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Large systems of linear equations are ubiquitous in science. Quite often, e.g., when considering population
dynamics or chemical networks, the solutions must be nonnegative. Recently, it has been shown that large
systems of random linear equations exhibit a sharp transition from a phase, where a nonnegative solution exists
with probability one, to one where typically no such solution may be found. The critical line separating the
two phases was determined by combining Farkas’ lemma with the replica method. Here we show that the
same methods remain viable to characterize the two phases away from criticality. To this end we analytically
determine the residual norm of the system in the unsolvable phase and a suitable measure of robustness of
solutions in the solvable one. Our results are in very good agreement with numerical simulations.
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I. INTRODUCTION

Systems of linear equations are fundamental objects of
study in linear algebra. They play an important role in many
fields, ranging from physics to ecology and financial mar-
ket analysis. In many situations, e.g., when examining the
stability of stationary states of systems with a large number
of degrees of freedom, one encounters systems with many
equations.

In the study of large complex systems it is often not
known in detail how the microscopic parts interact with each
other. Fortunately, the macroscopic properties frequently do
not depend on all of the microscopic details, and it has proven
successful to model them by random variables. This is a
sensible approach if so-called self-averaging quantities exist
that depend only on the parameters of the distributions and not
on the individual realizations. A classic example is spin-glass
theory [1,2] but also problems from computational complexity
[3], information theory [4], and artificial neural networks [5]
have been analyzed along these lines.

A natural question occurring when studying large systems
of random linear equations concerns their solvability. In some
cases this question can be answered easily. Consider a system
of linear equations âT x = b for the variables xμ ∈ R, μ =
1, . . . , S with a real N × S matrix âT and a real inhomogeneity
vector b ∈ RN . In general, this system has a solution if the
rank of the matrix, r(âT ), is the same as the rank of the aug-
mented matrix, r(âT |b). If the entries of the matrix are drawn
independently from a continuous probability distribution, then
it has full rank with probability one [6] and the system is
almost surely solvable for S � N , i.e., if there are at least as
many variables as equations.

In many situations, e.g., when considering models describ-
ing population dynamics [7–9], chemical networks [10,11],
financial markets [12], or game-theoretic settings [13] the
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searched-for variables are concentrations or probabilities and
must therefore be nonnegative. The question whether a so-
lution x of the system of linear equations exists with all
components xμ nonnegative is nontrivial if S � N .

In Ref. [14] it was shown that this problem may be mapped
onto a dual one by using Farkas’ lemma [15]. For independent
random entries aμi and bi and S = O(N ) the dual problem
is amenable to a replica analysis. Remarkably, in the limit
N, S → ∞ the system is characterized by a sharp transition
from a phase in which a nonnegative solution exists with
probability one to one where typically no such solution can
be found. The transition line only depends on the statistical
properties of the system and is therefore self-averaging.

In Ref. [14] the mapping to the dual problem was used
solely to determine the critical line between the two phases.
In the present paper we show that it remains valuable also
to characterize the system away from criticality, i.e., deeply
inside the solvable and unsolvable phase, respectively. In this
way we get analytic expressions for the remaining variability
of the system in the solvable phase as well as for the residual
error in the unsolvable one.

The paper is organized as follows. In Sec. II the problem
is defined, relevant notation is fixed, and suitable quantities
to characterize the two different phases are introduced. Sec-
tion III contains an intuitive explanation of Farkas’ lemma,
which is central to this paper. In Sec. IV we sketch the
determination of the critical line as performed in Ref. [14].
We then turn to the characterization of the two different phases
of the problem and start in Sec. V with the unsolvable phase.
Section VI contains the corresponding analysis of the solvable
phase. Finally, we summarize our findings in Sec. VII.

II. PROBLEM AND NOTATION

A. Large systems of random linear equations

We study a system of N random linear equations

âT x = b, x � 0, (1)
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for S unknowns xμ where the crucial qualification x � 0
stands for xμ � 0 for all μ = 1, . . . , S. We are hence only
looking for solution vectors with nonnegative components.
The S × N matrix â has independent random entries aμi drawn
from a Gaussian distribution with average A and variance σ 2,

〈aμi〉 = A, 〈(aμi − A)2〉 = σ 2, (2)

and âT denotes its transpose. The components bi, i =
1, . . . , N of the inhomogeneity vector b are drawn from a
Gaussian distribution with average B and variance γ 2/N ,

〈bi〉 = B, 〈(bi − B)2〉 = γ 2

N
. (3)

Here and in the following the brackets 〈. . . 〉 denote the
average over the aμi and bi. We are always interested in the
large system limit N → ∞ with S = αN and α = O(1). Note
the scaling of the variance 〈(bi − B)2〉 ∼ 1/N with the system
size. It is important for a controlled limit N → ∞ in the
subsequent calculations.

