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High-heat-flux rectification due to a localized thermal diode
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A theoretical implementation of a localized thermal diode with a rectification factor greater than 106

is demonstrated. In reverse thermal bias, extremely low thermal conductivity is achieved through phononic
Rayleigh scattering from a finite-depth defect. In forward bias, the diode oscillator escapes the defect and thermal
conductivity becomes up to four orders of magnitude higher. The setup provides a minimal model of a localized
thermal diode between two identical oscillator chains and opens up a pathway for thermal diode implementations.
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I. INTRODUCTION

The control of heat at the nanoscale is a highly active
research area, for its promise in thermoelectric energy harvest-
ing [1] and heat-flow management [2]. Of particular interest
for these applications is the development of a “thermal diode,”
a device which has either high or low thermal conductivity,
depending on the direction of heat flow [3,4]. The search
for such a device has relied heavily on idealized models of
materials, based on oscillator chains, to allow the essential
physics to be uncovered [5]. One of the first works in this
direction showed that thermal diodelike behavior could be
obtained by using two different chains of oscillators, relying
on a bulk transition to nonlinear behavior in one of the chains
[6,7]. Unfortunately, this reliance on the nonlinear properties
of the chain meant that the observed thermal rectification
effects disappeared with increasing chain length, as far from
a thermal bath the oscillator chain would revert to linear
behavior [8]. A recent approach has sought to circumvent this
problem by considering only short nonlinear chains, separated
by a long linear chain [9]. However, as the linear chain shows
no thermal gradient (and therefore does not follow the Fourier
heat diffusion law [10,11]), the underlying problem of the
size dependent thermal rectification is sidestepped rather than
confronted.

In this work, I show that thermal diode effects may be
achieved by introducing a single-site defect with asymmetric
coupling (see Fig. 1). The key thermal conduction effects are
confined to the defect, which means there is no need for a
bulk temperature-dependent thermal conductivity, or the need
for two different materials. A recent work has demonstrated
thermal rectification effects due to a soft-wall localized im-
purity between two identical oscillator chains [12]; however,
with no temperature-dependent transition between a low- and
high-conducting state, the resulting rectification is weak and
disappears for a longer chain. In this work, I show that
temperature-dependent conduction underpins strong rectifi-
cation and demonstrate that this may be achieved with a
localized defect.

*tristram.alexander@sydney.edu.au

The general requirement of asymmetry and nonlinearity
for thermal rectification has been established theoretically
[13,14], although it should be noted that these conditions are
necessary but not sufficient [15]. Early work identified that
asymmetry between a two-state quantum system and thermal
baths could lead to thermal rectification [16,17]. In this work,
I demonstrate analogous two-state-like effects in an entirely
classical system.

Experimental examples of systems with asymmetry and
a temperature-dependent conductivity abound, including
graded masses in a carbon nanotube [18], mercury in a ver-
tical cylinder [19], phase change materials in an asymmetric
configuration [20,21], and structural detuning in the presence
of radiation [22]. The idealized model presented in this work
provides a minimal theoretical model for capturing and de-
scribing these effects.

The work proceeds as follows. In Sec. II, I introduce
the theoretical model used to describe the thermal diode. In
Sec. III, I introduce the numerical approach and diode metrics,
and demonstrate the essential function of the thermal diode.
In Sec. IV, I introduce a simple coupled oscillator model to
describe the diode action and find an analytical expression for
the dependence of the flux on the diode parameters. In Sec. V,
I check the analytical predictions with a numerical study of the
flux dependence. In Sec. VI, I examine the dependence of the
diode behavior on chain length. In Sec. VII, I provide some
physical estimates of diode operation, while in Sec. VIII, I
provide some final conclusions.

