability of occupying that state. The evolution can
then be approximated by Eq. (4). Generalizations of this
derivation have also been carried out for discrete-continuous
systems [25].

In the special case of a single well per period, the eigenval-
ues and the hopping rates are related by [14]

λk,0 = −
∑

〈〈m,n〉〉
κn,me−ikTA(n−m), (21)

κn,m = − axay

(2π )2

∫
B

dk λk,0eikTA(n−m), (22)

where A is a diagonal matrix with Aj j = a j and the summation
in Eq. (21) is over nearest neighbors. It is possible to show that
the above derivation ensures that κn,m/κm,n = e f TA(n−m)/kBT ,
which is required for thermodynamic consistency. In the deep

well regime the hopping rates are well approximated by
Kramer’s rate where the relative height of the nearest saddle
points affect the rates via

κn,m ≈ e−[V 0(rn )−V 0(sn,m )− f TAαn−m(n−m)]/kBT , (23)

where rn is the position of the minimum of the nth well, sn,m is
the position of the saddle point between the n and mth wells,
and Aαn−m(n − m) = rn − sn,m such that 0 � αn−m � 1 and
αn−m + αm−n = 1. In general, αm−n is a function of external
force. Further approximating κn,m ≈ κ0

n−meα0
n−m f TA(n−m)/kBT ,

where κ0
n−m and α0

n−m are the values at equilibrium ( f = 0),
we can write an explicit expression for the λk,0 as a function
of the applied force f . This is given by Eq. (A1) in Appendix
A and will be used in Sec. V to compare the TUR and the
MTUR.

III. COARSE-GRAINED DESCRIPTION

We present an interpretation of the MTUR given by
Eq. (10). In the long-time limit, the system is dictated by states
close to k = 0, α = 0, and, for a length scale much larger than
the periodicity of the lattice, we can neglect the α > 0 bands
and make the replacement uk,0(r) ≈ 1 in Eq. (18) to define a
coarse-grained probability by

P̃(r, t ) ≈
∫

dk ck,0eikTr−λk,0t , (24)

where the integral is now over all k space. Recognizing
ck,0e−λk,0t as a characteristic function [16,21] for P̃(r, t ) we
can show that

v = i∇kλk,0

∣∣
k=0, (25)

D = 1
2 ∇k∇kλk,0

∣∣
k=0. (26)

Truncating the eigenvalues at quadratic order in k, we can
approximate the coarse-grained probability as

P̃(r, t ) ≈
∫

dk ck,0eikT (r−vt )−kTDkt , (27)

which is equivalent to a coarse-grained evolution in terms of
a global drift and diffusion:

∂P̃(r, t )

∂t
= ∇T[−v + D∇]P̃(r, t ). (28)

Defining the Shannon entropy for P̃(r, t ) similar to
Eq. (12), we can also develop a consistent thermodynamics for
this coarse-grained system following the same procedure as in
Ref. [17]. For the physically relevant case where D is positive
definite (which implies that D−1 is also positive definite), the
coarse-grained entropy generation rate is

σ̃ ≡ kb

∫
dr

[J̃ss(r)]TD−1J̃ss(r)

P̃ss(r)
� 0, (29)

where J̃ss(r) = [v − D∇]P̃ss(r) and we have assumed that the
probability vanishes at infinity. The steady-state second law of
thermodynamics then becomes

σ̃ = kBvTD−1v = σ MTUR, (30)
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enabling σ MTUR to be interpreted as the coarse-grained en-
tropy generation rate and the MTUR bound (10) the re-
quirement that the actual entropy generation rate is al-
ways greater than the coarse-grained entropy generation
rate. Note that, in one dimension, we have v = Jssa, σ =
(γ v2/a2T )

∫ a
0 dx P−1

ss (x) and the inequality Eq. (10) can be
rewritten as

γ D

kBTa2

∫ a

0
dx P−1

ss (x) � 1, (31)

which agrees with Ref. [20].
An alternative interpretation of the MTUR bound in terms

of the relative uncertainty is also possible. Writing the TUR as
σDxx/v

2
x � kB, for a position coordinate x, the TUR has been

interpreted as meaning that greater dissipation is required in
order to achieve less relative uncertainty in position: Dxx/v

2
x .

