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Optimal performance of a three-level quantum refrigerator
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We study the optimal performance of a three-level quantum refrigerator using two different objective
functions: cooling power and χ function. For both cases, we obtain general expressions for the coefficient of
performance (COP) and derive its well-known lower and upper bounds for the limiting cases when the ratio of
system-bath coupling constants at the hot and cold contacts approaches infinity and zero, respectively. We also
show that the cooling power can be maximized with respect to one control frequency, while χ function can be
maximized globally with respect to two control frequencies. Additionally, we show that in the low-temperature
regime, our model of refrigerator can be mapped to Feynman’s ratchet and pawl model, a classical mesoscopic
heat engine. In the parameter regime where both cooling power and χ function can be maximized, we compare
the cooling power of the quantum refrigerator at maximum χ function with the maximum cooling power.
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I. INTRODUCTION

In 1824, Carnot discovered that the efficiency of any heat
engine operating between two reservoirs at temperatures Th

and Tc (Tc < Th), is bounded from above by the Carnot effi-
ciency, ηC = 1 − Tc/Th. If a heat cycle is reversed—turning
it into a refrigerator—then the corresponding measure, called
the coefficient of performance (COP), is similarly bounded
from above by εC = Tc/(Th − Tc). Somehow, the optimization
analysis of irreversible refrigerators [1–4] turns out to be more
involved than that of heat engines. For instance, power output
is a reasonable objective to maximize for a heat engine. Under
the assumptions of endoreversibility and Newton’s law for
heat transfer, the efficiency at maximum power was derived
by Curzon-Ahlborn (CA) [5]:

ηCA = 1 −
√

1 − ηC . (1)

Then, Esposito and coauthors [6] introduced the concept of
a low-dissipation heat engine and obtained lower and upper
bounds on the efficiency at maximum power. Further, for
the symmetric dissipation at the hot and the cold contacts,
they reproduced CA value. Izumida and Okuda [7] intro-
duced minimally nonlinear irreversible model to describe low-
dissipation limit within an Onsager-like framework. Further,
low-dissipation behavior is also obtained within a linear-
irreversible framework using an auxilliary, finite-heat reser-
voir [8], where CA value is obtained as the lower limit of
a class of efficiencies at maximum power for the symmetric
case. CA-efficiency is also obtained using inference in models
of limited information based on Jeffreys prior probability
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function [9,10]. Recently, in a global approach to irreversible
entropy generation [11], which is independent of the specific
nature of heat cycle, CA-efficiency was related to geometric
mean value of the heat exchanged with reservoirs. In contrast
to the engines operating at maximum power, some recent
studies [12–15] analyzed the performance of irreversible heat
engines operating at a given power and found lower and upper
bounds on the efficiency of such engines [14,15].

However, for refrigerators, maximizing the rate of refrig-
eration or the cooling power (CP) seems to be the desir-
able objective. CP cannot be maximized, however, within
endoreversible models with certain heat transfer laws, such
as Newton’s law [1]. In such cases, maximum CP is obtained
for a vanishing COP, which is not a useful result, since real
refrigerators operate with finite values of both CP and COP.
Similarly, for the low-dissipation refrigerator model, a generic
maximum for CP does not exist. However, if the input work
is first minimized for a given cycle time, then CP can be
maximized, as shown in Ref. [16]. Notably, the maximization
of CP has also been studied for low-dissipation absorption
refrigerator [17].

Yan and Chen [1] had earlier proposed to maximize a new
criterion, χ = εQ̇c, which gives equal emphasis to both COP
(ε) and CP (Q̇c), and thus analyzes a tradeoff function between
these two quantities. For instance, the COP at maximum χ

using Newton’s law within endoreversible approximation is
given by

εCA = √
1 + εC − 1, (2)

which also holds for many models of classical [10,11,16,18–
20] and quantum refrigerators [3,21]. Further, Agrawal and
Menon [2] showed that CP of endoreversible refrigerators
becomes optimizable if we take into account the time spent
on adiabatic branches. However, this results in a model-
dependent expression for the COP. Similarly, CP of a classical
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FIG. 1. Schematic of three-level laser refrigerator continuously
coupled to two heat reservoirs at temperatures Tc and Th with cou-
pling constants �c and �h, respectively. A single-mode classical field
drives the transition between levels |0〉 and |1〉, and λ represents the
strength of system-field coupling.

endoreversible refrigerator can be maximized by considering
non-Newtonian laws of heat transfer, employed earlier to
maximize the power output in CA model [1]. Again, this
results in nonuniversal formulas for the COP of the refrig-
erator that depend on phenomenological heat conductivities.
Recently, carrying the research in optimization of refrigerators
one step forward, Correa et al. maximized the CP of a quan-
tum endoreversible refrigerator in high-temperature regime
and obtained model-independent expression for the COP [22].