B. Solvable and unsolvable phase

For N → ∞ the system (1) exhibits a phase transition from
a phase where a solution almost always exists to one where
typically no such solution can be found. This line depends on
the ratio α between the number of variables and the number
of equations and on the parameters A, B, σ , and γ of the
probability distributions involved. The analytic determination
of the transition line was performed in Ref. [14]. To make
this paper self-contained and to set the stage for the ensuing
calculations the main steps of the corresponding calculations
are sketched in Sec. IV. For more details the reader is referred
to the original paper.

The central aim of the present work is to characterize the
two phases of system (1). To this end we first need to find
quantities able to describe relevant properties of the system
away from criticality.

In the unsolvable phase no solution x to (1) exists and
it is intuitive to ask “how far” the system is from having a
solution. This somewhat vague concept can be quantified by
the minimal residual norm:

r := min
x,x�0

∥∥âT x − b
∥∥, (4)

where ‖ . . . ‖ denotes the usual quadratic norm of vectors. As
long as no solution x exists r is nonzero. By approaching the
solvable phase r should decrease and eventually tend to zero

at the transition. We are interested in the detailed behavior of
r as a function of α, A, B, σ, and γ .

In the solvable phase the situation is complementary. Now
a solution always exists. It is then natural to ask for the
robustness or flexibility of the system: How strongly can it
be changed or perturbed while still remaining solvable? There
are several possibilities to phrase this idea mathematically.
One is to determine the minimal number of rows aμ and
corresponding variables xμ by which the system (1) has to be
reduced such that it is rendered unsolvable. We will discuss
related measures in Sec. VI.

III. FARKAS’ LEMMA

It is very useful to map the original problem (1) to a dual
one with the help of Farkas’ lemma [15]. To this end we
consider what is called the nonnegative cone of row vectors aμ

of matrix â. This cone is spanned by all linear combinations

c1a1 + c2a2 + · · · + cαN aαN (5)

of these row vectors with nonnegative coefficients cμ, cf.
Fig. 1. Clearly, if b falls into this cone, then (1) has a solution
whereas no such solution exists when b lies outside the cone.
In the latter case, however, a hyperplane must exist that
separates b from the cone. If we denote the normal of this
hyperplane by y ∈ RN , then we may hence state that either a
solution x to

âT x = b with x � 0 (6)

exists or we may find a vector y satisfying

ây � 0 and b · y < 0. (7)

This duality is the pivotal point of our analysis. As we will
show in the next sections (7) may be analyzed using the
replica method similar to related problems [16].

IV. DETERMINATION OF THE CRITICAL LINE

Let us first see how we can determine the critical line
of the system by studying the inequalities (7). If a vector y
exists which fulfills all inequalities, then the original system
(1) does not have solution. If there is no such vector y, then a
nonnegative solution x exists.

To get rid of the trivial degeneracy of solutions y implied
by y → ωy for any positive ω we first require

‖y‖2 =
∑

i

y2
i = N. (8)

Next we define the fractional volume �(â, b) of all vectors y
which fulfill (7) for given â and b:

�(â, b) :=
∫ ∞
−∞

∏
i dyi δ

( ∑
i y2

i − N
)
�

( − 1√
N

∑
i biyi

)∏
μ �

(
1√
N

∑
i aμiyi

)
∫ ∞
−∞

∏
i dyi δ(

∑
i y2

i − N )
. (9)

Here � denotes Heaviside functions and their arguments have
been scaled such that their typical values remain O(1) for
N → ∞.

The geometric interpretation of � is depicted in Fig. 2.
Due to (8) all vectors y lie on a sphere with radius

√
N .