II. MODEL

The model seeks to describe two identical materials [shown
schematically in Fig. 1(a)], using a simple oscillator model
[see Fig. 1(b)]. In this work, I focus on the one-dimensional
Frenkel-Kontorova model [23], which, with its local on-site
potential, provides a highly simplified model of mechanical
vibrations in a crystalline solid. As I will show, high rectifica-
tion in this system may be achieved by using a local finite-
depth defect in the presence of asymmetric coupling [see
Fig. 1(c)]. The defect is shown to locally decouple the phonon
bands [Fig. 1(e)], leading to effective phonon Rayleigh
scattering and, consequently, very low thermal conductivity.
However, above a critical local temperature, the diode
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FIG. 1. (a) Thermal diode configuration: (i) and (iv) represent
identical materials separated by (ii) a material with a temperature-
dependent phonon spectrum and (iii) a low thermal conductivity
material. (b) Schematic of oscillator chain capturing the behavior in
(a) (shown in reverse-bias configuration) with (c) details of the diode
showing the presence of a defect (leading to temperature-dependent
phonon spectrum) and asymmetric coupling into the defect. (d) Left:
When the oscillator is confined to the the defect, the oscillator
frequency does not overlap with the phonon bands (e), and there is
low flux. (d) Right: When the oscillator escapes the defect, it overlaps
with the phonon bands (f), and there is high flux. (e),(f) Fourier
power spectra for Tl = 0.05, Th = 0.6 in reverse- and forward-bias
configurations, respectively. For both, kd = 0.2. Lines correspond to
spectra for the defect oscillator (black) and nearest neighbors (red
and blue), with red the oscillator on the high temperature side and
blue the oscillator on the low temperature side.

oscillator escapes the defect [Fig. 1(d)], leading to phonon
band overlap [Fig. 1(f)] and high thermal conductivity. The
required nonlinear thermal response is thus contained simply
in the finite depth of the defect. Asymmetric coupling into the
defect means that escape (and, thus, high thermal conductiv-
ity) depends on both the temperature and the direction of the
thermal gradient.

In the general case, I will consider a one-dimensional
model of a chain of particles of mass m̃ harmonically coupled
to their immediate neighbors through linear springs and lo-
cated on a substrate potential Ṽs. For the majority of this work,
I shall restrict attention to the specific case of the Frenkel-
Kontorova model [23], for which the substrate potential is
sinusoidal with depth Ṽ0 and period ã [see Figs. 1(a) and 1(b)].
To this model, I add a Gaussian defect potential, localized on a
single site i = d , characterized by depth Ṽd and inverse width
constant w̃d [see Fig. 1(c)]. The Hamiltonian for this system
takes the form

H =
N∑

i=1

[
p̃2

i

2m̃
+ Ṽs(q̃i ) + 1

2
k̃i(q̃i+1 − q̃i )

2

]

+ Ṽd exp
(−w̃2

d q̃2
d

)
, (1)

where q̃i and p̃i are the displacement from equilibrium and
the associated momentum for the ith particle, respectively,
and k̃i = k̃0 for all i except i = d . At the defect, coupling
between the dth and (d + 1)th particle is set to k̃d , thus
breaking the left-right symmetry of the chain, which is a
fundamental requirement for the observation of rectification
effects [13,14]. With k̃d � k̃0, this simulates the low thermal
conductivity region (iii) shown in Fig. 1(a). For the spe-
cific case of the Frenkel-Kontorova model, Ṽs(q̃i ) = Ṽ0[1 −
cos( 2π

ã q̃i )]. In Sec. VI, I will also consider a quartic potential
Ṽs(q̃i ) = Ṽ0q̃2

i + Ṽnq̃4
i .

The equations of motion for the oscillators follow from
Hamilton’s equations, ˙̃qi = ∂H

∂ p̃i
and ˙̃pi = − ∂H

∂ q̃i
. For the

Frenkel-Kontorova model, the resulting second-order equa-
tion for the displacement q̃i is

¨̃qi = −2π

mã
F̃s

(
2π

ã
q̃i

)
+ ki

m̃
q̃i+1 + k̃i−1

m̃
q̃i−1

−
(

k̃i

m̃
+ k̃i−1

m̃

)
q̃i − 2Ṽi

m̃
w̃2

d q̃i exp
(−w̃2

d q̃2
i

)
, (2)

where F̃s( 2π
ã q̃i ) = Ṽ0 sin( 2π

ã q̃i ), and Ṽi �=d = 0, Ṽi=d = Ṽd .
Note that the tilde sign has been used to indicate quantities
with dimensions.