Solving Eq. (28) for an initial state localized in configuration
space, we get

P̃(r, t ) ∝ exp

{
− 1

4t
(r − vt )TD−1(r − vt )

}
, (32)

which describes a time-varying multivariate Gaussian under-
going drift v and diffusing in multiple dimensions via D. Thus
(vTD−1v)−1 can be interpreted as the relative uncertainty in
multidimensional space.

IV. PROPERTIES OF THE MTUR

Given the forms σ TUR
j = kBv2

j /Dj j and σ MTUR =
kBvTD−1v in terms of the drift and the diffusion, it is
possible to prove that

σ MTUR � σ TUR
j , (33)

for all j. The proof is straightforward in two dimensions.
Consider the inequality

(vxDxy − vyDxx )2

Dxxdet(D)
� 0, (34)

where Dxx � 0 and det(D) � 0 represents the determinant of
D. Rearranging we can write

v2
x Dyy + v2

y Dxx − 2vxv2Dxy

det(D)
− v2

x

Dxx
� 0. (35)

Recognizing the first fraction as vTD−1v completes the proof
of (33) for the x coordinate. A similar result holds if x is
exchanged for y in the above derivation. In Appendix B we
provide a proof that (33) also holds in higher dimensions.
Thus the MTUR is consistent with the TUR but provides a
tighter bound on the entropy generation:

σ � σ MTUR � σ TUR
j . (36)

The key difference between the TUR and the MTUR is that
the MTUR takes into account correlations between degrees of
freedom in the off-diagonal elements of the diffusion matrix.
We can explore this difference explicitly in two dimensions
by writing

kBvTD−1v = kBDxxDyy

DxxDyy − D2
xy

⎛
⎝∑

j

v2
j

D j j
− 2

vxvyDxy

DxxDyy

⎞
⎠. (37)

If the off-diagonal elements vanish, then the right-hand side

reduces to
∑

j kB
v2

j

D j j
= ∑

j σ
TUR
j . In contrast, when Dxy �= 0,

no general rule exists to determine if kBvTD−1v is greater or
less than

∑
j σ

TUR
j . The results below show that both cases

can occur. Appendix C provides more analysis of the different
functional structure of the actual entropy generation, the TUR
and the MTUR.

V. DEEP-WELL REGIME

In the deep-well limit we can derive an analytical expres-
sion for the eigenvalue of the lowest band λ0,k. This is given
by Eq. (A1) in Appendix A. From this expression, we can
use Eqs. (25) and (26) to derive analytical expressions for the
drift (A2) and diffusion (A3). A simplified version of these
equations is

vx

ax
= 2κ0

(1,0) sinh(Xx/2) + 2κ0
(1,1) sinh(X+/2), (38a)

vy

ay
= 2κ0

(0,1) sinh(Xy/2) + 2κ0
(1,1) sinh(X+/2) (38b)

and

Dxx

a2
x

= κ0
(1,0) cosh(Xx/2) + κ0

(1,1) cosh(X+/2), (39a)

Dyy

a2
y

= κ0
(0,1) cosh(Xy/2) + κ0

(1,1) cosh(X+/2), (39b)

Dxy

axay
= Dyx

axay
= κ0

(1,1) cosh(X+/2), (39c)

where we have defined the dimensionless forces X = A f /kBT
and the quantities X± = Xx ± Xy. κ0

(1,0) and κ0
(0,1) are the rates

for “leak” process that do not couple energy, while κ0
(1,1) is

the rate for coupling transitions. From Eq. (39) it is clear that
coupling between the degrees of freedom κ0

(1,1) �= 0 results in
Dxy �= 0, demonstrating the importance of correlations [21].
High energy conversion can occur in the strong coupling
limit: κ0

(1,1) � κ0
(1,0), κ

0
(0,1) when fx ≈ − fy and vx ≈ vy [cf.