In this work, we study the optimal performance of a
three-level quantum refrigerator [23,24]. It is regarded that
the study of three-level systems pioneered by Scovil and
Schulz-DuBois (SSD), started the field of quantum thermo-
dynamics [25–31]. In recent years, these systems have also
been employed to study quantum heat engines (refrigerators)
[32–38] and quantum absorption refrigerators [39–47]. Our
choice of the model is motivated by the observation that it
can be maximized for both CP and χ function and yields
model-independent expressions for lower and upper bounds
on the COP in each case, i.e., ones that are free of the specific
parameters of the model.

The paper is organized as follows. In Sec. II, we discuss the
model of SSD refrigerator. In Sec. III, we maximize the CP
of the refrigerator and obtain the general expression for the
optimal COP, and find lower and upper bounds on the COP.
In Sec. IV, we maximize the χ function and obtain analytic
expressions for the COP for two-parameter as well as one-
parameter optimization scheme. We conclude in Sec. V.

II. MODEL OF THREE-LEVEL QUANTUM
REFRIGERATOR

The model consists of a three-level atomic system con-
tinuously coupled to two thermal reservoirs and to a single
mode of classical electromagnetic field as shown in Fig. 1.
In refrigerators, heat is extracted from the cold reservoir and
dumped into the hot reservoir, with the help of an external
agent. The power input mechanism is modeled by an external
single mode field coupled to the levels |0〉 and |1〉, inducing
transitions between these levels. The population in level |1〉
then relaxes to level |g〉 by rejecting heat to the hot bath. The

system then jumps from level |g〉 to level |1〉 by absorbing
energy from the cold bath. The Hamiltonian of the system
is given by: H0 = h̄

∑
k ωk|k〉〈k|, where the summation runs

over all three states and ωk represent the relevant atomic
frequencies. The interaction with the single mode lasing
field of frequency ω, under the rotating wave approxima-
tion (RWA), is described by the semiclassical hamiltonian:
V (t ) = h̄λ(eiωt |1〉〈0| + e−iωt |0〉〈1|), where λ is the field-atom
coupling constant. Note that, RWA is valid under conditions
of near-resonance and a weak system-bath coupling.

The most general time-independent dissipator generating
a completely positive, trace-preserving and linear evolution
was derived by Gorini, Kossakowski, and Sudarshan [48], and
Lindblad [49]. The time evolution of the system is described
by the following master equation:

ρ̇ = − i

h̄
[H0 + V (t ), ρ] + Lh[ρ] + Lc[ρ], (3)

where Lh(c)[ρ] represents the dissipative Lindblad superoper-
ator describing the system-bath interaction with the hot (cold)
reservoir:

Lh[ρ] = �h(nh + 1)(2|g〉〈g|ρ11 − |1〉〈1|ρ − ρ|1〉〈1|)
+�hnh(2|1〉〈1|ρgg − |g〉〈g|ρ − ρ|g〉〈g|), (4)

Lc[ρ] = �c(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ − ρ|0〉〈0|)
+�cnc(2|0〉〈0|ρgg − |g〉〈g|ρ − ρ|g〉〈g|). (5)

Here �h and �c are the Weisskopf-Wigner decay constants,
and nh(c) = 1/(exp[h̄ωh(c)/kBTh(c)] − 1) is the average occu-
pation number of photons in hot (cold) reservoir satisfying the
relations, with ωc = ω0 − ωg, ωh = ω1 − ωg.