A dimensionless model can be obtained through
the following transformations: xi = (2π/ã)q̃i and
t = (2π/ã)

√
Ṽ0/(m̃V0)t̃ , where V0 is a dimensionless scaling

constant. The equation of motion for the ith particle in the
Frenkel-Kontorova model is then given by

ẍi = −Fs(xi ) + kixi+1 + ki−1xi−1 − (ki + ki−1)xi

− Viw
2
d xi exp

(−w2
dxi

)
, (3)

where now Fs(xi ) = V0 sin(xi ). In terms of the original
physical quantities, the dimensionless parameters are Vd =
2V0Ṽd/Ṽ0, w2

d = w̃2
d ã2/(2π )2, and ki = (V0ã2/(4π2Ṽ0))k̃i.

The chain is extended at either end by Nt particles (in
practice, Nt = 10) to provide a thermal bath. Each particle
in the thermostat chain obeys (3), while also coupled to a
Nosé-Hoover thermostat [24]. The thermostat response time
is taken to be 1. The chain on the left (coupling to the i = 1
particle) is held at temperature T1, while the chain on the right
(coupling to the i = N particle) is held at temperature T2. In
the normalized model, the local definition of temperature [24]
is given simply by the local time average of the square of the
velocity: Ti = 〈ẋ2

i 〉.
There are two significant features in this model relative to

earlier work: a temperature-dependent phonon spectrum due
to the narrow on-site Gaussian defect, and the presence of an
identical potential depth V0 for all particles (without loss of
generality, I take V0 = 2). This simulates the case of identical
materials (i) and (iv) in Fig. 1(a). The majority of the analysis
in this work is conducted for a chain of length N = 102, with
the defect located at the center of the chain (i = d = 51).

Throughout this work the lower temperature is fixed at
Tl = 0.05. In the forward-bias configuration, T2 = Tl , and the
reverse-bias corresponds to T1 = Tl [reverse bias is shown in
Figs. 1(a) and 1(b)].
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FIG. 2. (a) Flux through diode in forward- (red) and reverse-
(black) bias configurations as a function of Th. (b) Diodicity, showing
the region where diodicity is close to 1 (inset). Other parameters are
Tl = 0.05, kd = 0.2, Vd = 0.25, wd = √

200, and N = 102.

III. THERMAL DIODE OPERATION

I begin by examining the heat flux through the chain for dif-
ferent thermostat temperatures. Fixing the lower temperature
to be Tl = 0.05, the upper temperature Th is varied. Following
the derivation presented in [24], the local heat flux is

ji = ki

2
(ẋi+1 + ẋi )(xi+1 − xi ). (4)

The time average of (4) is found by allowing the system
to first evolve for t = 107 time units and the local flux is
then averaged over the following t = 2 × 107 time units.
Except for the longer chains considered later in this work,
this is sufficient for the local flux to be uniform across the
chain, such that a single flux value j(= ji ) can be used to
characterize the flux. The majority of the analysis in this work
is conducted for a chain of length N = 102, with the defect
and its asymmetrically coupled neighbor located at the center
of the chain (i = d = 51). All time integration is carried out
using the fourth-order Runge-Kutta algorithm with a time step
�t = 0.005.

Setting Vd = 0.25 and kd = 0.2, we see, in Fig. 2, evidence
of thermal diode behavior. In the forward-bias configuration
(red line), the heat flux is initially low for small Th, but for
Th � 0.13, a large heat flux occurs. This is the diode turn-on
temperature. The oscillator escapes the defect and its spec-
tral response overlaps strongly with both chains [Figs. 1(c)
and 1(e)]. Beyond this turn-on temperature, the heat flux in-
creases almost linearly with temperature. With the thermostats
in the reverse-bias configuration, high thermal flux requires

much higher temperatures, with the reverse-bias turn-on tem-
perature (and thus the thermal diode breakdown temperature)
Th = 0.7. In the temperature range Th ∈ [0.13, 0.69], the flux
is three orders of magnitude lower in the reverse-bias config-
uration than in the forward-bias configuration. In this regime,
the oscillator is confined to the defect and has only weak
spectral overlap with the chains on either side [Figs. 1(c) and
1(d)]. The asymmetry in the heat flux can be characterized
through the rectification coefficient,