The inequality y · b < 0 in (7) constrains them to the lower
hemisphere with respect to b. At the same time, all y need to
have a nonnegative scalar product with every row vector of â.
The more variables the system (1) has, the more constraints
need to be fulfilled by y. Therefore, the fractional volume
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FIG. 1. The geometry of problem (1) in the solvable phase. The
inhomogeneity vector b (blue dashed) belongs to the cone spanned
by nonnegative linear combinations (5) of the row vectors aμ (black
solid). Correspondingly, system (1) has a solution x. For the situation
in the unsolvable phase see Fig. 4.

of solutions (gray shaded area) shrinks, as the number of
variables is increased. When the fractional volume becomes
zero, there is no y satisfying all the inequalities. This implies
that a solution to the system (1) exists.

The value of �(â, b) depends on the specific choice of
the matrix â and the vector b. Rather than to pinpoint the
fractional volume for each individual realization of the ran-
domness we are interested in its typical value under the
distributions defined in Sec. II. Since � is dominated by
a product of many independent random terms, we cannot
expect its average to give a good estimate for its typical value.
Instead, this typical value is given by

�typ 
 exp
(〈log �〉). (10)

For given statistical parameters A, B, σ, γ the critical line of
the transition is determined by finding the value of α for which
the typical value of the volume � becomes zero. Therefore,
our quantity of interest is the entropy:

S(α, A, B, σ, γ ) := lim
N→∞

1

N
〈log �(â, b)〉. (11)

b

a1 a2

FIG. 2. Volume of allowed solutions y of (7) (gray shaded area).
All vectors y lie on a sphere of radius

√
N . The inequality y · b < 0

constrains the vectors to lie on the lower hemisphere with respect to
b. At the same time, they need to have a positive scalar product with
all row vectors aμ.

For its determination we use the replica trick [17] which is
based on the identity:

〈log �〉 = lim
n→0

〈�n〉 − 1

n
. (12)

The calculation is feasible for n ∈ N. The result has then to
be continued to the real n in order to accomplish the crucial
limit n → 0. For n ∈ N we have

�n(â, b) =
∫ ∞

−∞

∏
i,a

dya
i√

2πe

∏
a

δ

[∑
i

(ya
i )2 − N

]

×
∏
μ,a

�

(
1√
N

∑
i

aμiy
a
i

)∏
a

�

(
− 1√

N

∑
i

biy
a
i

)
.

(13)

Here a is the replica index, which runs from 1 · · · n, and the
denominators

√
2πe account for the denominator in (9). Re-

placing the δ and � functions by their integral representations
the arising integrals can be decoupled by introducing the order
parameters:

ma = 1√
N

∑
i

ya
i and qab = 1

N

∑
i

ya
i yb

i for a < b. (14)

In the limit N → ∞ the integrals may then be calculated
by the saddle-point method. Since the solution space of (7) is
connected the replica-symmetric ansatz for the saddle point is
expected to yield correct results:

ma = m, qab = q, for a < b. (15)

Some of the resulting saddle-point equations are algebraic and
can be used to eliminate the corresponding variables. With the
abbreviations

Dt := dt√
2π

e−t2/2, H (x) :=
∫ ∞

x
Dt, (16)

as well as

κ := mA

σ
, λ := σB

γ A
, (17)

we finally arrive at [14]

S(α, λ) = extrq,κ

[
1

2
log(1 − q) + q

2(1 − q)

− λ2

2

κ2

1 − q
+ α

∫
Dt log H

(√
q t − κ√
1 − q

)]
. (18)

The order parameter q characterizes the typical overlap be-
tween two different solutions y from the solution space. It
varies from q = 0 for α = 0 to q → 1 close to the phase
transition. To determine the transition line we may hence
reduce Eq. (18) to its most divergent terms for q → 1. In this
limit we have∫

Dt log H

(√
q t − κ√
1 − q

)
∼ − 1

2(1 − q)

∫ ∞

κ

Dt (t − κ )2

=: − 1

2(1 − q)
I (κ ) (19)
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FIG. 3. The transition from the unsolvable to the solvable phase
in dependence of the statistical properties of the random variables
described by λ and the ratio α between the number of variables and
the number of equations. The color indicates the fraction of randomly
drawn systems (1) for which a nonnegative solution could be found
numerically. The black line shows the analytical prediction of the
critical line given by Eqs. (21) and (22). Parameters: N = 300, every
data point shows the average over 50 realizations.

and correspondingly get

S(αc, λ) ∼ extrq,κ

[
1

2(1 − q)

− λ2

2

κ2

(1 − q)
− αc

2(1 − q)
I (κ )

]
. (20)

The critical value αc of α is determined by the remaining
saddle-point equations for q and κ:

1 − λ2κ2 = αcI (κ ), (21)

αcH (κ ) = 1. (22)

Note that in this result the statistical properties of aμi and bi as
specified by the parameters A, B, σ , and γ only arise in form
of λ defined in (17) which gives the scaled ratio of the relative
variances of aμi and bi.