For our model, it is possible to find a rotating frame in
which the steady-state density matrix ρR is time indepen-
dent [10]. Defining H̄ = h̄(ωg|g〉〈g| + ω

2 |1〉〈1| − ω
2 |0〉〈0|), an

arbitrary operator A in the rotating frame is given by AR =
eiH̄t/h̄Ae−iH̄t/h̄. It can be seen that Lh[ρ] and Lc[ρ] remain
unchanged under this transformation. The time evolution of
the system density matrix in the rotating frame can be written
as

ρ̇R = − i

h̄
[H0 − H̄ + VR, ρR] + Lh[ρR] + Lc[ρR], (6)

where VR = h̄λ(|1〉〈0| + |0〉〈1|).
In a series of papers [50–52], Boukobza and Tannor for-

mulated a new way of quantifying heat and work for weak
system-bath coupling [53]. Then, the input power and heat
flux of the refrigerator are defined as follows:

P = i

h̄
Tr([H0,VR]ρR), (7)

Q̇c = Tr(Lc[ρR]H0). (8)

Calculating the traces (see Appendix A) appearing in the right
hand side of Eqs. (7) and (8), the power input and heat flux
can be written as

P = ih̄λ(ωh − ωc)(ρ01 − ρ10), (9)

Q̇c = ih̄λωc(ρ01 − ρ10), (10)
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FIG. 2. 3D plot of CP [Eq. (A11)] in terms of control frequen-
cies ωc and ωh for h̄ = 1, kB = 1, �h = 3.4, �c = 3.2, λ = 3, Th =
60, Tc = 40.

where ρ01 = 〈0|ρR|1〉 and ρ10 = 〈1|ρR|0〉. Note that the input
power and cooling flux above are independent of coordinate
transformations. For a given configuration of the system with
ωh > ωc, we use the convention P > 0 and Q̇c > 0 to signify
the operation as a refrigerator, that regards energy fluxes
entering into the three-level atom as positive. Further, P > 0
implies that the electric field is being attenuated in case of
the refrigerator, in contrast to the case of a heat engine where
it is amplified [52]. From Eq. (A11), this requires nc > nh,
which is related to the fact that ρ11 − ρ00 < 0. This implies
that there is no population inversion between excited levels in
the operation of a refrigerator.

Finally, from nc > nh, we derive the condition: ωc/Tc <

ωh/Th. This leads to the conclusion that the COP as given by

ε = Q̇c

P
= ωc

ωh − ωc
� εC (11)

is bounded from above by the Carnot value.

III. MAXIMIZATION OF COOLING POWER

In this section, we maximize CP of the quantum refrig-
erator and solve for the corresponding COP. The general
expression for CP is derived in Appendix A, see Eq. (A11).
We show the 3D plot of CP with respect to ωc and ωh in Fig. 2.
It is clear from the figure that a well defined maximum with
respect to ωc exists whereas there is no such maximum with
respect to ωh. In other words, CP is optimizable with respect to
ωc only. We have played with a wide range of different values
of the concerned parameters (�c,h, Tc,h, λ), but the basic trend
of the graph remains the same and it does not change the main
result.

However, in this case, an analytic expression for the COP
seems hard to obtain. This necessitates the following remark.
Although, the above framework of Sec. II assumes both the
system-field coupling as well as the system-bath coupling to
be weak, however, the analytic results to derived below are

valid in the limit when the former is assumed large compared
to the latter (λ � �c,h) [35].

Thus, to derive the COP in a closed form, we work in
the high-temperature regime [41,54–57] and assume that the
system-field coupling to be strong compared to the system-
bath coupling. In this regime, it is possible to obtain model-
independent performance benchmarks for both quantum en-
gines and refrigerators [22,55,56,58]. Then, we can approxi-
mate nh � kBTh/h̄ωh and nc � kBTc/h̄ωc, which simplifies the
expression for CP to the form

Q̇c = 2h̄�h
ωc(τωh − ωc)

3(τωh + γωc)
, (12)

where γ = �h/�c and τ = Tc/Th ≡ εC/(1 + εC). One can
argue that a unique maximum of Q̇c with respect to both
ωh and ωc cannot exist. For, if we assume the values of the
reservoir temperatures and coupling constants to be fixed,
then under the scaling (ωh, ωc) → (αωh, αωc), where α is
a certain positive number, the CP also scales as Q̇c → αQ̇c.
Thus, there cannot exist a unique optimal configuration (ω̂h,
ω̂c) that yields a unique maximum for CP.

However, for a given value of ωh, Q̇c → 0 for both ωc → 0
and ωc → τωh. In between these limiting values of ωc, Q̇c

exhibits a maximum. Thus, setting ∂Q̇c/∂ωc = 0, we obtain
the optimal solution,

ω∗
c = ωh

(
√

1 + γ − 1)τ

γ
, (13)

with the COP at maximum CP as given by

ε∗ = εC

1 + √
1 + γ (1 + εC)

. (14)

We note that ε∗ is a monotonically decreasing function of
γ . Thus, we can obtain lower (upper) bound on the COP at
maximum CP by letting γ → ∞ (γ → 0):

0 � ε∗ � εC

2 + εC

. (15)

Note that the limits of γ values should be achieved while
maintaining �h � ωh and �c � ωc, to ensure the weak-
dissipation regime.