R = (| j+| − | j−|)/| j−|, (5)

and the diodicity,

δ = | j+| − | j−|
| j+| + | j−| , (6)

where j+ and j− are the observed fluxes in the forward-
and reverse-bias configurations, respectively. To be consistent
with the electronics formalism, we use δ [3]; however, where
necessary to compare with previous results, we calculate R.
We can see in Fig. 2(b) that the diodicity is above 0.999 across
the range of operation (where a perfect diode has δ = 1).

We can summarize the diode operation requirements as
follows: Th needs to be sufficient to allow the oscillator to
escape when in forward bias, but insufficient for escape when
in reverse bias. Similarly, Tl must be low enough such that the
oscillator is trapped by the defect in the reverse-bias config-
uration. This introduces constraints on the thermal operating
range of the diode.

For lower Tl , there will be little change in the bounds. For
higher Tl , particularly a Tl approaching the breakdown of the
diode in reverse bias, the Th turn-on temperature will be lower,
but the upper cutoff temperature will be lower too, so that
overall the operating range will decrease.

IV. PHONONIC RAYLEIGH SCATTERING

To identify the dependence of the flux on the defect
parameters when the oscillator is confined to the defect,
we reduce the problem to three linear oscillators with po-
sitions [x1, x2, x3] and associated harmonic trap frequencies
[ω0, ωd , ω0]. Oscillator 1 couples to oscillator 2 through a lin-
ear spring with spring constant k, while oscillator 2 is coupled
to oscillator 3 with linear spring kd . We see that the normal
modes in this system become localized on each oscillator
in the limit ωd � ω0, kd � k, with mode frequencies ω1 =√

ω2
0 + k, ω2 =

√
ω2

d + k + kd , and ω3 =
√

ω2
0 + kd . We can

make a quantitative estimate of the effective coupling between
the end oscillators by examining the initial value problem
in which all oscillators are initially at rest and only x1 is
displaced, with x1 = xinit . Solving this initial value problem
in the limit ωd � ω0, kd � k, we find that the maximum
amplitude of x3 takes the form

x3max = 2kkd xinit

ω2
d (k − kd )

. (7)

This approximation can give an estimate of the maximum flux
passing through the defect from one end oscillator to the other.

We know from the solution to the initial value problem
that energy will be exchanged between the end oscillators
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with a frequency given by (ω1 − ω3)/2. Taking the flux to
therefore be a sinusoidal function at twice this frequency,
J = Jamp sin(ω1 − ω3)t , we can estimate the maximum flux
to be

Jamp = 1

4
x2

3max

(
ω2

0 + kd
)(√

ω2
0 + k −

√
ω2

0 + kd
)

(8)

≈ kk2
d x2

i ω0

2ω4
d

. (9)

As this assumes a smooth sinusoidal exchange of energy,
we expect it will underestimate the maximum flux values
found in the system, as the flux averaged over one oscillator
period will show large fluctuations, due to the influence of
the defect oscillator. This is indeed what we observe when
we compare the analytical predictions with the numerically
calculated maxima; however, the overall dependence shows
the 1/ω4

d flux dependence predicted. It should be noted that
this flux dependence breaks down if only one symmetry is
broken (i.e., when either kd = k or ωd = ω0), in which case
the end oscillators are always coupled through the normal
modes.