Figure 3 shows the critical line (black) given by (21)
and (22) in comparison with simulation results. The color
indicates the fraction of randomly drawn systems for which
a nonnegative solution could be found using a nonnegative
least-squares solver [18]. There is good agreement between
the analytical prediction and the numerics.

V. THE UNSOLVABLE PHASE

In the unsolvable phase of problem (1) no solution vector
x may be found. In Sec. II we proposed the residual norm
r defined in (4) as a measure of how far the system is from
having a solution. We will show now how to determine the
typical value of r from the dual problem (7). To this end it is
useful to first give r a geometrical interpretation, see Fig. 4. In
the unsolvable phase the inhomogeneity vector b lies outside
the cone of possible nonnegative linear combinations âT x.

FIG. 4. In the unsolvable phase the inhomogeneity vector b lies
outside the cone of possible nonnegative linear combinations âT x =∑S

μ xμaμ. The minimal residual norm r = minx,x�0 ‖âT x − b‖, is
realized by a linear combination which lies on the face of the cone
closest to b. Therefore, it is completely determined by the smallest
angle φmin between the cone and b.

The best approximation to b by a vector âT x of the cone lies
on a face of this cone and realizes the smallest possible angle
φmin between b and the surface of the cone. We hence get
r = b sin(φmin) with b = ‖b‖.

It remains to find a way to determine φmin from the dual
problem involving the vectors y. Since there is no solution
to equation (1) there is at least one and in fact several
hyperplanes separating the cone from b. The angle between
these hyperplanes and b ranges from 0 (when the hyperplane
contains b) to φmin (when the hyperplane contains the face of
the cone closest to b). Any hyperplane having an angle with b
larger than φmin violates at least one of the constraints in ây �
0. Thus, we can determine φmin by finding the hyperplane
fulfilling the constraints given by Farkas’ lemma and making
the largest possible angle with b. In terms of normal vectors y
this is equivalent to

r = max
y

(
− 1√

N
y · b

)
, (23)

where the maximum is over all vectors y fulfilling

ây � 0 , b · y < 0, ‖y‖2 = N. (24)

This formulation allows to determine the typical value of
r by a slight extension of the methods described in Sec. IV,
see also Ref. [19] for a related situation. The procedure is best
explained by comparing Figs. 2 and 5. In order to determine r
we have to find the maximal value ηmax of

η := − 1√
N

y · b, (25)

in the shaded solution space �. We proceed as follows: We
first fix a value of η thereby constraining the vectors y to lie
on a given latitude shown by the dotted blue line in Fig. 5.
The part of this line inside � (full blue line) represents those
vectors y that belong to � and make the required angle with
b. As η increases the full blue line gets shorter and shorter.
It shrinks to a point at the “most southern tip” of the solution
space when the maximal possible value ηmax of η has been
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b

a1 a2

FIG. 5. Solution volume � (gray shaded) as in Fig. 2 together
with the locus of vectors y making a definite angle with b (horizontal
blue line, solid and dashed), cf. Eq. (25). At the maximum value of
this angle the line hits the “southern tip” of the gray area.

reached. We may therefore determine ηmax by calculating
the modified fractional volume �̃(â, b, η) including the con-
straint (25) and looking for the value of η for which it goes
to zero.

The modified fractional volume �̃(â, b, η) is obtained
from �(â, b) as defined in (9) by the mere replacement

�

(
− 1√

N

∑
i

biyi

)
−→ δ

(
− 1√

N

∑
i

biyi − η

)
. (26)

The explicit calculations are hence rather similar to Sec. IV.
They yield the following expression for the corresponding
entropy

S̃(α, λ, η/γ ) = lim
N→∞

1

N
〈log �̃(â, b, η)〉

= extrq,κ

[
1

2
log(1 − q) + q

2(1 − q)
− (η/γ + κλ)2

2(1 − q)
+ α

∫
Dt log H

(√
q t − κ√
1 − q

)
+ C

]
, (27)

where C is an irrelevant constant arising from the different normalizations of �(â, b) and �̃(â, b, η).
The limit �̃ → 0 is again accompanied by q → 1. Keeping only the most divergent terms we find