Eq. (15)].
We can use Eqs. (38) and (39) to compare σ with the vari-

ous bounds given in Eqs. (8) and (10). It is useful to consider
the relative error, E = (σ − σB)/σ , and the efficiency bound,

ηB(σB) ≡ 1 − T σB

vy fy
� η, (40)

where σB is σ MTUR or σ TUR
j . The near equilibrium case

is shown in Figs. 1 and 2. In Fig. 2 (inset) we can see
that vx > 0 for −0.175 < Xx < 0, representing an energy
conversion process. These plots show that there is close
agreement between σ and σ MTUR and that the coarse-grained
efficiency ηB(σ MTUR) is indistinguishable from η. We can
understand this from the fact that in this near equilib-
rium regime sinh(Xj/2) ≈ Xj/2 and cosh(Xj/2) ≈ 1 and,
therefore, v ≈ D( f = 0) f /kBT . Rearranging this means that
f Tv ≈ kBT vTD−1v and σ ≈ σ MTUR. In contrast, the σ TUR

j
bound does not show close agreement with the full entropy
generation or the efficiency. A quadratic increase in the
relative error between σ MTUR and σ is observed close to
equilibrium (see Fig. 2).
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FIG. 1. Entropy generation as a function of applied thermody-
namic force Xx in the near equilibrium regime. The dotted (red) line
is σ , the solid (blue) line is σ MTUR, and the dashed (purple) and dash-
dotted (green) lines are σ TUR

x and σ TUR
y , respectively. Parameters are

Xy = 0.2, κ(1,0) = κ(0,1), κ(1,1) = 5κ(1,0), and characteristic time scale
τ−1 = κ(1,0).

Figure 3 shows an example further from equilibrium. The
relative error between σ MTUR and σ arises from the finite
size of κ(1,0) and κ(0,1) in this example. Note that despite this
discrepancy the MTUR is still a far better bound than the TUR
in this regime. From Fig. 3 (inset) we can see that vx > 0 for
−1.4 < Xx < 0 representing an energy conversion process. It
is evident that the constraints on the entropy generation given

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

-0.2 -0.1 0 0.1
0

0.5

1

FIG. 2. Relative error in entropy generation and efficiency (in-
set) as a function of applied thermodynamic force Xx in the near
equilibrium regime. The dotted (red) line is σ (inset only), the solid
(blue) line is σ MTUR, and the dashed (purple) and dash-dotted (green)
lines are σ TUR

x and σ TUR
y , respectively. Parameters are the same as

Fig. 1. vx > 0 for −0.175 < Xx < 0 represents an energy conversion
process.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1
0

0.5

1

FIG. 3. Relative error in entropy generation and efficiency (in-
set) as a function of applied thermodynamic force Xx . The dotted
(red) line is σ (inset only), the solid (blue) line is σ MTUR, and the
dashed (purple) and dash-dotted (green) lines are σ TUR

x and σ TUR
y ,

respectively. Parameters are Xy = 1.5, κ(1,0) = κ(0,1), and κ(1,1) =
5κ(0,1). vx > 0 for −1.4 < Xx < 0 representing an energy conversion
process.

by σ TUR
j lead to significant overestimates of the efficiency.

For Xx < −1 in Fig. 3 (inset) the TUR constraints diverge
significantly from the actual entropy generation rate. On the
other hand, the efficiency given by ηB(σ MTUR) provides a
much tighter bound.

The TUR and MTUR diverge from the actual entropy pro-
duction rate for large forces. To understand this divergence let
us consider the simple case when only κ(1,0) is nonzero. From
Eqs. (38) and (39) we have vy = 0, vx = 2axκ(1,0) sinh(Xx/2),
Dyy = Dxy = 0, and Dxx = a2

xκ(1,0) cosh(Xx/2). Therefore,
[D−1v]xax = 2 tanh( fx/2kBT ). But this tends to a constant
value with large fx, and thus diverges linearly from fx. The
ultimate origin of this behavior is the nonlinear behavior
arising from the exponential dependence of the hopping rates
on barrier height [see Eq. (23)].

Finally, we compare the Stoke’s efficiency (17) with the
efficiency bound given by

εB(σB) ≡ γxv
2
x

T σB
, (41)

where σB is σ MTUR or σ TUR
i . Figure 4 shows that, as expected,

σ MTUR provides a better bound than σ TUR
x .