Returning to the full system, we see in Fig. 3(a) that
the flux through the diode does indeed go as 1/ω4

d . The
dotted line is the fitting function 0.008125/ω4

d , where ω2
d =

w2
dVd is the linear trap frequency for the defect in the limit

of small oscillations. This dependence is consistent with
phononic Rayleigh scattering, as expected for a defect of
much smaller size than the average phonon wavelength. While
the flux in the reverse-bias configuration is decreasing with
frequency (above some critical ωd ), the flux in the forward-
bias configuration is unchanged, as expected for a defect
which is a small perturbation after escape. The consequence
of this is that the diodicity steadily increases. At ωd = 10, we
have δ = 0.99985, which corresponds to a rectification factor
R = 1.38 × 106. This is significantly higher than previously
reported values [4,6,7,9,12,25].

V. DEFECT-MEDIATED DYNAMICS

As the defect frequency is decreased in the reverse-bias
configuration, we see in Fig. 3(a) a sudden jump to higher
flux below a critical frequency. At this frequency, the diode
oscillator is able to escape the defect, resulting in stronger
coupling across the diode and, thus, diode breakdown. The
study of thermally activated escape is an extensive and active
area (see, e.g., [26] for a recent review); however, the problem
here is further complicated by the continuing interaction of
the oscillator with the defect. The possibility of defect escape
and recapture leads to a noisy transition to diode breakdown,
as seen in the jumps to and from high flux in Fig. 2. Solving
this problem is beyond the scope of this work; however, we
can make some scaling estimates and identify some of the
breakdown pathways. At large ωd , escape occurs when the
energy in the linear spring, coupling the defect to one of the
chains, is close to Vd . In this static picture, we can obtain
an estimate of the diode oscillator escape temperature by
assuming that the oscillator at temperature T moves with
average amplitude sufficient for this temperature at the min-
imum oscillation frequency

√
Vs, yielding A = α

√
2T/Vs. In
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FIG. 3. (a) Dependence of flux on linear frequency of defect.
Parameters: Th = 0.4, Tl = 0.05; Vd = 0.25. (b) Dependence of flux
on temperature in reverse-bias configuration, showing the 1/kd de-
pendence of the breakdown temperature. Lines from top to bottom
are kd = 0.5 (purple), kd = 0.4 (blue), kd = 0.3 (green), kd = 0.2
(black), and kd = 0.1 (orange). Half circles are the corresponding
analytical breakdown predictions. (c) Dependence of flux on kd at
Th = 0.6. Blue line: Vd = 0, showing maximum flux. Solid lines:
Vd = 0.25. Dashed lines: Vd = 0.5. Red: forward bias; black: reverse
bias.

practice, the thermal fluctuations around this average imply
the maximum amplitude must be significantly higher than
this, i.e., α > 1. Equating the energy in the spring at the
amplitude A, Espring = 1

4 kd A2 to some fraction of the depth
of the defect Edefect = βVd , we obtain the critical escape
temperature Tcr = VsVd/(γ kd ), where γ = α2/β. As the fre-
quency of the oscillator in the defect decreases with increasing
energy, overlap may occur before the particle completely
escapes, so we take β < 1. Taking physically reasonable
values, α = 1.5 and β = 0.75 yields γ = 3. In forward bias
with Vd = 0.25, the predicted transition from bound to free
occurs at Tcr = 0.17. This compares with the numerically
obtained value of Tcr = 0.1 found in Fig. 2. We show in
Fig. 3(b) the dependence of flux on Th in the reverse-bias
configuration for kd = [0.1, 0.2, 0.3, 0.4, 0.5]. The prediction
captures the key behavior, but appears to overestimate the
breakdown temperature. The reason for the overestimation
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is that when the defect frequency and phonon band become
closer, dynamical effects come into play [as evident in the
frequency dependence of Fig. 3(a)], so we expect the static
approach will always overestimate the critical temperature.
The estimate for kd = 0.1 is particularly poor as at high
temperature the phonon band of the oscillator chain has spread
sufficiently to weakly couple with the defect, so flux occurs
even without the oscillator leaving the defect.