The above bounds can be obtained in a variety of other
models [4,59] and approaches [11,16]. In particular, the upper
bound above is also obtained for an endoreversible quantum
refrigerator (see Eq. (14) in Ref. [22] for dc = 1) operating at
maximum CP. The reason behind this is that like Ref. [22],
we also consider here the unstructured bosonic baths with a
flat spectral density in one-dimension (dc = 1).

Similarly, substituting Eq. (13) in Eq. (12) the optimal CP
is given by

Q̇∗
c = 2h̄�hωh

(2 + γ − 2
√

1 + γ )εC

3(1 + εC)γ 2
. (16)

For future reference, we find the expressions for Q̇∗
c in the

limiting cases γ → 0 and γ → ∞:

Q̇∗
c(γ→0) = h̄�hωh

2

εC

3(1 + εC)
, (17)

Q̇∗
c(γ→∞) = 2h̄�cωh

εC

3(1 + εC)
. (18)
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TABLE I. COP at global optimization of χ function. Here
Tc = 50, Th = 100. The results shown in first, second, and third
rows correspond to �h = 1, �c = 2000; �h = 1, �c = 1; and �h =
2000, �c = 1, respectively. For the given values of Tc and Th,
εCA = 0.414213.

λ = 1 λ = 100 λ = 10 000

γ = 0.0005 ε = 0.459333 ε = 0.475244 ε = 0.476904
γ = 1 ε = 0.441015 ε = 0.43729 ε = 0.437283
γ = 2000 ε = 0.42461 ε = 0.372163 ε = 0.346034

As mentioned above, for a given value of ωc, Q̇c [Eq. (12)]
does not exhibit a maximum with respect to ωh in its allowed
range ωc/τ < ωh < ∞ (see also Table II).

IV. OPTIMIZATION OF χ FUNCTION

The χ function, χ = εQ̇c has already been shown to be a
suitable figure of merit in the study of optimal performance of
classical [18,19] as well as quantum refrigerators [3,21,60].
In the following, we reaffirm this observation by pointing out
that in the case of SSD refrigerator, it is possible to maximize
the χ function with respect to control frequencies ωc and ωh.
This presents the advantage of optimizing χ function over
CP which can only be maximized with respect to a single
parameter.

A. Global optimization

In the general case, again it is not possible to obtain
analytic expression for the COP. Therefore, we maximize
Eq. (A12) numerically and present our results in Table I.

1. Low-temperature regime

The low-temperature regime is governed by the condition:
kBTc,h � h̄ωc,h, such that nc,h ≈ e−h̄ωc,h/kBTc,h � 1. Simplify-
ing Eq. (A12), we get the expression for χ function as follows:

χ = 2h̄λ2�c�h(nc − nh)ω2
c

(�c + �h)(λ2 + �c�h)(ωh − ωc)
. (19)

Maximization of Eq. (19), with respect to ωh and ωc, yields
the following equations:

eh̄ωh/kBTh−h̄ωc/kBTc = 1 + h̄ωcεC

kBTcε(1 + εC)
, (20)

eh̄ωh/kBTh−h̄ωc/kBTc = kBTc(2 + ε)

kBTc(2 + ε) − h̄ωc
. (21)

The above equations cannot be solved analytically for ωh and
ωc. However, they can be combined to give the following
transcendental equation (see Appendix B):

exp

[
(2εC − ε)(εC − ε)

ε(1 + εC)εC

]
= (2 + ε)εC

ε(1 + εC)
, (22)

which clearly indicates that COP at maximum χ function de-
pends upon εC only and is independent of system parameters.
Equation (22) along with the expression, εCA = √

1 + εC − 1,
is plotted in Fig. 3, from which it is clear that COP of the SSD

FIG. 3. Plot of the COP versus εC. Solid red curve represents
Eq. (22) and dashed blue curve represents the equation εCA =√

1 + εC − 1.

refrigerator operating in low-temperature regime is higher
than, though quite close to εCA. See also Appendix E for
the mapping of the refrigerator model in the above regime to
Feynman’s ratchet and pawl model.