VI. BEYOND THE DEEP-WELL REGIME

For more general potentials we need a method of determin-
ing v and D numerically. Using the Bloch state description we
can show that uk,α (r) satisfies

[L − kBT kTMk + iχTk]uk,α (r) = −λk,αuk,α (r), (42)

where χ = M{2kBT ∇ + [∇V (r)]}. This operator equation
can be evaluated numerically to find λk,α . As the potential and
uk,α (r) are periodic functions, it is convenient to carry this out
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FIG. 4. Stokes efficiency and bounds as a function of applied
thermodynamic force Xy. The dotted (red) line is σ , the solid (blue)
line is σ MTUR, and the dashed (purple) line is σ TUR

x . Parameters are
Xx = 0, κ(1,0) = κ(0,1), and κ(1,1) = 5κ(0,1).

in k space. Solving the eigensystem is then straightforward
using standard techniques. The drift and diffusion can then
be calculated in k space using finite difference estimates of
Eqs. (25) and (26).

As a simple example potential we consider

V0(r) = −Vx cos(2πx/ax ) − Vy cos(2πy/ay)

− Vz cos[2π (x/ax − y/ay )]. (43)

As noted previously, the deep-well limit described by a master
equation (Sec. V) is only valid for small forces and cannot
be used to explore the regime where the force is larger than
the confining barriers. In Fig. 5 we show the performance
of the error bounds for the potential (43) with large forces.
Parameters are chosen to approximately coincide with the
limiting case shown in Fig. 2 close to Xx = 0. Figure 5 shows
that the MTUR provides a good bound on the entropy close
to equilibrium and for very large forces, but is inaccurate in
the intermediate regime and diverges from the actual entropy
generation at the critical point: Xx/2π ≈ −�V/kBT , where
the potential barriers in V (r) vanish. This result is known from
one dimensional treatments [20].

To understand these results we note that from Eq. (10) we
can see that entropy generation is minimized when it is equal
to the MTUR. In this case vT f = kBT vTD−1v, or

v = D f /kBT . (44)

The minimization of the entropy generation in the linear
regime (v ∝ f ) has been discussed previously [1,2,20] in the
context of Eq. (8). Equation (44) holds close to equilibrium
f → 0 when D = D( f = 0) [1,2] and far from equilibrium
when | f Ta| is much larger than the barriers in V (r) [20].

For large enough forces the potential is well described by
a linear potential with a periodic perturbation and Eq. (44)
holds. As shown in Fig. 5, for intermediate forces, the MTUR
(and the TUR) diverge from the actual entropy production
rate. This results from the difference between f and D−1v [cf.

-100 -80 -60 -40 -20 0
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 5. Relative error in entropy generation as a function of
applied thermodynamic force Xx . The solid line (blue) is σ MTUR

and the dashed (purple) and dash-dotted (green) lines are σ TUR
x and

σ TUR
y , respectively. Parameters are chosen to approximately coincide

with the limiting case shown in Fig. 2: γy = γx , ax = ay, Vx = 2kBT ,
Vy = 2kBT , Vz = 3.8kBT , and Xy = 1.5. Similar to Fig. 2, vx > 0 for
−1.25 < Xx < 0 represents an energy conversion process.

Eq. (44)]. An argument similar to that given in Sec. V also
holds for more complicated cases. For example, comparing
[D−1v]xax with Xx in Fig. 6 (for the same parameters as Fig. 5)
we see that [D−1v]xax becomes approximately constant and
thus diverges from Xx as |Xx| � 1. For even greater forces
the approximations in Sec. V break down and this divergence
reaches its peak. For even higher forces the relative error
decreases until eventually the minimum uncertainty relation
(44) holds again. The large growth in the diffusion close to
the critical point in the one dimensional case is well known
[26–28].

-15 -10 -5 0
-4

-3

-2

-1

0

1

FIG. 6. Plot of [D−1v]xax dashed (purple) line and [D−1v]yay

dash-dotted (green) line as a function of Xx . The solid (blue) line
shows Xx . Parameters are the same as in Fig. 5.
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FIG. 7. Relative error in entropy generation (a) and thermody-
namic efficiency (b) as a function of applied thermodynamic force
Xx . The solid line (blue) is for σ MTUR, the dotted line (red) is for
σ [only in (b)], and the dashed (purple) and dash-dotted (green)
lines are for σ TUR

x and σ TUR
y , respectively. Parameters are γy = γx ,

Vx = 1kBT , Vy = 1kBT , Vz = 5kBT , and Xy = −1.1Xx . For these
parameters vx > 0 for Xx < 13 representing an energy conversion
process.