We consider now the maximum flux possible in the system.
In the absence of any defect, we have two identical chains
with some interfacial coupling. This serves as the maximum
available flux in the system [blue line in Fig. 3(c)] and peaks
at kd = 1 (similar results have been observed between two
different chains [8]). For Vd = 0.25 [solid red (forward) and
black (reverse) in Fig. 3(c)], we see a critical coupling strength
of kdcr = 0.33, beyond which the diode breaks down. Increas-
ing the defect depth to Vd = 0.5, we see this critical coupling
strength increases to kdcr = 0.91. While this is consistent
with the critical escape temperature behavior identified in the
previous paragraph, it also continues to illustrate the deviation
from the predicted linear behavior. The implication of the
result is the possibility for significant flux in the forward bias
with negligible flux in the reverse bias, provided kd < kdcr .
However, the flux in the Vd = 0.5 case is noisy due to the
continued interaction of the oscillator with the defect. At
kd = 0.5, we see δ = 0.99968, but the forward flux is more
than three times that observed for kd = 0.2. For kd > 1, we
see that the diode bias directions are reversed, though the
diodicity is low, δ < 0.5.

VI. LENGTH DEPENDENCE OF THERMAL
RECTIFICATION

Thermal rectification in Frenkel-Kontorova (FK) chains
has in the past relied on a bulk transition in the phonon
spectrum, due to the nonlinear nature of the substrate poten-
tial. This approach has suffered from a decrease, and even
possible reversal, in diodicity due to the decrease in effective
nonlinearity far from the thermal source [8]. Practically, this
means diodicity in the two-chain system depends strongly on
chain length. Similarly, for the case of the one-sided “soft-
wall” defect introduced in Ref. [12], the thermal rectification
coefficient is found to decay from R = 0.31 at N = 20 (corre-
sponding to a diodicity of δ = 0.13) to R = 0.178 at N = 150,
thus also showing a decrease in effectiveness with length. It is
therefore important to consider the effect of chain length for
the case of a single-site defect.

In Fig. 4, we can see the effects of increasing chain length.
In Fig. 4(b), we see that while there is some variation of the
diodicity around δ = 0.999, there is no systematic decrease
with length. However, the calculated fluxes shown in Fig. 4(a)
indicate that the total flux J = N j is increasing with chain
length. As thermal conductivity is given by κ = J/(Th − Tl ),
this result suggests that thermal conductivity is increasing
with length.

Thermal conductivity in a Frenkel-Kontorova lattice has
been found to asymptotically tend to a finite value with
increasing chain length [27,28]; however, a number of diffi-
culties with calculating values for a thermal conductivity in
nonlinear lattices have been identified [24]. For the tempera-
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FIG. 4. (a) Dependence of total flux J = N j on chain length for
forward bias (red) and reverse bias (blue) for the Frenkel-Kontorova
model, showing increase in flux with chain length. (b) Diodicity is
almost constant with length.

tures used in the creation of Fig. 4, the lattice appears to be
in a predominantly linear regime, which is in stark contrast
to the highly nonlinear regime used in the past to find a
finite value for the thermal conductivity [28]. It may simply
be that thermalization is extremely slow, or the convergence
to a finite thermal conductivity only becomes evident at a
much longer chain length; however, either way there is some
subtlety in the nature of thermal conductivity in FK lattices.
Further investigation is beyond the scope of this work.

Instead, to verify that the diode effects observed in FK
lattices persist when thermal equilibrium can be assured,
I turn to a φ4 lattice, which functionally looks like the
Frenkel-Kontorova lattice truncated at the first nonlinear term.
Specifically, I consider the confining quartic potential given in
Sec. II. The equations of motion are still given by Eq. (3), but
now F (xi ) = V0xi + Vnx3

i . Inspired by the observations of the
failings in the Frenkel-Kontorova model, I consider a strongly
nonlinear restoring force, with V0 = 1 and Vn = 10. Similarly,
to ensure that we are in the nonlinear regime, I set Tl = 0.5
and Th = 1.5.