B. One parameter optimization in high-temperature regime

High temperatures along with a strong system-field cou-
pling (λ � �c,h) is another operational regime in which we
can obtain model-independent benchmarks from the optimiza-
tion of χ function. In this regime, the expression for χ is
simplified to

χ = εQ̇c = 2h̄�hω
2
c (τωh − ωc)

3(τωh + γωc)(ωh − ωc)
. (23)

A two-parameter maximization by setting ∂χ/∂ωc = 0 and
∂χ/∂ωh = 0, does not give a nontrivial solution, which may
be understood, using a scaling argument, as we discussed
for CP in Sec. III. In view of this, we maximize χ function
alternately with respect to ωh (ωc fixed) and ωc (ωh fixed). As
shown in Table II, a maximum for χ is expected to exist under
both of these situations. For a fixed ωc, setting ∂χ/∂ωh = 0,
we obtain

ωh = ωc
γ − τ (1 + γ )

τ
[
1 − √

(1 + γ )(1 − τ )
] . (24)

Substituting in Eq. (11), and writing in terms of Carnot COP
εC, we get the following form of COP at maximum χ function:

ε∗ = εC

1 + √
(1 + γ )(1 + εC)

. (25)

Again ε∗ is monotonic decreasing function of γ . Therefore,
we can obtain lower and upper bounds on the COP by putting
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TABLE II. Limiting behavior of CP, COP and the χ function
when one frequency, either ωh or ωc, is kept fixed. The maximum
of CP exists only when ωh is kept fixed, while the maximum of χ

function is possible in both scenarios.

Fixed Variable CP (Q̇c) COP (ε) χ = εQ̇c

ωh ωc → 0 Q̇c → 0 ε → 0 χ → 0
ωc → τωh Q̇c → 0 ε → εC χ → 0

ωc ωh → ωc/τ Q̇c → 0 ε → εC χ → 0
ωh → ∞ Q̇c → 2h̄�hωc ε → 0 χ → 0

γ → ∞ and γ → 0, respectively (see Fig. 4):

ε− ≡ 0 � ε∗ � εCA. (26)

The lower bound, ε− = 0, concurs with the lower bound
of low-dissipation [61] and minimally nonlinear irreversible
models of refrigerators [19]. As mentioned earlier, the upper
bound, εCA, was first derived for a classical endoreversible
refrigerator [1]. Under the conditions of tight-coupling and
symmetric dissipation, εCA can also be obtained for the low-
dissipation [18] and minimally nonlinear irreversible refriger-
ators [19]. For a quantum Otto refrigerator, the COP emerges
to be equal to εCA in the classical limit (high-temperature
limit) [21].

Next, we maximize χ with respect to ωc while keeping
ωh constant. In this case, ∂χ/∂ωc = 0 yields the following
equation:

ωc
[
γω3

c + 2ωh(τ − γ )ω2
c − τω2

h(3 + τ − γ )ωc + 2τ 2ω3
h

]
(ωc − ωh)2(γωc + τωh)

= 0. (27)

Due to casus irreducibilis (see Appendix D), the roots of
the cubic equation inside the square brackets above can only
be expressed using complex radicals, although the roots are
actually real. We can still obtain the lower and upper bounds
on the COP by solving Eq. (27) for the limiting cases γ → ∞
and γ → 0, respectively. An alternative method is explained

FIG. 4. Plot of the COP at optimal χ versus εC. εCA divides the
parametric region of the COP into two parts. For the optimization of
χ function over ωh, it serves as an upper bound, whereas it is the
lower bound on COP for the optimization over ωc.

in Appendix C that obtains the same expressions. For γ →
∞, the COP is evaluated at CA value. For γ → 0, we obtain
the upper bound on the COP as ε+ = (

√
9 + 8εC − 3)/2. Fur-

ther, although we cannot see analytically, numerical evidence
shows that COP lies in the range (see Fig. 4)

εCA � ε∗ � 1

2
(
√

9 + 8εC − 3) ≡ ε+. (28)

Interestingly, εCA also appears as the lower bound for the
optimization of a quantum model of refrigerator consisting
of two n-level systems interacting via a pulsed external field
[3]. However, the result reported in Ref. [3] was obtained in
the linear response regime where Tc ≈ Th. In the same model,
imposing the condition of equidistant spectra, εCA can be ob-
tained as an upper bound in the classical regime for n → ∞.
The upper bound ε+ = (

√
9 + 8εC − 3)/2 obtained here also

serves as the upper limit on the COP for low-dissipation [61]
and minimally nonlinear irreversible models [19]. Further, for
a two-level quantum system working as a refrigerator, the
same upper bound can be derived in the high-temperature
regime [60].