In general, energy conversion does not occur in the large
force regime as potential barriers are required to induce a drift
against an applied force. A particularly interesting case occurs
for a tightly bound diagonal potential channel [Vz � Vx,Vy in
Eq. (43)], where Xx is increased holding Xx ≈ −Xy. This cre-
ates a minimum uncertainty state with high energy conversion
efficiency (vx ≈ vy) for small forces but, for sufficiently large
forces, the barriers inducing the energy conversion become
smaller than the external force. Figure 7(a) shows the relative
error between the MTUR and TUR and the entropy in this
case. Similar to Fig. 5 the MTUR diverges close to the
critical point where the bound state vanishes. In this case the
efficiency is very high for small forces [see Fig. 7(b)]. The
σ MTUR and σ TUR

j bounds on the efficiency are particularly
inaccurate in this case.

VII. TRADE-OFF BETWEEN PRECISION AND
DISSIPATION

The above results also have implications for the trade-off
between precision and dissipation. We have shown that the
MTUR provides a multidimensional generalization of the
TUR so in this section we confine our discussion to the
MTUR. In small and very large force regimes where the
minimum uncertainty condition Eq. (44) approximately holds,
then

σ � σ MTUR = kBvTD−1v. (45)

In these regimes, it is reasonable to interpret the MTUR as
meaning that greater relative precision requires greater dissi-
pation. However, in the intermediate force regime, the MTUR
diverges from the actual entropy production rate (see Figs. 5
and 7). Due to this divergence between the actual entropy
production rate and σ MTUR in this regime, there are large
sources of entropy generation beyond that required to ensure
relative precision and the trade-off becomes less relevant.

One of the arguments for the usefulness of the TUR is
that measurements of the diffusion and drift in one dimension
would provide a bound on the entropy generation rate [10].
The diffusion and drift can be estimated from experimentally
measured single-molecule trajectories (e.g., Ref. [26]).
However, in many cases the TUR places only a loose
bound on the entropy generation rate. The MTUR places a
much tighter bound; however, its calculation would require
measurement of the drift and diffusion in each relevant degree
of freedom and the correlation between the two. It is not clear
how this could be achieved if one of the degrees of freedom is
a chemical coordinate. In addition, if the force in each degree
of freedom is known, then determining the entropy generation
directly via Eq. (7) would be much more straightforward. If
the force is not known then the MTUR could be an option for
estimating a bound.

VIII. CONCLUSION

In this paper we have considered a description of
molecular-scale energy conversion in terms of continuous
Brownian motion on a time-independent periodic potential
that explicitly includes the degrees of freedom exchanging
energy. We have compared the TUR [1] and the recently
derived MTUR [11] to the entropy generation of this system.

First, we have shown that the MTUR has a clear physical
interpretation in terms of course-grained dynamics of the
system (see Sec. III), is consistent with the original TUR (see
Sec. IV), but always represents a tighter bound on the entropy
generation.

Our second finding is that the TUR, although providing a
universal lower bound on the entropy generation, is often a
very weak bound in regimes relevant to energy conversion.
The original TUR has been used to derive an upper bound
on efficiency [9,10]. However, as a consequence of the TUR
providing a weak bound on entropy generation, it significantly
overestimates the efficiency in a number of regimes including
the deep well regime where the TUR was originally derived.
As a consequence of the MTUR providing a tighter lower
bound on entropy generation, it also provides a tighter up-
per bound on the thermodynamic efficiency. These attributes
make the MTUR the natural multidimensional generalization
of the TUR especially for applications involving energy con-
version. This stems from the fact that it takes into account the
correlations between degrees of freedom that arise in energy
conversion processes.

As a third result we have shown that both the TUR and
the MTUR diverge from the entropy generation rate in the
intermediate force regime where the externally applied force
is close to the force of local confining barriers. The same
behavior was found for the TUR in one dimension [20];
however, it has important ramifications for the MTUR as an
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efficiency bound in higher dimensions (see Fig. 7). Thus the
MTUR is most useful as a bound on the entropy close to and
very far from thermal equilibrium. In both these cases the lin-
ear relation between the drift and force holds. However, both
the TUR and the MTUR diverge from the entropy generation
in the intermediate force regime between these two cases. In
this regime there is a strongly nonlinear relation between the
drift, the diffusion, and the force. Hence the TUR and MTUR
relations, while providing universal bounds, in some regimes
are too weak to be useful.