Proceeding with analogous numerical simulations to those
conducted for the FK model, we see that the diodicity in
Fig. 5(b) continues to show no systematic change with length,
but now the flux in the forward and reverse directions shown
in Fig. 5(a) assumes an asymptotic value, indicating a well-
defined thermal conductivity. There has been no attempt to
optimize this configuration for high thermal rectification, yet
we see that the diodicity is still fluctuating around δ = 0.995.
The underlying mechanism of the rectification thus appears to
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FIG. 5. (a) Dependence of total flux J = N j on chain length for
forward bias (red) and reverse bias (blue) for the φ4 model, showing
an almost constant total flux. (b) Diodicity shows no systematic
change with length.

be robust against changes in the details of the oscillator chain.
Operation of the diode proceeds, provided the frequency of
the diode potential is well removed from the bulk phonon
spectrum in the chain.

VII. PHYSICAL CONSIDERATIONS

This work has explored the theoretical implications of a
localized defect in a Frenkel-Kontorova chain. In this section,
I will look at possible physical implementations of this sys-
tem. The key considerations are the temperatures involved,
the validity of the classical approach, and the physical char-
acteristics of the defect. As we shall see, these factors place
significant constraints on a possible experimental implemen-
tation of a thermal diode based on a localized defect.

Throughout this work, I have used dimensionless tempera-
tures, so a first step is to convert the normalization to physical
values. To this end, the equipartition theorem of classical
statistical mechanics is applied [4], which for the single
degree-of-freedom oscillator chain considered here gives

1

2
kBT̃ = 1

2
m̃

〈
˙̃q2
i

〉 = 1

2
m̃

(
Ṽs

m̃V0

)〈
ẋ2

i

〉 = 1

2

Ṽs

V0
T, (10)

where I have made use of the scaling relations between dimen-
sionless and physical variables introduced in Sec. II, and kB is
the Boltzmann constant. We thus obtain a relatively simple
relation between the real temperature T̃ and the normalized
temperature T ,

T̃ = Ṽs

kBV0
T, (11)

where, due to the scaling relations employed in the derivation
of the normalized model (3), the conversion is determined
by the single free physical parameter Ṽs. This single param-
eter determines the energy scale of the nonlinearity in the
Frenkel-Kontorova model (1). A similar approach is used in
Ref. [28], where instead three physical parameters are used to
characterize the physical regime of operation.

To determine the validity of the classical approach to the
defect dynamics, we must compare the defect depth Ṽd with
the characteristic energy scale h̄ω̃d of a quantum harmonic
oscillator in the defect. To this end, I introduce a dimen-
sionless parameter γ to quantify the relation between the
energy scales, with γ � 1 corresponding to a valid classical
implementation of the defect,

γ = Ṽd

h̄ω̃d
= ã

2π

√
m̃V0

Ṽs

Ṽd

h̄ωd
= ã

2π

√
m̃Ṽs

2V0

Vd

h̄ωd
, (12)

where I have made use of the temporal dimensionless scaling
in Sec. II.

Finally, we need a physical measure of the defect size. The
physical full width at half maximum is given by

q̃ f whm =
√

ln 2

w̃d
=

√
ln 2ã

2πwd
=

√
Vd ln 2

2πωd
ã, (13)

where again I have made use of the scaling relations in
Sec. II. We see that for Vd = 0.25 and ωd = 8, this leads to
a relationship of q̃ f whm ≈ 0.008ã. With Eqs. (11)–(13), we
are thus able to determine the validity and accessibility of the
predicted effects in various physical systems.

A defect of less than 1% of the interoscillator distance
rules out this approach for any regular material. This is
compounded by the fact that h̄ω̃d ∼ kBT̃ for defects of this
scale in a typical crystal. For instance, for carbon atoms in
graphene, γ ≈ 0.25, meaning quantum effects need to be
taken into account in any complete treatment, while q̃ f whm ≈
1 pm puts the requirements of the defect beyond current
technical capabilities.