S̃(α, λ, ηmax/γ ) = extrq,κ

[
1

2(1 − q)
− (ηmax/γ + κλ)2

2(1 − q)
− α

2(1 − q)
I (κ )

]
, (28)

with the corresponding saddle-point equations

1 − (ηmax/γ + κλ)2 = α I (κ ),

κλ(ηmax/γ + κλ) = α[H (κ ) − I (κ )]. (29)

Here H and I denote the functions defined in (16) and (19),
respectively. From the numerical solutions to (29) we get our
final result r = ηmax.

Figure 6 compares results for r obtained in this way with
numerical simulations for systems of size N = 1000. The data
points were generated by averaging over 10 realizations of the
randomness. For each realization the minimal residual norm
r of the random system Eq. (1) was determined using a least-
squares solver [18]. There is very good agreement between
numerics and analytical results. The qualitative behavior is
as expected: In the unsolvable phase, α < αc, the minimal
residual norm is nonzero. It monotonically decreases as the
system approaches αc to eventually reach zero at α = αc.

VI. THE SOLVABLE PHASE

Similar to the previous section we now try to characterize
the solvable phase of (1) by using the dual picture (7). In
the solvable phase, it is not possible to find a vector y which
fulfills all inequalities in (7) simultaneously. We may then ask
for the best y that violates the inequalities ây � 0 the least. To
formalize the idea let us define a cost function

v(y) =
∑

μ

E
(
�μ

)
, �μ := 1√

N

∑
i

aμiyi, (30)

which assigns an “energy” E to each violated constraint.
The choice of the cost function depends on the problem un-

der consideration. For concreteness, we consider two typical
examples which are compared in Fig. 7. The first one derives
from the step function

E
(
�μ

) = �
(−�μ

)
, (31)

FIG. 6. Comparison of analytical results and numerical simula-
tions for the residual error r in the unsolvable phase. The standard
deviations of the numerical results are smaller than the symbol
size. Parameters: A = B = γ = 1, σ = 1, 2, 3 (blue squares, red
diamonds, green circles), N = 1000, averaged over 10 realizations
for each data point.
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FIG. 7. The two cost functions studied in this section: The step
function defined in (31) (blue solid) and the ramp function (32)
(orange dashed).

and simply counts the number of violated constraints. Its
minimum over all choices of y hence corresponds to the
minimal number of row vectors aμ that have to be eliminated
from â such that a solution y exists. Going back to the original
problem it therefore gives the minimal number of row vectors
aμ and corresponding variables xμ by which the system (1)
has to be reduced such that it does not possess a nonnegative
solution anymore. In view of Fig. 1 this number gives an
estimate for the number of “crucial” row vectors aμ that are
indispensable for the cone to contain b.

The second cost function builds on the ramp function

E
(
�μ

) = −�
(−�μ

)
�μ (32)

and is sensitive not only to the violation of a constraint
per se but also to the value of �μ, i.e., to the strength of
such a violation [20]. Referring again to Fig. 1 its minimal
value characterizes the sensitivity of the system (1) to small
variations in â and b because it indicates whether b lies “well
in the middle” of the nonnegative cone of the aμ or rather near
to its boundary.

It is again possible to calculate the typical minimal values
of both cost functions within the replica approach outlined
above. To this end we introduce an auxiliary inverse tempera-
ture β and define the partition function

Z (â, b, β )

=
∫ ∏

i dyiδ
(∑

i y2
i − N

)
�

(
− 1√

N

∑
i biyi

)
exp

[−βv(y)
]

∫ ∏
i dyiδ

(∑
i y2

i − N
) .