Finally, we have considered the consequences of these
results for the trade-off between precision and dissipation. Our
results show that in the small and very large force regimes
where the minimum uncertainty state is approximately valid,
it is reasonable to interpret the MTUR as meaning that greater
relative precision requires greater dissipation. However, in the
intermediate force regime, the actual entropy rate diverges
from the MTUR, showing that sources of entropy generation
beyond that required to ensure precision dominate and this
interpretation loses predictive power.

APPENDIX A

In the special case described in Sec. II the lowest band
eigenvalues take the form

λk,0 = 4κ0
(1,0)G(1,0)(Xx ) sin

(
1
2 kxax

)
sin

(
1
2 kxax + i 1

2 Xx
)

+ 4κ0
(0,1)G(0,1)(Xy) sin

(
1
2 kyay

)
sin

(
1
2 kyay + i 1

2 Xy
)

+ 4κ0
(1,1)G(1,1)(X+) sin

(
1
2 kxax + 1

2 kyay
)

× sin
(

1
2 kxax + 1

2 kyay + i 1
2 X+

)
+ 4κ0

(1,−1)G(1,−1)(X−) sin
(

1
2 kxax − 1

2 kyay
)

× sin
(

1
2 kxax − 1

2 kyay + i 1
2 X−

)
, (A1)

where Gn(x) = e(α0
n−1/2)x, X = A f /kBT , and X± = Xx ± Xy.

The drift and diffusion are then calculated from Eqs. (25)
and (26) to be

vx/ax = 2κ0
(1,0)G(1,0)(Xx/2) sinh(Xx/2)

+ 2κ0
(1,1)G(1,1)(X+/2) sinh(X+/2)

+ 2κ0
(1,−1)G(1,−1)(X−/2) sinh(X−/2), (A2a)

vy/ay = 2κ0
(0,1)G(0,1)(Xy/2) sinh(Xy/2)

+ 2κ0
(1,1)G(1,1)(X+/2) sinh(X+/2)

− 2κ0
(1,−1)G(1,−1)(X−/2) sinh(X−/2) (A2b)

and

Dxx

a2
x

= κ0
(1,0)G(1,0)(Xx/2) cosh(Xx/2)

+ κ0
(1,1)G(1,1)(X+/2) cosh(X+/2)

+ κ0
(1,−1)G(1,−1)(X−/2) cosh(X−/2), (A3a)

Dyy

a2
y

= κ0
(0,1)G(0,1)(Xy/2) cosh(Xy/2)

+ κ0
(1,1)G(1,1)(X+/2) cosh(X+/2)

+ κ0
(1,−1)G(1,−1)(X−/2) cosh(X−/2), (A3b)

Dxy

axay
= Dyx

axay
= κ0

(1,1)G(1,1)(X+/2) cosh(X+/2)

− κ0
(1,−1)G(1,−1)(X−/2) cosh(X−/2). (A3c)

The drift and diffusion of this system has been explored
previously [21], but not in the context of the TURs. A simpli-
fied version of these equations with κ0

(1,−1) = 0 and α0
n = 1/2

is presented in the main text. The conclusions do not depend
on these simplifications.

APPENDIX B

In this Appendix we aim to show that

vD−1v � v2
1

D11
(B1)

holds in in N dimensions, where we have chosen a convenient
ordering of the indices. A few results from block matrices
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FIG. 8. Contour plot of the functions (C1) for different values
of applied forces. The solid (black) line is g(u), the dotted vertical
lines are gTUR

x (u), the dotted ellipse is gdiag(u), and the dashed rotated
ellipse corresponds to gMTUR(u). The (red) thin arrow is the force
A f /kBT and the (black) thick arrow is the drift τA−1v. Contour
values are in units of τ−1 = κ(0,1), a characteristic rate of the system.
Only one contour is shown for each function and corresponds to the
values when u = v and thus all functions intersect with the drift
vector. The values of force and resulting g(v) are (a) A f /kBT =
(−1.8, 1.5) and g(v) = 3.66τ−1, (b) A f /kBT = (−1.5, 1.5) and
g(v) = 2.96τ−1, (c) A f /kBT = (−1.2, 1.5) and g(v) = 3.22τ−1, and
(d) A f /kBT = (−0.9, 1.5) and g(v) = 4.46τ−1. Other parameters
are κ(1,1) = 5κ(0,1), κ(1,0) = 0.2κ(0,1), and α j = 0. See Sec. V for more
details of the parameters.
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assist with this proof [29]. In block matrix form we can write