To observe the effects predicted in this work therefore
requires much larger spatial scales. Ion Coulomb crystals
provide one possible physical testbed. Looking at the exper-
imental work of Ref. [29], for instance, we can see for an
ion crystal of barium-138, Ṽs ≈ 50 mK × kB, ã ≈ 35 μm, and
m̃ ≈ 2.3 × 10−25 kg. In this case, the classical to quantum
ratio is γ ≈ 300, so with γ � 1 the classical approach used
in this work is valid. The size of the defect, q̃ f whm = 300 nm,
is possible to achieve optically, so it is compatible with
the optical techniques underpinning ion Coulomb crystals.
Finally, the asymmetric coupling necessary for the thermal
diode operation may be achieved by introducing an empty
site in the one-dimensional ion crystal chain. With the defect
located on an oscillator next to the empty site, the coupling
across the empty site will be weaker than the coupling to an
immediate neighbor. The physical temperatures involved for
Th = 0.6 and Tl = 0.05 will be T̃h ≈ 15 mK and T̃l ≈ 1 mK,
both well below Tc for the ion crystal. Such a system has
the added advantage that it is well approximated by a one-
dimensional chain in a periodic potential.

An interesting question is how the results presented in
this work may be extended to higher-dimensional systems.
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There is nothing that intrinsically prevents this. With a similar
increase in the dimensionality of the defect, the results pre-
sented here will have direct physical parallels with the higher-
dimensional versions. The technical challenge is to create
two-dimensional (or three-dimensional) finite-depth defects.
For instance, in the case of a physical ribbon-type geometry,
each oscillator in a short cross section of the ribbon would
need to be located on a defect.

VIII. CONCLUSION

This work has shown that within the formalism of a nonlin-
ear oscillator chain, a thermal diode with a high rectification
factor can be achieved through a finite-depth defect and
asymmetric coupling. High diodicities, greater than 0.999, are
demonstrated and the effects are shown to persist as the length
of the chain is increased. The approach used is a significant
departure from the typical implementation relying on nonlin-
ear behavior in a bulk chain to achieve rectification. Here,
the bulk chains are in the linear regime, and as such can be
identical. All of the nonlinear, temperature-dependent effects
are contained in the localized defect. Indeed, the largely linear
chain behavior likely underpinned the absence of convergence
to a finite thermal conductivity. The robustness of the thermal
diode operation was, however, demonstrated by placing the
diode in a highly nonlinear φ4 chain, and showing similar
levels of diodicity.

This work outlines a simple approach for achieving thermal
rectification; however, it also identifies a number of possible
subtleties inherent in using nonlinear oscillator chains to
model heat transport. The Frenkel-Kontorova model appears
to display anomalous heat diffusion when in the linear regime,
or at the least no asymptotic value for the thermal conductivity
with increasing chain length was identified in this work. Also,
the question of thermal equilibrium in an asymmetric nonlin-
ear system is a somewhat tricky point due to the possibility of
significant hysteresis in the system. Once the diode oscillator

is above the diode turn-on temperature, the coupling of energy
into the diode rises significantly, so the temperature must be
lowered well below this turn-on temperature to turn off the
diode again. The study of thermally activated escape in the
presence of such a “two-state” defect would be an interesting
direction for future research.

The frequency dependence of flux through the defect in-
dicates that the low thermal conductivity operation is due to
phononic Rayleigh scattering. The finite depth and asymmet-
ric coupling introduce a critical switch-on temperature for
forward bias and a much higher breakdown temperature in
reverse bias. This approach captures, in a simple way, the
temperature-dependent thermal conductivity and asymmetric
coupling underpinning thermal diode experiments, while the
specific approach opens up a pathway for the design and
implementation of thermal diode devices using a defect. The
small scale of the defect relative to the phonon wavelength
makes implementation in a solid-state environment challeng-
ing; however, in artificial crystalline structures with larger spa-
tial scales, implementation looks more straightforward. Ion
crystals [30] or trapped atom systems [31] are both possible
pathways to test high thermal rectification effects mediated
by a single defect.

There are a number of possible directions for further work.
The influence of quantum effects on possible rectification
behavior in the presence of a small scale defect could be ex-
amined; the results could be extended to higher-dimensional
models; and the implications in other systems, such as imple-
mentations of acoustic or optical diodes, could be considered.
Overall, the identification of the key mechanisms for diode
behavior in this simple model opens up the possibility of
diverse implementations of defect-mediated flow.
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