(33)

It is instructive to compare this expression with the frac-
tional volume, Eq. (9), which was used to examine the phase
transition and the minimal residual norm in the unsolvable
phase. There, only those y contributed to the integral which
do not violate any constraint at all in ây � 0, i.e., only those
with v(y) = 0. The entropy (11) was hence similar to a mi-
crocanonical ground-state entropy. Complementary, Eq. (33)
is like a canonical partition function to which all y contribute,
also those violating the constraints, albeit suppressed by the
Boltzmann factor exp[−βv(y)]. The role of the entropy in the

microcanonical approach is now taken by the free energy

F (α, λ, β ) := − lim
N→∞

1

αNβ
〈log Z (â, b, β )〉. (34)

The minimal possible average cost per equation 〈Emin〉 cor-
responds to the ground-state energy and is given as the low
temperature limit of the free energy:

〈Emin〉 = 〈vmin〉
αN

= lim
β→∞

F (α, λ, β ). (35)

Its calculation is yet another variation of the one sketched
in Sec. IV and proceeds along the lines of Refs. [16,21,22].
The same order parameters are defined as in (14) and under
the assumption of replica symmetry, we find

F (α, λ, β ) = extrq,κ

[
− log(1 − q)

2αβ
− q

2αβ(1 − q)

+ λ2κ2

2αβ(1 − q)
− 1

β
GE

]
, (36)

where

GE =
∫

Dt log
∫

d�

× exp

[
−βE (�) − (�/σ − κ + t

√
q)2

2(1 − q)

]
. (37)

The limit β → ∞ to project out the ground state is accom-
panied by q → 1 such that x := β(1 − q) remains of O(1). In
this limit, therefore, the role of the saddle-point variable q is
taken over by x. In this way GE becomes

GE = β

∫
Dt

[
−E (�0) − (�0/σ − κ + t )2

2x

]
, (38)

where

�0(t ) = arg min
�

[
E (�) + (�0/σ − κ + t )2

2x

]
. (39)

For the step cost function (31) the minimum is realized by

�0(t ) =
⎧⎨
⎩

σ (κ − t ) if t < κ

0 if κ � t � κ + √
2x

σ (κ − t ) if t > κ + √
2x

. (40)

The typical minimal cost per equation is then given by

〈Emin〉 = extrx,κ

[
− 1

2αx
+ λ2κ2

2αx
+ H

(
κ +

√
2x

)

+ 1

2x

∫ κ+√
2x

κ

Dt (t − κ )2

]
. (41)

This expression is similar to the one for the minimal frac-
tion of misclassified patterns of a perceptron [21,22]. Here,
however, we have the additional term λ2κ2

2x and the additional
extremization in κ .

The saddle-point equations corresponding to (41) read

α

∫ κ+√
2x

κ

Dt (t − κ )2 =1 − λ2κ2, (42)

α

∫ κ+√
2x

κ

Dt (t − κ ) =λ2κ, (43)
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FIG. 8. The lines show the typical minimal energy 〈Emin〉 for the step cost function (a) and for the ramp cost function (b) as given by Eq. (44)
and (50), respectively. Parameters: A = B = γ = 1, and σ = 1, 2, 3 (blue bottom, red middle, green top). Each symbol of the numerical results
for the ramp function was generated from systems with N = 300 and averaged over 25 realizations. The error bars show the standard deviation.

and (41) simplifies to

〈Emin〉 = H (κ +
√

2x). (44)

Note that κ and x in this expression have to be determined
from the numerical solution of the saddle-point equations (42)
and (43).

Analytical results for 〈Emin〉 in case of the step cost func-
tion as function of α are shown in Fig. 8(a). The overall
behavior is as expected: For α below the critical value αc, the
system is in the unsolvable phase, all constraints in (7) can be
fulfilled and 〈Emin〉 is zero. For α > αc some of the constraints
can no longer be fulfilled and 〈Emin〉 starts to monotonically
grow. Since the determination of 〈Emin〉 by simulations is
computationally very demanding and not indispensable for
this work we have refrained from doing so.

For the ramp cost function (32) the calculation is similar.
Equation (40) is modified to

�0(t ) =
⎧⎨
⎩

σ (κ − t ) if t < κ

0 if κ � t � κ + σx
σ (xσ + κ − t ) if t > κ + σx

(45)

and GE acquires the form

GE

β
= − 1

2x

∫ κ+xσ

κ

Dt (κ − t )2 + σ
(
κ + xσ

2

)
H (κ + xσ )

− σ√
2π

exp

[
− (κ + xσ )2

2

]
. (46)

The typical minimal cost per equation becomes

〈Emin〉 = extrx,κ

{
− 1

2αx
+ λ2κ2

2αx
−σ

(
κ+ xσ

2

)
H (κ+xσ )

+ 1

2x

∫ κ+xσ

κ

Dt (κ − t )2 + σ√
2π

exp

[
− (κ + xσ )2

2

]}
,

(47)

complemented by the saddle-point equations

1 − λ2κ2 = ασ 2x2H (κ + σx) + α

∫ κ+xσ

κ

Dt (κ − t )2, (48)

λ2κ = αxσH (k + σx) − α

∫ κ+xσ

κ

Dt (κ − t ). (49)

The final result for the typical minimal cost per equation
assumes the form

〈Emin〉 = −σ (κ + xσ )H (κ + xσ ) + σ√
2π

e−(κ+xσ )2/2, (50)

where again the values of the saddle-point variables κ and x as
determined from the numerical solution of (48) and (49) have
to be plugged into this expression.