V. COOLING POWER AT OPTIMAL χ FUNCTION VERSUS
OPTIMAL COOLING POWER

In this section, we compare the CP obtained at maximum χ

function with the optimal CP. As CP can be maximized with
respect to ωc only, we can make the comparison only for this
case. Dividing Eq. (C5) by Eq. (17), we get the ratio of CP at
maximum χ function to the optimal CP, for the limiting case
γ → 0:

Rγ→0 = (3 + 2εC)
√

9 + 8εC − 9 − 10εC

2ε2
C

, (29)

which approaches the value 8/9 for small εC, while it vanishes
for large εC (small temperature differences).

Similarly, we get the corresponding ratio for γ → ∞ upon
dividing Eq. (C7) by Eq. (18):

Rγ→∞ =
√

1 + εC − 1

εC

, (30)

which approaches the value 1/2 for small εC, while it vanishes
for large εC. We have plotted Eqs. (29) and (30) in Fig. 5, from
which it is clear that the ratio is greater for the case γ → 0.
Further, it is interesting to note that although both Rγ→0 and
Rγ→∞ vanish for εC → ∞, their ratio Rγ→0/Rγ→∞ → 2

√
2

for small temperature differences.

VI. CONCLUSIONS

In this work, we have studied the optimal performance
of a three-level atomic system working as a refrigerator.
We have studied two different target functions: CP and χ

function. Although, in many classical and quantum models of
the refrigerator, CP is not a good figure of merit to optimize, in
our model, it is a well-behaved function and we have obtained
analytic expressions for lower and upper bounds on the COP
already derived in some models of classical and quantum
refrigerators. However, we notice that CP is maximized only
with respect to the control frequency ωc. In contrast to the
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FIG. 5. Ratio (R) of the CP at optimal χ function to the optimal
CP. Red and blue curves represent Eqs. (29) and (30), respectively,
which approach the value 8/9 and 1/2 respectively for εC → 0, and
vanish for εC → ∞.

behavior of CP, χ function shows global maximum which
makes it a more suitable figure of merit to study the optimal
performance of refrigerators. In the general unconstrained
regime, we have presented results of numerical optimization
in Table I. Then in the low-temperature regime, we showed
that the COP of our model is independent of system-bath
coupling (�c,h) or system-field coupling (λ), and depends on
Carnot COP only, which is a remarkable result. Further, in
the high-temperature and strong-coupling regime (λ � �c,h),
we have alternatively performed maximization of χ function
with respect to ωh (ωc fixed) and ωc (ωh fixed). In both cases,
we were able to obtain the lower and upper limits on the
COP, already well known in the literature on optimization of
refrigerators. The possibility of simultaneous maximization of

CP and χ function, enables a comparison between optimal CP
in the quantum refrigerator with the CP at optimal χ function,
and we conclude that a large system-bath coupling at the cold
end (compared to the hot end) yields a higher relative value of
CP (see Fig. 5). There are a few classical models [4,19,59] in
which both CP and χ function are maximizable. To the best
of our knowledge, the present model provides an instance of
a quantum thermal machine allowing the same feature. This
will aid future studies [62] which explore models in which the
performance of quantum machines can be bettered over their
classical counterparts.
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APPENDIX A: STEADY-STATE SOLUTION OF DENSITY
MATRIX EQUATIONS

Here, we solve the equations for density matrix in the
steady state. Substituting the expressions for H0, H̄ , V0, and
using Eqs. (4) and (5) in Eq. (6), the time evolution of
the elements of the density matrix are given by following
equations:

ρ̇11 = iλ(ρ10 − ρ01) − 2�h[(nh + 1)ρ11 − nhρgg], (A1)

ρ̇00 = −iλ(ρ10 − ρ01) − 2�c[(nc + 1)ρ00 − ncρgg], (A2)

ρ̇10 = −[�h(nh + 1) + �c(nc + 1)]ρ10 + iλ(ρ11 − ρ00),

(A3)

ρ11 = 1 − ρ00 − ρgg, (A4)

ρ̇01 = ρ̇∗
10. (A5)

Solving Eqs. (A1)–(A5) in the steady state by setting ρ̇mn = 0
(m, n = 0, 1), we obtain