D =
[

D11 BT

B D̄11

]
, (B2)

where D11 is the j′ = 1, j = 1 element of D, B is a 1 × N
vector with components Bj = Dj1, and D̄11 is the (N − 1) ×
(N − 1) lower right-hand block of D. We can write the block
matrix form of D as[

D11 BT

B D̄11

]
=

[
1 0

D−1
11 B 1N−1

]

×
[

D11 0
0 K

][
1 D−1

11 BT

0 1N−1

]
, (B3)

where K = D̄11 − D−1
11 BBT. The inverse of D in block form is

D−1 =
[

D11 BT

B D̄11

]−1

. (B4)

Taking the inverse of each matrix on the right-hand side of
Eq. (B3) we can show that[

D11 BT

B D̄11

]−1

=
[

D−1
11 + D−2

11 BTK−1B −D−1
11 BTK−1

−D−1
11 K−1B K−1

]
.

(B5)

To show that Eq. (B1) holds in N dimensions it suffices to
show that the N × N matrix A,

A =
[

D11 BT

B D̄11

]−1

−
[

D−1
11 0
0 0

]
, (B6)

is positive semidefinite.
From Eq. (B5), A can be written as

A =
[

D−2
11 BTK−1B − D−1

11 BTK−1

−D−1
11 K−1B K−1

]
(B7)

=
[−D−1

11 BT

1N−1

]
K−1

[−D−1
11 B 1N−1

]
. (B8)

As D is positive definite each block of the block diagonal
matrix [middle matrix on the right-hand side of Eq. (B3)]
must be positive definite; thus K is positive definite. Since K
is positive definite so is K−1 and we can write K−1 = RRT .
This means that we can also write A = R′R′T, where

R′ =
[−D−1

11 BT

1N−1

]
R. (B9)

This shows that A must be at least positive semidefinite, which
concludes the proof.

APPENDIX C

It is useful to understand the functional structure of the
various quantities that we have introduced in this paper. To
help with this we define the following functions of u:

g(u) = uT f
kBT

, (C1a)

gTUR
x (u) = u2

x

Dxx
, (C1b)

gdiag(u) = u2
x

Dxx
+ u2

y

Dyy
, (C1c)

gMTUR(u) = uTD−1u, (C1d)

reflecting the quantities σ/kB, σ TUR
x /kB,

∑
j

v2
j

kBDj j
, and

σ MTUR/kB, respectively. Plotted as a function of ux and uy in
two dimensions, g(u) represents an inclined plan with normal
vector ( fxax/kBT, fyay/kBT,−1), gTUR

x (u) a parabolic cylin-
der with no variation in uy, gdiag(u) is an elliptic paraboloid,
and gMTUR(u) a rotated elliptic paraboloid. Contour plots of
these quantities are shown in Fig. 8 for different values of the
thermodynamic force f . Section V describes how D and v in
these figures are calculated.

Figure 8 shows examples with significant off-diagonal
components of D. In these examples, fy > 0 is constant and
fx < 0 increases from (a) to (d). In each case, the curvature of
gTUR

x (u) is such that it underestimates the entropy generation.
Figure 8(a) shows an example of high entropy production; f
is almost parallel to v, with no energy conversion, vx < 0.
Both gTUR

x (u = v) and gdiag(u = v) underestimate the entropy
generation rate g(u = v). Figure 8(b) shows a case where fy

is reduced to the point where vx ≈ 0. In this case gTUR
x (u =

v) ≈ 0 and represents a very inaccurate bound on the entropy
generation. Figures 8(c) and 8(d) show cases with energy con-
version vx > 0. In Fig. 8(d), where large energy conversion is
occurring, gdiag(u = v) overestimates the entropy generation
rate.
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