In Fig. 8(b) analytical and numerical results for 〈Emin〉
for the ramp cost function are compared. In this case, it is
straightforward to get numerical results since the minimal
value of v(y) can be determined using standard tools as
the scipy.optimize.minimize function in Python. Very good
agreement between analytical and numerical results is found.

The results on the minimal cost per equation shown in
Fig. 8 can be specified in more detail by determining the
distribution pmin(�) of the “violation strengths” �μ defined
in (30) in the limit β → ∞. In Ref. [22] it is shown that this
distribution is given by

pmin(�) =
∫

Dt δ[� − �0(t )]. (51)

In this way we find for the step cost function

pmin(�) = δ(�)
∫ κ+√

2x

κ

Dt

+
[
�(�) + �(−� − σ

√
2x)

] 1√
2πσ

e−(κ− �
σ

)2/2

(52)

and for the ramp function

pmin(�) =δ(�)
∫ κ+σx

κ

Dt + �(�)
1√

2πσ
e−(κ− �

σ
)2/2

+ �(−�)
1√

2πσ
e−(− �

σ
+σx+κ )2/2. (53)
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FIG. 9. Left: Distribution of violation strengths � for the step function (a) and the ramp function (b). The height of the line at � = 0 gives
the prefactor of the respective δ function. Parameters: A = B = γ = 1, σ = 2, α = 3.

Figure 9 compares these two distributions in the interesting
regime α > αc. Figure 9(a) shows pmin for the step function.
The δ peak at � = 0 is caused by constraints that are fulfilled
as equalities, whereas the part of the Gaussian for � > 0 rep-
resents constraints which are more than just barely fulfilled.
Note the gap of width σ

√
2x in the negative part of the distri-

bution. This gap is due to the fact that the step cost function
does not differentiate between heavily violated constraints and
those only slightly violated. It therefore prefers few “gross
mistakes” to many tiny ones. In this way it selects the row
vectors aμ that are “most crucial” for the cone to contain
the vector b as discussed at the beginning of this section. In
contrast, the distribution pmin(�) for the ramp cost function is
gapless, see Fig. 9(b). Since the ramp function punishes strong
violations of constraints more severely than slight violations
its optimal value is realized with many but small violations.
It therefore characterizes some average distance of b from the
boundary of the cone. No gap in the distribution is therefore to
be expected. Note that the typical minimal cost per equation
is recovered from the distributions pmin(�) by:

〈Emin〉 =
∫

d� E (�) pmin(�). (54)

VII. CONCLUSION

Large systems of random linear equations exhibit intrigu-
ing properties if their variables are constrained to be nonneg-
ative. These systems show a sharp transition from a phase
where a solution can be found with probability one to a phase
where typically no such solution exists. The transition line

depends only on the statistical properties of the systems and
is hence self-averaging.

In the present paper we showed that the mapping used in
Ref. [14] to determine the critical line is also the clue to char-
acterize the two phases away from criticality. To this end we
introduced suitable quantities describing the phases and deter-
mined their typical values as function of the statistical param-
eters of the random ensembles and the ratio between the num-
ber of variables and the number of equations. The unsolvable
phase can be characterized by the typical residual norm of the
system of equations. It measures how ’far away’ the system is
from being solvable. In the solvable phase two measures for
the robustness of solutions were introduced and analyzed.

Our analytical investigations became possible by first map-
ping the problem onto a dual one using Farkas’ lemma and
then analyzing this dual problem with the help of the replica
method. Technically, our results depend on the correctness
of the assumption of replica symmetry. In the unsolvable
phase, α � αc, the solution space of the dual problem is
connected and it is reasonable to expect replica symmetry to
hold. On the other hand, the solvable phase is characterized by
a disconnected solution space of the dual problem and replica
symmetry breaking may come into play [21–23].
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