ρ10 = iλ(nh − nc)�c�h

λ2[(1 + 3nh)�h + (1 + 3nc)�c] + �c�h[1 + 2nh + nc(2 + 3nh)][(1 + nc)�c + (1 + nh)�h]
(A6)

and

ρ01 = ρ∗
10. (A7)

Calculating the trace in Eq. (7), the input power is given by

P = ih̄λ(ωh − ωc)(ρ01 − ρ10). (A8)

Similarly evaluating the trace in Eq. (8), heat flux Q̇c can be
written as

Q̇c = h̄ωc(2�c[ncρgg − (nc + 1)ρ00]). (A9)

Using the steady-state condition ρ̇00 = 0 [see Eq. (A2)],
Eq. (A9) becomes

Q̇c = ih̄λωc(ρ01 − ρ10). (A10)

Substituting Eqs. (A6) and (A7) in Eq. (A10), we have

Q̇c = 2h̄λ2�c�h(nc − nh)ωc

λ2[(1 + 3nh)�h + (1 + 3nc)�c] + �c�h[1 + 2nh + nc(2 + 3nh)][(1 + nc)�c + (1 + nh)�h]
. (A11)

The expression for χ function, χ = εQ̇c, is given by

χ = 2h̄λ2�c�h(nc − nh)ω2
c

λ2(ωh − ωc)[(1 + 3nh)�h + (1 + 3nc)�c] + �c�h[1 + 2nh + nc(2 + 3nh)][(1 + nc)�c + (1 + nh)�h]
. (A12)
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APPENDIX B: DERIVATION OF EQ. (22)

Optimization of Eq. (19) with respect to ωh (∂χ/∂ωh = 0)
yields the following condition:

h̄(ωh − ωc)

kBTh
e−h̄ωh/kBTh − (e−h̄ωc/kBTc − e−h̄ωh/kBTh ) = 0, (B1)

which can be simplified to yield

eh̄ωh/kBTh−h̄ωc/kBTc = 1 + h̄(ωh − ωc)

kBTh
. (B2)

Using ε = ωc/(ωh − ωc) and εC = Tc/(Th − Tc), Eq. (B2) can
be written as

eh̄ωh/kBTh−h̄ωc/kBTc = 1 + h̄ωcεC

kBTc(1 + εC)ε
. (B3)

Performing similar steps as above, for the optimization of
Eq. (19) with respect to ωc, we obtain

eh̄ωh/kBTh−h̄ωc/kBTc = 1 + h̄ωc

kBTc(2 + ε) − h̄ωc
. (B4)

Comparing Eqs. (B3) and (B4), we obtain the following
relation:

h̄ωc

kBTc
= 2 + ε − ε(1 + εC)

εC
. (B5)

Then, we can express the exponent in the left hand side of
Eq. (B3) as follows:

h̄ωh

kBTh
− h̄ωc

kBTc
= h̄ωc

kBTc

[
εC(1 + ε)

ε(1 + εC)
− 1

]

= (2εC − ε)(εC − ε)

ε(1 + εC)εC
. (B6)

Substituting from Eqs. (B5) and (B6) into (B3), we arrive at
Eq. (22).

APPENDIX C: OPTIMIZATION OF χ FUNCTION WITH
RESPECT TO ωc IN HIGH-TEMPERATURE AND

STRONG-COUPLING REGIME

The expression for the χ function is given by

χ = 2h̄�hω
2
c (τωh − ωc)

3(τωh + γωc)(ωh − ωc)
. (C1)

As explained in the Sec. IV, we cannot maximize the above
function with respect to ωc to obtain the roots in real radicals
because of the casus irreducibilis (see Appendix D). However,
we can obtain the real solutions for the limiting cases γ → 0
and γ → ∞. For γ → 0, χ function can be written as

χ = 2h̄�hω
2
c (τωh − ωc)

3τωh(ωh − ωc)
, (C2)

which can be maximized with respect to ωc for a fixed ωh to
give

ωc = ωh

4
(3 + τ −

√
9 − 10τ + τ 2). (C3)

Substituting Eq. (C3) in Eq. (C2) and in the equation Q̇c =
2h̄�hωc(τωh − ωc)/τωh, we get following expressions for the
optimal χ function and CP at optimal χ function, respectively:

χ
∗(ωh )
γ→0 = h̄�hωh

27 + 36εC + 8ε2
C − (9 + 8εC)3/2

12εC(1 + εC)
, (C4)

Q̇c
χ (ωh )
γ→0 = h̄�hωh

(3 + 2εC)
√

9 + 8εC − 9 − 10εC

12εC(1 + εC)
. (C5)

Similarly, for γ → ∞, maximization of χ function, χ =
2h̄�c(τωh − ωc)/(ωh − ωc), yields the following expressions:

χ∗(ωh )
γ→∞ = 2h̄�cωh(2 + εC − √

1 + εC)

1 + εC

, (C6)

Q̇c
χ (ωh )
γ→∞ = 2h̄�cωh(

√
1 + εC − 1)

1 + εC

. (C7)

APPENDIX D: CASUS IRREDUCIBILIS

In algebra, casus irreducibilis arises while solving a cubic
equation. The formal statement of the casus irreducibilis is
that if a cubic polynomial is irreducible with rational coef-
ficients and has three real roots, then the roots of the cubic
equation are not expressible using real radicals and thus,
one must introduce expressions with complex radicals, even
though the resulting expressions are actually real-valued. It
was proven by Wantzel in 1843 [63]. Using the discriminant D
of the irreducible cubic equation, one can decide whether the
given equation is in casus irreducibilis or not, via Cardano’s
formula [64]. The most general form of a cubic equation is
given by

ax3 + bx2 + cx + d = 0, (D1)

where a, b, c, d are real.
The discriminant D is given by: D = 18abcd − 4b3d +

b2c2 − 4ac3 − 27a2d2. Depending upon the sign of D, follow-
ing three cases arise:

(a) D < 0, the cubic equation has two complex roots, so
casus irreducibilis does not apply.

(b) D = 0, all three roots are real and expressible by real
radicals.

(c) D > 0, there are three distinct real roots. In this case, a
rational root exists and can be found using the rational root
test. Otherwise, the given polynomial is casus irreducibilis
and we need complex valued expressions to express the roots
in radicals.

In our case, to solve Eq. (27), we have to solve the
following cubic equation:

γω3
c + 2ωh(τ − γ )ω2

c − τω2
h(3 + τ − γ )ωc + 2τ 2ω3

h = 0.

(D2)
The discriminant D of the above equation is given by

D = 4ω6
h(1 + γ )(1 + τ )[3γ 2(3 − τ ) + γ 3 + 9γ τ

+ 3γ τ 2 + 9τ 2(1 − τ )]. (D3)

Since the parameters ωh, γ , τ are positive and τ < 1, D > 0.
So the polynomial in Eq. (D2) presents the case of casus
irreducibilis.
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APPENDIX E: MAPPING TO FEYNMAN’S RATCHET AND
PAWL MODEL

It is interesting to note that in the low-temperature regime,
SSD refrigerator can be mapped to Feynman’s ratchet and
pawl model [65–69], a mesoscopic steady-state heat engine
capable of extracting work from thermal fluctuations for a
setup of two heat reservoirs via a ratchet and pawl mechanism.
In the refrigerator mode, the ratchet makes a backward jump
when xc amount of heat is absorbed from the cold reservoir
and subsequently xh amount of heat is supplied to the hot
reservoir [65,68]. Similarly, the wheel turns in the forward
direction when xh energy is absorbed from the hot reservoir.
The rates of forward and backward jumps are given by

RF = r0e−h̄xh/kBTh , RB = r0e−h̄xc/kBTc , (E1)

where r0 is the rate constant. The system operates as a
refrigerator when RB > RF . The rates of heat exchanged with

the cold and hot reservoirs, respectively, are given by

Q̇c = xc(RB − RF ) = r0xc(e−h̄xc/kBTc − e−h̄xh/kBTh ), (E2)

Q̇h = xh(RB − RF ) = r0xh(e−h̄xc/kBTc − e−h̄xh/kBTh ). (E3)

Therefore, χ function for Feynman’s model can be written as
follows

χF = r0x2
c

xh − xc

(
e−h̄xc/kBTc − e−h̄xh/kBTh

)
. (E4)

Apart from the multiplicative constant 2h̄λ2�c�h/(�c +
�h)(λ2 + �c�h) (instead of r0), the expression in Eq. (19) is
similar to the χ function for the Feynman’s model [Eq. (E4)],
where ωc and ωh are replaced by xc and xh. Thus, we establish
a mapping between our model of refrigerator and Feynman’s
model. A similar mapping also exists between the SSD engine
and Feynman’s ratchet as heat engine [36].
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